
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Fall 1-31-2001

Analysis and control of monolithic piezoelectric nano-actuator Analysis and control of monolithic piezoelectric nano-actuator

Xuemei Sun
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Sun, Xuemei, "Analysis and control of monolithic piezoelectric nano-actuator" (2001). Dissertations. 455.
https://digitalcommons.njit.edu/dissertations/455

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/455?utm_source=digitalcommons.njit.edu%2Fdissertations%2F455&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ANALYSIS AND CONTROL OF MONOLITHIC
PIEZOELECTRIC NANO-ACTUATOR

by
Xuemei Sun

The study of the monolithic piezoelectric actuator, the dominant type of micro-

positioner is an attractive and challenging area, where real-time control theory and

digital signal processing are effectively applied. The actuator can be applied in

precision instruments and precision control, such as microscopes, medical and optics

instruments because of the piezoelectric ceramic's high resolution, fast transient

response, and potential low cost. However, hysteresis nonlinearity and lightly

damped vibration exist in the system, which limit the actuator applications.

This work focuses on the hysteresis characteristics in time and frequency

domains along with experimental and simulated results to verify the effectiveness of

the model in describing the hysteresis phenomena. The analytic expressions of the

hysteresis harmonics are further applied in hysteresis parameter estimation.

A reduced order nonlinear hysteresis observer compensator is proposed, and

the stability of the compensated system is discussed. The compensator reduces

the hysteresis effect significantly under simulated and experimental conditions.

Furthermore, an adaptive hysteresis observer compensator is further presented to

compensate the slowly changed hysteresis parameters. Time division multi-control

strategy is proposed to implement fast transient response, low vibration and high

resolution.

Extensive numerical simulation and real-time experiment are carried out to

verify the control strategies. GUI is developed to implement the communication

between the code in DSP memory and Labview, which improves the efficiency in

system test.

ANALYSIS AND CONTROL OF MONOLITHIC
PIEZOELECTRIC NANO-ACTUATOR

by
Xuemei Sun

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

January 2001

Copyright C) 2001 by Xuemei Sun

ALL RIGHTS RESERVED

APPROVAL PAGE

ANALYSIS AND CONTROL OF MONOLITHIC
PIEZOELECTRIC NANO-ACTUATOR

Xuemei Sun

Dr. Timothy IN. Chang, Dissertation Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr.' Andrew Meyer, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Bernard Friedland, Committee Member
Distinguished Professor of Electrical and Computer Engineering, NJIT

Dr. Marshall Kuo, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Zhiming Ji, Committee 'Wernher 	 Date
Associate Professor of Mechanical Engineering, NJIT

Date

Dr. Haim Baruh, Committee Member 	 Date
Associate Professor of Mechanical and Aerospace Engineering, Rutgers University

BIOGRAPHICAL SKETCH

Author: 	 Xuemei Sun

Degree: 	 Doctor of Philosophy

Date: 	 January 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, January 2001

• Master of Science in Electrical and Computer Engineering,
Chengdu University of Science and Technology, Chengdu, P. R. China, 1992

• Bachelor of Science in Electrical and Computer Engineering,
Chengdu University of Science and Technology, Chengdu, P. R. China, 1989

Major: 	 Electrical Engineering

Presentations and Publications:

Timothy Chang, Xuemei Sun,
"Analysis and control of monolithic piezoelectric nano-actuator,"
To appear in IEEE Transactions on Control System Technology, January.

Timothy Chang, Xuemei Sun, Zhiming Ji, and Reggie Caudill,
"Analysis and control of monolithic piezoelectric nano-actuator,"
Proceedings of the 2000 ACC, Chicago, IL, pp. 3086-3090.

Timothy Chang, Xuemei Sun, Vincenzo Pappano, Zhiming Ji, and Reggie Caudill,
"High-precision, multiple degree-of-freedom piezoelectric actuator,"
Proceedings of SPIE, vol. 3519, Nov. 1998.

iv

To my beloved parents

v

ACKNOWLEDGMENT

I wish to express my deepest gratefulness and respect to my advisor Dr. Timothy

N. Chang for his guidance and care and financial support during my study and

research.

Many thanks to Dr. Andrew Meyer, Dr. Bernard Friedland, Dr. Marshall

Kuo, Dr. Zhiming Ji, Dr. Haim Baruh for serving as members of the committee.

For their expertise and technical assistance, I'd like to thank Vincenzo

Pappano, Tahir Nazir, Biao Zhen, Chung-Hsiang Wang, Puttiphong Jaroonsiriphan

and other fellow classmates.

Finally I would like to thank my parents and my sister for their great encour-

agement and love.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Literature Survey on Hysteresis Model 	 2

1.2.1 Hysteron Model 	 2

1.2.2 Bouc-Wen Model 	 3

1.2.3 Chua-Stromsmoe Model 	 5

1.2.4 Preisach Model 	 5

1.2.5 Dahl Model 	 8

1.3 The Hysteresis Model in This Work 	 9

1.4 Dissertation Organization 	 9

2 HARDWARE DESCRIPTIONS 	 11

2.1 Model 601B-PCB High-Voltage Amplifiers 	 11

2.2 ADE 3800 Capacitance Sensors 	 11

2.3 Real Time Operating System 	 12

2.4 Monolithic Piezoelectric Actuator 	 13

2.4.1	 Form the Electrodes 	 14

2.4.2	 Theory of Operation 	 14

2.4.3	 Nominal Performance Characteristics 	 15

2.5 Summary 	 16

3 REAL TIME OPERATING SYSTEM 	 17

3.1 Hardware Description 	 17

3.1.1	 Key Features of TMS320C31 Microprocessor 	 17

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

3.1.2 Memory Distribution 	 19

3.1.3 Analog to Digital (A/D) Converter 	 19

3.1.4 Digital to Analog (D/A) Converter 	 20

3.2 Software Description 	 20

3.2.1 DSP Driver Programs 	 20

3.2.2 DSP Memory Access from PC 	 22

3.2.3 Labview — Graphical Programming Language (G) 	 24

3.2.4 Code Interface Reference (CIN) 	 25

3.3 Graphical User Interface Development 	 26

3.4 Summary 	 28

4 HYSTERESIS CHARACTERISTICS 	 30

4.1 Experimental and Simulated Results 	 30

4.1.1 Hysteresis Characteristics in Time Domain 	 30

4.1.2 Hysteresis Characteristics in Frequency Domain 	 31

4.2 Effects of Hysteresis Parameter Variation 	 36

4.3 Summary 	 37

5 ANALYTIC EXPRESSIONS OF HYSTERESIS HARMONICS 	 42

5.1 Analytic Expressions of the Hysteresis Harmonics 	 42

5.1.1 The First Iteration 	 43

5.1.2 The Second Iteration 	 44

5.1.3 The Third Iteration 	 45

5.2 Hysteresis Harmonic Expressions at Low Frequencies 	 46

5.2.1 Simplified First Iteration 	 47

5.2.2 Simplified Second Iteration 	 47

5.3 Example 	 49

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.4 Summary 	 49

6 PIEZOELECTRIC ACTUATOR MODEL 	 51

6.1 Modeling and Compensating the Nonlinear Scale Factor 	 51

6.2 Off-Line Hysteresis Parameter Estimation 	 53

6.3 Effect of Frequency on Hysteresis Parameter Estimation 	 56

6.4 Summary 	 58

7 NONLINEAR OBSERVER HYSTERESIS COMPENSATION 	 60

7.1 Discrete-Time State Space Model 	 61

7.2 Nonlinear Observer Hysteresis Compensator 	 61

7.3 Stability Analysis 	 63

7.4 Simulation 	 64

7.4.1 Control Law 	 64

7.4.2 Hysteresis Compensation 	 65

7.4.3 Effect of Hysteresis Parameter Estimated Error 	 65

7.4.4 Compensation on the Parameter Estimated Error 	 66

7.5 Experiment 	 67

7.5.1 Average Filter 	 67

7.5.2 Hysteresis Compensation 	 69

7.6 Performance Analysis 	 71

7.7 Summary 	 77
8 ADAPTIVE HYSTERESIS COMPENSATOR 	 80

8.1 Adaptive Hysteresis Compensated Scheme 	 80
8.1.1 Adaptive Algorithm 	 80

8.1.2 Harmonic Calculation Using Small Sample of Data 	 81
8.2 Simulation 	 82

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

8.2.1 Real Time Hysteresis Parameter Estimation 	 82

8.2.2 Adaptive Hysteresis Compensation 	 83

8.3 Experiment 	 85

8.4 Summary 	 87

9 VIBRATION AND PRECISION CONTROL
TIME DIVISION MULTI-CONTROLLER 	 93

9.1 Time Division Multi-Control Strategy 	 93

9.1.1 Input Shaper 	 93

9.1.2 Time Division Multi-Controller Strategy 	 96

9.2 Simulation 	 96

9.3 Experiment 	 97

9.4 Summary 	 99

10 CONCLUSIONS 	 101

APPENDIX A DSP MEMORY DISTRIBUTION 	 103

APPENDIX B NONLINEAR SCALAR FACTOR 	 104

APPENDIX C HYSTERESIS OBSERVER COMPENSATION 	 116

APPENDIX D ADAPTIVE HYSTERESIS COMPENSATION 	 137

APPENDIX E FINE MOTION CONTROL AND
TIME DIVISION MULTI-CONTROLLER 	 159

APPENDIX F ITERATION DERIVATION USING MATLAB 	 193

REFERENCES 	 195

LIST OF TABLES

Table 	 Page

3.1 Memory map 	 19

3.2 Analog input and its corresponding digital value 	 20

3.3 Digital input and its corresponding analog output 	 20

3.4 Host PC IO assignments (Base JO Address = 300h) 	 23

4.1 Weak scalability 	 37

6.1 Experimental and simulated harmonics 	 55

6.2 Simulation: Effect of frequency on hysteresis parameters 	 59

6.3 Experiment: Effect of frequency on hysteresis parameters 	 59

7.1 Experiment: Harmonic ratios with and without hysteresis compensation 73

7.2 Simulation: MSE (μm2) for different sinusoidal frequencies 	 73

7.3 Simulation: MSE (μm2) for different sinusoidal magnitudes 	 73

7.4 Experiment: MSE (μm2) for different sinusoidal frequencies 	 74

7.5 Experiment: MSE (μm2) for different sinusoidal magnitudes 	 74

7.6 Simulation: Hysteresis compensation with different frequencies 	 74

7.7 Simulation: Tracking errors with and without hysteresis compensation 	 76

7.8 Simulation: Steady state error for different square magnitudes 	 76

8.1 The effect of adaptive hysteresis compensation 	 88

A.1 DSP memory distribution for user programs 	 103

xi

LIST OF FIGURES

Figure 	 Page

1.1 Hysteron model 	 3

1.2 Single elasto-slide element 	 4

1.3 Maxwell model of a smooth hysteresis curve: Parallel several elasto-slide
elements, each subjected to increasing normal force 	 4

1.4 Hysteresis operator 	 6

1.5 The first order reversal curve 	 6

1.6 Hysteresis loop with several a and ,13, and final input on a descending
branch 	 7

1.7 Interface link to the hysteresis curves 	 8

2.1 The system of the monolithic piezoelectric actuator 	 12

2.2 Experimental setup for the piezoelectric actuator control system 	 12

2.3 Cruciform piezoelectric actuator 	 14

2.4 Electrode connection of the piezoelectric actuator 	 15

3.1 Block diagram of Dalanco Spry Model 310 data acquisition and signal
processing board 	 18

3.2 TMS320C31 block diagram 	 18

4.1 Experimental hysteresis loops with different magnitudes of input sinusoid
(at 0.1Hz) 	 31

4.2 Experimental hysteresis loops with different magnitudes of input sinusoid
(at 0.1Hz) 	 31

4.3 Experimental hysteresis loops with different magnitudes of input sinusoid
(Continued) 	 32

4.4 Simulated hysteresis loops with different magnitudes of input sinusoid
(at 10Hz) 	 33

xii

LIST OF FIGURES
(Continued)

Figure	 Page

4.5 Simulated hysteresis loops with different magnitudes of input sinusoid
(at 10Hz) 	 33

4.6 Simulated hysteresis loops with different magnitudes of input sinusoid
(Continued) 	 34

4.7 Experiment: Curve fitting of the magnitudes of the first and third
harmonics 	 35

4.8 Simulation: Curve fitting of the magnitudes of the first and third
harmonics 	

4.9 Experiment: Weak scalability 	

4.10 Simulation: Weak scalability 	

4.11 Simulation: Effect of k 1 on hysteresis loops (at 10Hz) 	

4.12 Simulation: Effect of Fc on hysteresis loops (at 10Hz) 	

4.13 Simulation: Level of nonlinearity (at 10Hz) 	

4.14 Simulation: Level of nonlinearity (at 10Hz) 	

5.1 Comparison between iterations and simulation 	

5.2 Comparison between modified iterations and simulation 	

6.1 Scale factor of the uncompensated system and polynomial fit 	

6.2 Block diagram of the nonlinear gain compensation 	

6.3 Compensated gain (x in pm) 	

6.4 Scale factor of the compensated system and polynomial fit . . . 	

6.5 Hysteresis loop fitting using the estimated parameters (at 10Hz)

6.6 Simulation: Effect of frequency on hysteresis loops 	

6.7 Simulation: Effect of frequency on hysteresis harmonics 	

6.8 Experiment: Effect of frequency on hysteresis loops 	

6.9 Experiment: Effect of frequency on hysteresis harmonics 	

7.1 Block diagram of hysteresis compensated system 	

35

36

36

39

40

41

41

50

50

52

52

53

53

	 55

	 57

	 57

	 58

	 58

	 63

LIST OF FIGURES
(Continued)

Figure 	 Page

7.2 Simulated hysteresis loops (at 1Hz): uncompensated (left) and compensated
system (right) 	 65

7.3 Simulated results in time domain: Effect of estimated error of F, on
hysteresis compensation 	 66

7.4 Simulated results in frequency domain: Effect of estimated error of F,
on hysteresis compensation 	 66

7.5 Simulated results in time domain: Effect of estimated error of k 1 on
hysteresis compensation 	 67

7.6 Simulated results in frequency domain: Effect of estimated error of k 1

on hysteresis compensation 	 67

7.7 Simulated response of the hysteresis compensated system with k 1

8.0092 x 106 and Pc = 1.0664 x 10 -5 	 68

7.8 Simulation in time domain: Effect of over-compensation and under-
compensation by kcomp 	 68

7.9 Simulation in frequency domain: Effect of over-compensation and under-
compensation 	 69

7.10 Spectrum responses with (right) and without (left) the average filter . . . 69

7.11 Experimental responses in time domain without hysteresis compensation 70

7.12 Experimental responses in frequency domain without hysteresis compen-
sation 	 70

7.13 Experimental responses in time domain with hysteresis compensation 	 71

7.14 Experimental responses in frequency domain with hysteresis compensation 71

7.15 Simulation: Tracking error to the reference sinusoid 	 72

7.16 Experiment: Tracking performance to the reference sinusoid 	 75

7.17 Experiment: Tracking error to the reference sinusoid 	 75

7.18 Simulated spectrum responses of the system with PI control and
hysteresis compensator 	 77

7.19 Simulated spectrum responses of the system with PI control 	 77

7.20 Simulated spectrum responses of the system with hysteresis compensator 78

xiv

LIST OF FIGURES
(Continued)

Figure 	 Page

7.21 Simulation: Tracking performance to the square wave input (solid line:
hysteresis compensated output; dashed line: open-loop response) 79

8.1 Block diagram of adaptive hysteresis compensator 80

8.2 Hysteresis parameter estimation curves with different k(0) (k1(0) =
1.1 x 107) 	 83

8.3 Hysteresis parameter estimation curves with different 1;1(0) (E(0) =
7.5 x 10-6) 	 84

8.4 Hysteresis parameter estimation curves with different k(0) (k1(0) =
1.1 x 107) 	 85

8.5 Hysteresis parameter estimation curves with different k1(0) (k(0) =
7.5 x 10 -6) 	 86

8.6 Simulation: The effect of hysteresis compensation in time domain 	 87

8.7 Simulation: The effect of hysteresis compensation in frequency domain 	 87

8.8 Hysteresis parameter estimation 	 88

8.9 Experiment: Time domain response of the hysteresis uncompensated
system 	 89

8.10 Experiment: Frequency domain response of the hysteresis uncom-
pensated system 	 90

8.11 Experiment: Time domain response of the hysteresis compensated system 91

8.12 Experiment: Frequency domain response of the hysteresis compensated
system 	 92

9.1 Block diagram of time division multi-control system 	 93

9.2 Parameter allocation of input shaping 	 95

9.3 Simulated responses of the three control strategies: top: open-loop;
middle: input shaping; bottom: time division multi-controller 	 97

9.4 Experiment: Open-loop square-wave response 	 99

9.5 Experiment: Vibration control using input shaping 	 99

9.6 Experiment: Vibration and precision control using time division multi-
controller: without filter (left) and with filter (right) 	 100

LIST OF FIGURES
(Continued)

Figure 	 Page

B.1 Labview program for modeling PZT system 	 113

B.2 Labview program for modeling PZT system (continued) 	 114

B.3 Labview program for modeling PZT system (continued) 	 115

C.1 Labview program of hysteresis compensation 	 134

C.2 Labview program of hysteresis compensation (continued) 	 135

C.3 Labview program of hysteresis compensation (continued) 	 136

D.1 Labview program of adaptive hysteresis compensation 	 156

D.2 Labview program of adaptive hysteresis compensation (continued) 	 157

D.3 Labview program of adaptive hysteresis compensation (continued) 	 158

E.1 Labview program for time division multi-control and fine motion control 190

E.2 Labview program for time division multi-control and fine motion control
(continued) 	 191

E.3 Labview program for time division multi-control and fine motion control
(continued) 	 192

CHAPTER 1

INTRODUCTION

1.1 Objective

Precision manufacturing technology has received more and more attention in

recent years because of the development of high-density semiconductors and

optoelectronics. The dominant type of micropositioners is piezoelectric due to

the improvement of piezo-ceramic characteristics (scale factor, linearity, stability,

etc.) and the inherent high resolution of displacement. A number of piezoelectric

micropositioners or actuators have been invented, such as two-axis motion apparatus

[1], piezo-translation stage [2]. The applications cover the areas of microscopes,

medical and optics instruments.

The monolithic piezoelectric positioner [3] is applied in this work, which has

the following advantages:

1. Monolithic structure

2. Wide bandwidth and high resolution

3. Two degree-of-freedom, with extension to six degree-of-freedom

4. Multiple layers stackable to increase range

5. Low cost

However, due to the geometry and material properties, nonlinearities such as

hysteresis and nonlinear scale factor exist in the system. They can cause a number

of undesirable effects, including loss of stability robustness, limit cycles and steady

state error. Furthermore, the characteristic of under-damping also brings the side

effect of vibration [25] [38]. This study is concentrated on hysteresis characteristics

analysis, hysteresis modeling and compensation, and vibration control and precision

control.

1

2

1.2 Literature Survey on Hysteresis Model

Hysteresis effect between the displacement and the electric field is an intrinsic

characteristic of piezoelectric ceramics. This effect becomes increasing noticeable

when the electric field strength or the piezoelectric sensitivity of the material is

increased. Chen and Montgomery [36] gave a physical explanation for the hysteresis

phenomenon from a macroscopic viewpoint: the external applied cyclic electric field

generates domain switching which lead to the hysteresis loop. The domain is made

up of parallel dipoles, and the effective number of the dipoles aligned in the direction

of the external electric field. The domain switches as the electric field changes. The

delay of the switching causes the hysteresis loop.

The objectives of modeling the hysteresis in the piezoelectric actuator are

to accurately tract the hysteresis behavior, analyze the hysteresis phenomena, and

eliminate the hysteresis effect.

Unlike saturation and dead zone, the description of hysteresis is not unique.

In the following, five most popular models: hysteron, Bouc-Wen, Chua-Stromsmoe,

Preisach and Dahl, and their applications on piezoelectric actuators will be briefly

discussed.

1.2.1 Hysteron Model

Hysteron model [4] is defined on piecewise monotone continuous inputs. For each

linear piece, the description is shown in Figure 1.1, where x and u are the output

and input of the hysteron, respectively; Ω0(ω) is the area bounded by F_ and F + ,

and u 2 , u 1 define the boundary of the hysteron. The model describing the single

hysteron is expressed in four areas: u u 2 u 1), Ω0(ω), F_ and F+ . The smooth

hysteresis is expressed by the combination of all the pieces of hysteron.

Hysteron Model in Piezoelectric Actuators — Maxwell Model [5, 6]

3

Figure 1.1 Hysteron model

In piezoelectric actuators, the hysteron is simplified and has the shape of

parallel quadrilateral, as shown in Figure 1.2. The mathematical expression is,

and

where x is the input displacement, F is the output force, k is the stiffness of the

spring, f = μN is the breakaway friction force of the block, and x b is the position

of the block.

Figure 1.3 shows the smooth hysteresis behavior. The hysteresis model consists

of several elasto-slide elements in parallel, each having an incrementally larger

breakaway force. Hence, the simple relationship of Figure 1.2 becomes a piecewise

linear approximation of rate-independent hysteresis. The set of parameters, such as

stiffness kn and breakaway force fn , are obtained by piece-wise linear fit of the rising

curve [5, 6]. The model has been applied by Choi and Kim [7] to compensate the

hysteresis.

1.2.2 Bouc-Wen Model

Bouc-Wen model [4] can represent a large class of hysteresis behavior, such as

inelastic stress-strain relationships in structures, and magnetorheological behavior.

Figure 1.2 Single elasto-slide element

Figure 1.3 Maxwell model of a smooth hysteresis curve: Parallel several elasto-slide
elements, each subjected to increasing normal force

It has an appealing mathematical expression, given as,

where x and z stand for position and hysteresis restoring force, respectively. The

model can be reduced to,

where the choice of positive or negative signum depends on the values of and z

to be positive or negative. The scale and general shape of the hysteresis loop are

governed by A, a and 0, and n controls the smoothness of the force-displacement

curve. For n = 1, A = 1, Wen and Asce [8] showed the shape of hysteresis for six

sets of combination of a and 0.

5

Application of Bouc- Wen Model in Piezoelectric Actuators

Jouaneh and Tian [9] modified Bouc-Wen model by setting n = 1, and

replacing position x(t) by input u(t), as following,

The state variables of the linear system, z and hysteresis parameters are estimated

using the least squares method. One-step-ahead predictor of state z is calculated

and applied as feedback to compensate the hysteresis nonlinearity.

1.2.3 Chua-Stromsmoe Model

Chua-Stromsmoe model [4] has a S shape and is used to model ferromagnetic

hysteresis that has saturation characteristics. It is described as

where u and x stand for input and output, respectively; f and g stand for dissipative

and restorative phenomena, respectively; h controls the loop width, enabling to

generate asymmetric loops, and w provides frequency-dependent loop widening. This

model can express extensive frequency-dependent behavior, such as loop widening

or narrowing for different frequency ranges. It has some proven properties, such as

conditions for existence, uniqueness, boundedness and periodicity of a solution x.

An algorithm was proposed to determine functions f, g, h and w.

Since Chua-Stromsmoe model describes the saturated hysteresis phenomenon,

while piezoelectric ceramic devices never work on saturated areas, this model has

not been applied in piezoelectric actuators.

1.2.4 Preisach Model

Preisach model is expressed as double integral of the output of an ideal relay [10,

11], as below.

6

where 'Tao (u(t)) is the hysteresis operator shown in Figure 1.4, μ(α,β) is a weighted

function, and a and /3 stand for up and down switching values of the input u(t).

Hence the model can be interpreted by a summation of an infinite set of simplest

hysteresis operators and weighting functions.

Figure 1.4 Hysteresis operator

In the following, the numerical implementation of equation (1.7) is discussed.

Figure 1.5 shows the definitions of the major hysteresis loop, as well as the first and

the second order reversal curves, where h and fβ are the outputs corresponding

to u(t) = a and u(t) = 13, respectively. The first order reversal curves are used to

obtain a mesh of a and /3 values following the procedure below:

Figure 1.5 The first order reversal curve

1. Obtain a set of first-order reversal curves from experimental data. Let's say,

the reversal curves start from the ascending path of major hysteresis. Hence

for fixed /3 as /3L , a set of αi is obtained.

2. Changing the size of main hysteresis loop, i.e., the values of aL and /3L to be

αL and /3/,' , and repeating step 1, we can get another set of αi corresponding

7

Therefore, a table of (αi,βi) can be obtained, which covers the area of

the triangle constrained by α >= 	 β and βmin•

Figure 1.6 shows the hysteresis loop with several switching input values a i and

βi. β L and αo define the lowest curve, and 0 1 and α0 define the highest one, and

so on. Figure 1.7 shows the corresponding interface link, which passes the points of

For the case of a horizontal

initial link and a vertical final link, the numerical implementation of equation (1.7)

is,

where F (a, ,3) represents the change of f (t) as u(t) changes from a to 0. Since the

initial link and the final link can be either horizontal or vertical lines, the hysteresis

model has four expressions.

Figure 1.6 Hysteresis loop with several a and 0, and final input on a descending
branch

Preisach Model in Piezoelectric Actuators

The model adapted to a piezoelectric actuator is discussed in [12, 13, 14], with

the value of '7,0 (u(t)) modified to 0 or 1 instead of -1 or +1.

Figure 1.7 Interface link to the hysteresis curves

1.2.5 Dahl Model

P. R. Dahl [15, 16] proposed a solid friction model, as

where the function sgn is defined in equation (1.2); F is the solid friction force,

x describes the displacement, F, is the Coulomb friction force or "running friction

force", a is the rest stiffness or the slope of the force deflection curve at F = 0,

i stands for the type of different crystals. The effect of a and i on the shape of

hysteresis is fully discussed in [17].

Application of Dahl Model in Piezoelectric Actuators

For most lead zirconate - lead titanate (PZT) materials, a = 1 and i = 1. Hong

and Chang [18] proposed an adaptive dither method to compensate the hysteresis

in a piezoelectric actuator based on the simplified Dahl model

8

where x and u are the actuator end displacement in meters and applied voltage in

Volts, 7, kn , k, and k 1 are system coefficients. Regardless the second term in the

9

right hand side, equation (1.10) describes the linear part of the system. kn =

with con as natural frequency in rad/ sec; = 2ςwn with c as damping ratio; and k,

is the input scale factor. Equation (1.11) describes the nonlinear hysteresis. k 1 and

Tic govern the scale and the shape of the hysteresis loop.

1.3 The Hysteresis Model in This Work

To describe the hysteresis phenomena in piezoelectric actuators, the analytic Bouc-

Wen model and Dahl model, the lumped parameter Maxwell model, and the non-

analytic Preisach model have been applied. In this work, to implement the objectives

of:

1. Describing the hysteresis phenomena in piezoelectric actuators

2. Analyzing the characteristics of the hysteresis in time and frequency domains

3. Deriving corresponding compensated strategies

the simplified Dahl model in equations (1.10) and (1.11) is applied. It has the

advantages of:

1. Analytic formulation which is suited to analyze hysteresis characteristics

2. Only five plant parameters are adequate to describe the characteristics of the

piezoelectric actuators up to the first resonance

3. As special cases of Dahl model as well as Bouc-Wen model

The model can be obtained from the Bouc-Wen model by setting 13 = 0 and

n = 1.

1.4 Dissertation Organization

Chapter 2 of this dissertation describes the experimental setup and the hardware

used in this work. Chapter 3 discusses the real-time operating system including

10

the architecture of the TMS320C31 microprocessor, software platform and the

graphical user interface development. The hysteresis characteristics in the piezo-

electric actuator are discussed in Chapter 4. The hysteresis harmonic expressions

are derived in Chapter 5. Hysteresis parameter estimation and compensation

are proposed in Chapters 6 and 7 respectively. Chapter 8 proposes an adaptive

hysteresis compensation scheme for input sinusoids. Chapter 9 proposes a time-

division multi-control scheme to implement vibration and precision control. Chapter

10 summarizes the work presented along with the future work recommendations.

CHAPTER 2

HARDWARE DESCRIPTIONS

Figure 2.1 shows the physical system of the monolithic piezoelectric actuator. The

white cruciform object in the middle is the piezoelectric actuator. The motions in

x and y axes are measured by the two capacitance sensors, whose probes are shown

in the picture. The experimental setup for the control system is shown in Figure

2.2. It consists of two Model 601B-PCB amplifiers, two ADE 3800 capacitance

sensors, and a real-time operating system including Dalanco Spry Model 310 digital

signal processing board and PC. The properties of these hardware components are

described below.

2.1 Model 601B-PCB High-Voltage Amplifiers

Model 601B-PCB high voltage amplifier is made by TREK Incorporated. It has

the following properties: the gain is 100, the voltage range is [0 +1000] Volts or

[-500 500] Volts; the current range is [0 +10]mA; and the bandwidth is greater

than 3MHz. The detail information is described in the Operator's Manual [19].

2.2 ADE 3800 Capacitance Sensors

The ADE capacitance sensor measures and transfers the displacement into voltage.

The linear relationship between the displacement and the voltage is that for 2.5μm

displacement, one volt is generated.

The sensor has the following properties: The resolution is 1nm; The bandwidth

can be changed among 10, 100, 1000 and 5000Hz by plugging in proper jumpers.

In the experiment setup, the bandwidth is chosen as 1000Hz since the resonance

frequency of the PZT system is around 500Hz.

When more than one sensors are applied in the same system, multi-unit

connection should be applied. One ADE sensor is connected as master and the

11

12

Figure 2.1 The system of the monolithic piezoelectric actuator

Figure 2.2 Experimental setup for the piezoelectric actuator control system

others are connected as slaves. For detail information, please see the User's Guide

[20].

2.3 Real Time Operating System

The real time operating system consists of the hardware of Dalanco Spry Model

310B data acquisition and signal processing board (DSP) and PC , and the software

of C/C++ and Labview.

The DSP includes a Texas Instrument TMS320 C31 mIcroprocessor, dual

ported memory, a four-channel AID converter and a two-channel D I A converter.

13

Because of the 50MHz clock on all devices, it is an ideal system in real time data

acquisition, data processing and digital control.

Labview is a graphical programming language and the user's programs

are created in block diagram forms. Labview simulates the panel of a physical

instrument, like knobs, buttons, graphs and indicators, and has powerful data

acquisition and data processing libraries.

To monitor the status of the PZT plant, and to operate the DSP from PC,

the graphical user interface has been developed in this work. It has the following

advantages:

1. Easy to operate complex control strategies

The system can be operated without much understanding the control

principles.

2. Convenient in system testing

The coefficients, such as PID coefficients, and the magnitude and frequency of

the reference signals can be easily changed using a keyboard or a mouse while

the system is running.

3. Safer to operate

The system is safer since the closed-loop control can be switched to open loop

control quickly and easily.

Chapter 3 will discuss the real-time operating system in detail.

2.4 Monolithic Piezoelectric Actuator

The cruciform piezoelectric actuator is one part of the six-degree-of-freedom actuator

patented by Timothy Chang [3]. It is a positioning device capable of providing two

degrees of freedom: x and y axes. It is constructed from a single piezoelectric

plate with the material of lead zirconate-lead titanate (PZT). The top and bottom

14

faces of the cruciform are covered by silver, an electric conductive material to form

electrodes.

2.4.1 Form the Electrodes

The top and bottom faces of the piezoelectric actuator have the same structure, as

shown in Figure 2.3. The four shadow parts on the sides are four electrodes, and

the shadow part in the middle is the target for measuring the displacements in x

and y axes. The procedure of forming the electrodes is as following:

Figure 2.3 Cruciform piezoelectric actuator

1. Deposit photoresistor (red liquid) on the areas of the top face where the silver

should be kept. Wait until the photoresistor is dry. Do the same thing on the

bottom face.

2. Put the cruciform PZT proceeded in step 1 into a container, and bake in an

oven with temperature of 70° F for 3 to 3½-hours

3. Eliminate the unwanted silver on the PZT using nitric acid with density of

50%

4. Clean the acid using water, and the photoresistor using acetone.

2.4.2 Theory of Operation

The linear motion in the x and y directions can be generated by applying suitable

drive voltages to the electrodes, as shown in Figure 2.4. In the following, the

operation theory in x direction is explained, and that in y direction is the same

15

except that the symbol of the applied voltage is Vy . . Apply V, to electrodes 1 and

2, and —V, is simultaneously applied to electrodes 3 and 4. The resultant net

displacement in x direction is given by:

Figure 2.4 Electrode connection of the piezoelectric actuator

where L and T are the length and thickness of the cruciform section covered by

electrodes 1 and 2 (or electrodes 3 and 4), and d 31 is the piezoelectric voltage constant

with typical value of —250 x 10 -12 m/V.

It can be seen that when voltage is applied, one piezo-element contracts while

the other extends. Thus the displacement of the target is approximate to twice

of that of one piece only. Central to the base-plate design is that the orthogonal

member (e.g. the y-axis element when x-axis is actuated) acts as a soft nonlinear

spring that stabilizes the unenergized equilibrium. The pressure produced by the

deformation is given by:

is the Young's modulus with typical value of 6 x 10^10N/m2 .

2.4.3 Nominal Performance Characteristics

For a devise with one layer cruciform PZT, the nominal performance characteristics

are summarized as below:

1. Accuracy: 2.5nm

16

2. Maximum load: about 0.5kg with 500Volts drive

3. Normal range of displacement: vary from 5μm to 15μm

4. Bandwidth: about 500Hz

5. Size: 10cm x 10cm x 1mm

2.5 Summary

This chapter briefly describes the hardware of the experimental system, including

high voltage amplifiers, capacitance sensors, real-time operating system, and the

PZT actuator. The real time operating system will be discussed in Chapter 3.

CHAPTER 3

REAL TIME OPERATING SYSTEM

The real-time operating system consists of both hardware and software parts. The

hardware includes Dalanco Spry Model 310B data acquisition and signal processing

board and PC, and the software includes C code for DSP, Labview and C++ code

for graphical user interface. In the following, the architecture of the DSP is first

discussed. The driver programs for DSP, and Labview platform are then explained.

The development of graphical user interface on Labview platform is described at

last.

3.1 Hardware Description

The block diagram of the Dalanco Spry Model 310B data acquisition and signal

processing board is shown in Figure 3.1. It consists of a TMS320C31 Micropro-

cessor, 512K words memory, a four-channel A/D converter and a two-channel D/A

converter. The main properties of each component are described below.

3.1.1 Key Features of TMS320C31 Microprocessor

Figure 3.2 shows the block diagram of TMS320C31. Some of the key features are

listed below as references in programming.

• CPU

—4Ons single-cycle instruction execution time with 50MHz clock on all

devices

—32-bit instruction words, 32-bit data words, and 24-bit addresses

—parallel ALU and multiplier instructions in a single cycle

• peripheral

17

18

Figure 3.1 Block diagram of Dalanco Spry Model 310 data acquisition and signal
processing board

Figure 3.2 TMS320C31 block diagram

—One memory-mapped serial port to support 8, 16, 24 or 32-bit full-duplex

transfer

• Memory

—64 x 32-bit instruction cache

—Two 1K 32-bit-word single-cycle dual-access on-chip RAM block

—16M words addressing space

—Preprogrammed bootloader

• Memory interface

—One external memory bus

19

memory address (hex) functions
0-03F reset, interrupt, trap vectors

040-7FFFFF external memory
800000-807FFF reserved
808000-8097FF peripheral bus, memory mapped
809800-809BFF RAM block 0
809C00-809FFF RAM block 1
80A000-FFFFFF external memory

Table 3.1 Memory map

3.1.2 Memory Distribution

TMS320C31 has 24-bit addresses, and the address starts from Oh to FFFFFFh.

The h appended indicates that the number is in hexadecimal. As shown in Table

3.1, the usable area for the user program is 040h — 7FFFFFh, which is about 8.4M

words. In our system only the first 512K words memory size can be used. The

memory distribution of the variables used in user programs is listed in Appendix A.

3.1.3 Analog to Digital (A/D) Converter

• A/D converter type: Maxim121

• Maximum rate: 300KHz

• Input voltage range: ±5v

• Number of bits: 14

• The microprocessor controls the parameters of:

—The next A/D input channel to be sampled (channels 0-3)

—The gain of the programmable gain amplifier

by writing to a latch mapped at memory location OFFFFFFh. The control

word is 4-bit, with bits 0 and 1 control the gain, and bits 2 and 3 control the

A/D channel. The gain of the programmable gain amplifier is equal to one in

20

Analog voltage (v) -5 ... 0 ... 4.99939
Digital value (hexadecimal) 2000 ... 0 ... 1FFF

Table 3.2 Analog input and its corresponding digital value

Analog voltage (v) -5 ... 0 ... 4.99939
Digital value (hexadecimal) 800 ... 0 ... 7FF

Table 3.3 Digital input and its corresponding analog output

this system. Table 3.2 shows the linear relationship between the analog and

the digital signals.

3.1.4 Digital to Analog (D/A) Converter

• D/A converter type: 2 AD7243

• Rate: 250kHz single/140kHz dual channel

• Output voltage range: +5v

Table 3.3 shows the linear relationship between the analog and the digital

signals.

3.2 Software Description

This section describes the DSP driver programs, and the basic components in

Labview programs.

3.2.1 DSP Driver Programs

Three functions defined in file "d310biox.h" are used in our programs. They are

explained below.

InitDsp()

Function InitDsp(void) implements the initialization of the DSP board: set

up the serial port, timer and latch.

21

ReadAdc()

Function ReadAdc(int channel) starts the A/D converter, and reads the digital

value from the ADC output buffer. The linear relationship between the analog and

the digital signals is shown in Table 3.2. It should be noted that to recover the

true value of the analog signal, the digital signal should multiply the scale factor of

4.99939/8191.

WriteDAC() and WriteDACs0

Function WriteDAC(int value, int channel) starts the D/A converter and

output an analog signal. The digital data is 32-bit word in which the lower 16-bit

is the digital value in channel 0, and the higher 16-bit is that in channel 1.

Similar to WriteDAC, function WriteDACs(int value0,int value1) starts

the D/A converter to convert a 32-bit digital value to two analog voltages. The

higher 16-bit is value1 and the lower 16-bit is value0

The linear relationship between the analog and the digital signals is shown in

Table 3.3. It should be noted that to convert a digital signal to its corresponding

analog value, the digital signal should multiply 2047/4.9976.

Sampling Rate

The sampling rate of the A/D converter is defined using constant TIMPER0.

The value of TIMPER0 is calculated from the following equation:

where numcalls = the number of function calls of ReadAde°. It should be

noted that the definition of TIMPER0 should be placed before the statement of

"#include d310biox.h".

22

3.2.2 DSP Memory Access from PC

The memory on the DSP board is dual ported, i.e., it is accessible at any time to

the DSP as well as to the PC via the bus interface. To access the DSP memory from

PC, the page value and address counter should be set first.

Set Page Value 	 The 64K-page value is bits a16 — a19 of the desired address

value. It is latched and need not be changed once set unless accesses are made across

page boundaries. port_value is 306h and the command is,

outwordl6(0x306, page_value);

Set Address Counter

The address counter within a page is determined by a0 — a15. After each

memory access, the address counter is incremental. A string of data may thus be

read or written with only one address 'setup'. port_value is 302h and the command

is,

outwordl6(0x302, addr ess _value);

Access Actual Data 	 Two reads (or writes) are needed because the data is 32

bits wide. port_value is 300h and the commands are,

outwordl6(0x300, data_lower_16_bits);

outword16(0x300,data _upper _16_bits);

The port values are summarized in Table 3.4. For further information about

the DSP, please refer to Dalanco Spry manual [21].

Example: Codes for Data Acquisition

1 * 	 Data Acquisition

Objective: obtain the data stored in the DSP memory

Port value = IO Base + Offset
WriteOffset Read 	 7

0 RAM address (word)
1
2 RAM address (word)
3
4 interrupt acknowledge allow interrupt
5 interrupt TMS320 (byte) disallow interrupt (byte)
6 set TMS320 (byte) address page (byte)
7 reset TMS320 (byte)

Table 3.4 Host PC IO assignments (Base I0 Address = 300h)

23

starting address: 0x1388

length: 5000

include < stdio.h >

include < math.h >

include < conio.h >

define YO x1388

define DATASIZE 5000

void main(void) {

int long1, longh;

long int longv;

unsigned short i;

FILE *fp;

fp=fopen("grabi.out","wt");

(void) _outp(0x306,0);

for(i=0; i<DATASIZE; i++)

//file name=grabi.out

//set page value

(void)_outpw(0x302,(Y+i)); 	 //set address

long1 = inpw(0x300) & 0x0000FFFF; //access actual data

longh = _inpw(0x300) 0x0000FFFF;

24

longv = long1 (lough << 16);

printf(fp, "%ld \n",longv);

}

fclose(fp);

} //end of file

3.2.3 Labview — Graphical Programming Language (G)

Labview is a program development environment like C and Basic language. Instead

of using text-based language, however, it uses a graphical programming language (G)

to create programs in block diagram form. The Labview program, named virtual

instrument (VI) programs, consists of three parts, as described below.

Front Panel - Interactive User Interface

It is named since it simulates the panel of a physical instrument. The front

panel shows controls such as knobs and push buttons, and graphs and indicators. A

mouse and keyboard are used to enter data, and graphs or indicators show results.

Block Diagram - Source Code

The block diagram is the source code and constructed in graphical programming

language. Similar to Simulink or Visual Simulation (VisSim), it is a pictorial solution

to a programming problem.

Icon - Function Definition

Icon is used to embed a VI as a subVl. Similar to the functions in other

software language, icon is the place that the inputs and outputs of a function are

defined. The icon and the connector of a VI work like a graphical parameter list so

that other VIs can pass data to it. The property makes VIs to be hierarchical and

modular.

25

Labview includes libraries for data acquisition, GPIB and serial communi-

cations, data analysis, data presentation and data storage. For more information on

Labview, please refer to Labview manual [22].

3.2.4 Code Interface Reference (CIN)

A CIN is a block diagram node associated with a section of source code written

in a conventional programming language. It appears on the diagram as an icon

with input and output terminals. When the CIN is called, the input terminals pass

the specified data to the codes; and after the code finishes executing, the output

terminals return data. In the following, the commonly used functions in CIN source

code are explained. For detail information of CIN node, please refer to Code Interface

Reference Manual [23].

The basic CIN source file looks like this,

include "extcode.h"

CIN MgErr CINRun(variables);

CIN MgErr CINRun(variables);{

/* users source code */

return noErr;

}

extcode.h

It is a file that defines basic data types and a number of routines that can

be used by CINs and external subroutines. It should always be included at the

beginning of the source code.

CINRun routine

Labview calls the CINRun routine when it is time for the node to be executed.

CINRun receives the input and output values as parameters.

26

MgErr

MgErr is a Labview data type that corresponds to a set of error codes that

the manager routines return.

NumericaArrayResize

It resizes a data handle that refers to a numeric array.

3.3 Graphical User Interface Development

The objective of developing graphical user interface is to make it easier to operate

and test the complex control strategies. The advantages of using the interface are

as following

1. Different control strategies, such as open-loop, input shaping and PI control,

can be chosen or switched easily

2. The coefficients of PID, magnitudes or frequencies of reference inputs can be

changed conveniently

3. Labview's powerful data processing libraries and virtual instruments can be

applied directly

Developing the interface involves the following steps:

1. Add a CIN node to the block diagram

2. Create input and output connections

3. Develop and compile an interface C++ source code

4. Link the code to CIN

In the following, an example is used to illustrate the development of the

graphical user interface. The requirement of the code is that Labview should send

and receive data from the DSP memory through a CIN node.

Interface C++ Source Code

/* 	 CIN source file: example.c

Objective: Demonstrate how to access the DSP memory

Input of a CIN node: *freq2dsp

Output of a CIN node: *output

*/

include "extcode.h"

include < stdio.h >

#include < math.h >

#include <conio.h>

#define FREQ1 0x12F5

#define Y 0x 1383

#define FSCALING 5000

CIN MgErr CINRun (float64 *freq2dsp, float64 *output);

CIN MgErr CINRun (float64 *freq2dsp, float64 *output){

/* ENTER YOUR CODE HERE */

long int longv, longh, longl;

outp(0x306,0x0); 	 //page value

//Write Freq to DSP memory

longv=(long int)((*freq2dsp) * FSCALING);

outpw(0x302, FREQ1); 	 //DSP memory address

outpw(0x300, longv); 	 //low 16-bit data

outpw(0x300, (longv) >> 16); 	 //high 16-bit data

//Read output from DSP memory

outpw(0x302, Y); 	 //DSP memory address

longl=inpw(0x300) 0x0000FFFF; //low 16-bit data

27

end of file 	*/
i/*

28

longh=inpw(0x300) & 0x0000FFFF; //high 16-bit data

longv=long1 1 (longh << 16); 	 //32-bit data

*output=(float64)(longv)/8191.0 * 4.99939; //data to PC

return noErr;

} //end of file

Compile the source code

The source code for the CIN must be compiled in a format that Labview can

use. To compile the above source codes, write the following makefile.

1* 	 makefile: example.lvm 	 *1

IDE=VC

name=example.lvm

type=CIN

codeDir=d: \ xuemei \ labv \ cinsub \ communicate

CINTOOLSDIR=f:\ LabVIEW \ Cintools

!include $(CINTOOLSDIR) \ ntivsb.mak

The makefile name should have extension of .lvm to indicate that it is a

Labview makefile. Under Visual C++, The CIN code can be compiled using the

following command,

nmake I f filename.lvm

3.4 Summary

A digital signal processor board is applied to implement data acquisition, data

processing and real-time control. This chapter describes the architecture of the

TMS320 C31 microprocessor, which is helpful in developing programs for real-time

control strategies and graphical user interface.

29

Labview programming language is powerful in data acquisition and signal

processing, and Code Interface Reference is the bridge to connect C program in

DSP memory and Labview.

Software, including DSP driver programs and Labview programming language

are described in the second part of this chapter. An example is applied to illustrate

how to develop and compile the interface code. The whole packages tailored to

the specific real time control strategies are listed in Appendix B-E, consisting of

the source code for Labview, CIN and DSP. The structures of the block diagram

in each program are the same, including (1) starting or stopping DSP program,

(2) parameter communication between PC and DSP through a CIN node, (3) data

acquisition and analysis.

CHAPTER 4

HYSTERESIS CHARACTERISTICS

Hysteresis is an inherent nonlinear phenomenon in piezoelectric actuators, and its

modeling and compensation have been proposed [5-7][9][12-14]. However, its charac-

teristics have not been well analyzed. This is because the popular hysteresis models

in piezoelectric actuators, such as Maxwell and Preisach, are non-analytic. In this

chapter, simulation and experiment are applied to study the characteristics of the

hysteresis. The analytic models in (1.10) and (1.11) are applied to simulation studies

with parameters obtained experimentally, as shown below:

4.1 Experimental and Simulated Results

The experiment was done on y-axis of the cruciform actuator. However, the results

are applicable to x-axis as well because of the same construction and material.

Furthermore, because x and y axes are orthogonal, the results also hold when both

axes are actuated. The applied input sinusoid has frequency of 0.1Hz, and the

sampling rate of the system is 20Hz.

Simulation was applied with input sinusoid of 10Hz. The sampling rate is

200Hz and the total time is two seconds. Although the simulated results between

0.1 and 10Hz have little difference, the speed is much faster by choosing the faster

frequency.

4.1.1 Hysteresis Characteristics in Time Domain

Figures 4.1-4.3 show the experimental results on the shape of hysteresis loops for

different magnitudes of input sinusoid. Figure 4.1 shows all the curves in one graph,

30

31

Figure 4.1 Experimental hysteresis loops with different magnitudes of input
sinusoid (at 0.1Hz)

Figure 4.2 Experimental hysteresis loops with different magnitudes of input
sinusoid (at 0.1Hz)

and Figures 4.2 and 4.3 show the curves separately. Figures 4.4-4.6 are the corre-

sponding simulated results. It is observed that

1. The shape of the hysteresis loop is elliptic with no saturation

2. The size of the hysteresis increases as the applied voltage increases

4.1.2 Hysteresis Characteristics in Frequency Domain

In the previous section, hysteresis characteristics are interpreted based on observing

the size and shape of the "hysteresis loops" which are commonly used in the literature

32

Figure 4.3 Experimental hysteresis loops with different magnitudes of input
sinusoid (Continued)

as a qualitative criterion. However, these loops are difficult to quantify, rendering

them useless in implementing hysteresis compensation. A primary objective of

this work is therefore to develop a quantitative measure of the degree of hysteresis

nonlinearity. This measure should be easy to derive, and valid for a wide range of

experimental conditions (such as drive amplitude and frequency). It will be shown

in this section that the output harmonics of the piezoelectric actuator contain

sufficient information to describe the hysteresis phenomenon while maintaining

enough "robustness" under different drive conditions (different frequencies and

magnitudes).

First and Third harmonics

The spectra corresponding to the experimental and simulated responses have

been obtained using Discrete Fourier Transform (DFT). The first and the third

harmonics are shown in Figures 4.7 and 4.8 with different magnitudes of input

33

Figure 4.4 Simulated hysteresis loops with different magnitudes of input sinusoid
(at 10Hz)

Figure 4.5 Simulated hysteresis loops with different magnitudes of input sinusoid
(at 10Hz)

sinusoid, where mag is the magnitude of the input sinusoid, and h 1 and h3 stand for

the amplitudes of the first and the third harmonics, respectively. It is observed that

1. The first harmonics are approximately linear to mag

2. The third harmonics are proportional to mag 2

Weak Scalability

Figure 4.6 Simulated hysteresis loops with different magnitudes of input sinusoid
(Continued)

Now since the fundamental and third harmonics of the actuator output behave

in a consistent, predictable manner, it appears that the amplitude ratio between

the harmonics may be used as a metric for the hysteresis. In this section, the

notions of harmonic ratio and weak scalability are introduced to support the effort

in quantifying the degree of hysteresis nonlinearity.

Definition (Normalized Ratio): The normalized ratio is defined as

This ratio can be readily determined experimentally by applying a sinusoidal

excitation to the PZT actuator and measuring the output in frequency domain.

The notion of weak scalability deals with the robustness of the normalized ratio

under different drive conditions.

Figure 4.7 Experiment: Curve fitting of the magnitudes of the first and third
harmonics

Figure 4.8 Simulation: Curve fitting of the magnitudes of the first and third
harmonics

Definition (Weak Scalability): A system is said to possess weak scala-

bility if at low input frequency the normalized ratio is approximately constant and

independent of input amplitude.

Figures 4.9 and 4.10 respectively show the experimental and simulated

normalized ratio for the hysteresis of the piezoelectric actuator. Both figures

indicate that the hysteresis possesses weak scalability. Table 4.1 summarizes the

numerical results for convenience of comparison. It should be noted that the exper-

imental NR corresponding to 10Volts drive falls out of the predicted range. This is

36

primarily due to weak signal to noise ratio when the noise floor limits the resolution

of measurement.

Figure 4.10 Simulation: Weak scalability

4.2 Effects of Hysteresis Parameter Variation

In equations (1.10) and (1.11), the nonlinearity is parameterized by the scalars k 1

and Fc . It is of interest to determine the effects of varying k 1 and F, on the hysteresis

loops as well as the normalized ratio NR.

Figure 4.11 shows the hysteresis loops with different values of k 1 , where F,

7.5 x 10' and equation (4.1) is used. As k1 increases from 106 to 4.5 x 10 7 , the

37

Magnitude (Volts) Normalized ratio (μm/μm/Volts)
experiment simulation

10 5.3852 x10 -4 9.9396 x10 -5

50 1.3849 x10 -4 1.0001 x10 -4

100 1.1624 x10 -4 9.9694 x10 -5

150 9.6930 x10 -5 9.9105 x10 -5

200 8.4688 x10' 9.8279 x10 -5

250 7.5807 x10 -5 9.7166 x10 -5

300 6.9780 x10 -5 9.5686 x10 -5

350 6.5755 x10 -5 9.3751 x10 -5

400 6.4016 x10 -5 9.1284 x10 -5

450 6.8610 x10 -5 8.8259 x10-5

Table 4.1 Weak scalability

range of output response decreases, while the area of hysteresis loop first increases

and then decreases. The normalized ratios are plotted in Figure 4.13. It is observed

that the normalized ratio provides a concise and quantized measure of the effects of

k1.

Similarly, the parameter F, is varied from 5 x 10' to 3 x 10 -5 . The hysteresis

loops and the normalized ratios are shown in Figures 4.12 and 4.14- respectively

where k, = 1.1 x 10 7 and equation (4.1) is used. Again it is observed that the

variation of the area of the hysteresis loops and that of the normalized ratio are

closely matched.

4.3 Summary

In this chapter, both the experimental and simulated results are applied to study

the characteristics of the hysteresis in the piezoelectric actuator. In time domain,

the hysteresis expresses itself as an elliptic shape, and the area of the hysteresis

loop increases as the magnitude of input sinusoid increases. In frequency domain,

the first harmonics are propositional to the magnitudes of the input sinusoid, and

the third harmonics are proportional to the square of the magnitudes. Frequency

analysis also shows that the hysteresis possesses a certain degree of weak scalability.

38

The similarity between the experimental and simulated results also verifies

that the model can predict the behavior of the hysteresis very well. Hence quanti-

tative measure method of hysteresis is proposed using the normalized ratio based

on simulation. It can be applied to measure the level of hysteresis nonlinearity and

the effect of hysteresis compensation.

39

Figure 4.11 Simulation: Effect of k 1 on hysteresis loops (at 10Hz)

Figure 4.12 Simulation: Effect of F, on hysteresis loops (at 10Hz)

40

Figure 4.13 Simulation: Level of nonlinearity (at 10Hz)

41

Figure 4.14 Simulation: Level of nonlinearity (at 10Hz)

facilitate the calculation of the Fourier Series of . For instance, letdx
dt

CHAPTER 5

ANALYTIC EXPRESSIONS OF HYSTERESIS HARMONICS

In Chapter 4, hysteresis characteristics in piezoelectric actuators have been observed

from the experimental and simulated results. The analytic expressions of the

hysteresis harmonics will be derived in this chapter. Not only do the harmonic

expressions provide a theoretical explanation on the observed phenomena, but they

can also be applied to estimate the hysteresis parameters.

5.1 Analytic Expressions of the Hysteresis Harmonics

In the following, Perturbation Method [24] is applied to derive the analytic

expressions of the hysteresis harmonics. Perturbation Method is an iterative

method such that the results of iteration N are applied in iteration N +1 for

further calculation. The following assumptions are imposed to simplify the iterative

process:

Assumptions:

I. F(0) is chosen such that the DC term of F(t) is zero

2. (0) = x(0) = 0

3. The sign of dx/dt is the same as its fundamental term

Assumption 1 removes the effects of the secular terms. Assumption 3 is applied to

where h 1 and h3 are the amplitudes of the first and third harmonics, respectively.

The Fourier Series expression of

42

43

From Assumption 3, we have sgn(dx/dt) = sgn(sin(wt+φ1)), where sgn() is defined

in equation (1.2). Applying the relationship, a n and bn, can be calculated as

The assumption is not restrictive since

5.1.1 The First Iteration

Considering equations (1.10) and (1.11) with input expressed by u = mag sin(wt),

where mag and w stand for the magnitude and the frequency of the sinusoid, respec-

tively. The first iteration is derived by ignoring the second term in the right hand

side of equation (1.11), as below.

where Co is the constant to eliminate the DC term in x o , and A = kvmag. Since

the DC term of x o has no effect on the next iteration, and the analysis is focused

on harmonic derivation, the DC terms of x o and Fo are ignored and the iteration

results become,

5.1.2 The Second Iteration

The second iteration is processed by adding the nonlinear

as shown in equations (5.5) and (5.6) below,

term in equation (1.11),

From equation (5.5), it is observed that if Fo has DC term, F1 will include the secular

term C x t, where t is time and C is a constant. This is because |dx0/dt|dt contains DC

term and such there is constant term in the right hand side of equation (5.5). Hence

the system becomes unstable. The application of Assumption 1 removes this secular

effect. For convenience, x o in equation (5.3) is expressed as,

And its derivative is given by,

is approximated by its Fourier Series expression,

Ignoring the DC terms of x 1 and F1 , the second iteration can be obtained as,

45

5.1.3 	 The Third

Similar to the second

Iteration

iteration, the third iteration starts from the equations below,

with xi expressed as

is approximated by its Fourier Series as below,

46

The third iteration result can be expressed as,

Since the expressions of the parameters in x 2 (t) are very complex, they are not listed.

The iteration program in Matlab is shown in Appendix F.

Comparing the expressions of the first harmonic in equations (5.3) and (5.8),

it is not difficult to observe that the order of A o is one in x o , and two in x1 . Further

analysis on the third iteration in equation (5.10) shows that even higher order terms

of Ao exist in x 2 . Hence, the smaller A o is, the less effects the higher order terms

of Ao have on the iteration results, and more accurate results can be achieved. It

should also be noted that in equation (5.8), the coefficients related to A,?) might not

be accurate since Ao appears for the first time. Hence, the modified second iteration

results are given,

where ka and kb can be obtained by curve fitting.

5.2 Hysteresis Harmonic Expressions at Low Frequencies

In this section, the relations among the coefficients in equations (1.10) and (1.11)

at low frequencies are derived first. The results are then applied to simplify the

iteration results in equations (5.3) and (5.8').

47

Now since the piezoelectric actuators are underdamped and their bandwidth

is on the order of several hundred hertz, i.e.,

where con, and c are the natural frequency in rad/ sec and the damping ratio, respec-

tively. Hence, we have

For

where w stands for the frequency of the input sinusoid.

5.2.1 Simplified First Iteration

Applying equations (5.14) and (5.15) to (5.3), it can be achieved,

is the first harmonic or fundamental term.

5.2.2 Simplified Second Iteration

Similarly, applying equations (5.14) and (5.15) to (5.8'), we obtain

The first harmonic is calculated from equation (5.17) as

48

Considering x 31 and x32 in equation (5.17), since

the third harmonic can be written as

Hence, we have

The above results can be summarized as:

Remarks: For the present application,

1. k, >> ωγ for input frequency w < 100/ 	 rad/ sec

2. The first and third harmonics are approximated as,

3. h3 is proportional to A 2 ; and h 1 is proportional to A if

satisfied.

The results can be derived from Remark 2 directly by replacing A o by knil+ki 	 .

Experimental results in Chapter 4 show that the first harmonic is approxi-

mately proportional to the magnitude of input sinusoid. Hence, in piezoelectric

actuators, A is much smaller than k"Fc (kn +k ')ka k1 	 •

where k, is shown in equation (1.10).

49

5.3 Example

In the following example, the system in equations (1.10) and (1.11) with parameters

described by equations (4.1) and (4.2) is applied to calculate the hysteresis

harmonics. The frequency of the input sinusoid is 1Hz, and the magnitude is

varied from 10Volts to 600Volts in nine steps, i.e.,

mag = [10 20 50 100 200 300 400 500 600] (Volts)

Figure 5.1 shows the first and the third harmonics obtained from equation

(5.3) for the first iteration, (5.8) for the second iteration, and from simulation,

where A = k, x mag. It can be observed that the first harmonics for the three

cases are close to each other, and as expected the second iteration has better results

than the first one. For the third harmonics, however large error exists between

the second iteration and the simulation, and the error increases as the magnitude

of the input sinusoid increases. The maximum relative errors of the first and the

third harmonics between the second iteration and the simulation are 15.254% and

54.815%, respectively.

Choosing ka, = 1.6 and kb = 0.66, the modified iteration results are shown in

Figure 5.2. The results of the simplified and the original iteration are both closely

matched with the simulation data.

5.4 Summary

Perturbation Method has been applied to derive the analytic expressions of the

hysteresis harmonics. For piezoelectric actuators, the results are simplified and

summarized in the Remarks. The Remarks also summarize the hysteresis charac-

teristics in frequency domain for frequency less than 10Hz. Hence, The explicit

expressions of the harmonics give a theoretical explanation on the experimental

phenomena observed in Chapter 4.

50

Figure 5.1 Comparison between iterations and simulation

Figure 5.2 Comparison between modified iterations and simulation

To improve the accuracy of the second iteration results, gains Ira, and kb are

introduced. The accurate expression makes it possible to study the influence of

frequency on hysteresis parameters, which will be discussed later in Chapter 6.

CHAPTER 6

PIEZOELECTRIC ACTUATOR MODEL

In this chapter, the modeling effort is applied to the piezoelectric actuator. The

effects of frequency on the hysteresis parameter estimation are then analyzed.

6.1 Modeling and Compensating the Nonlinear Scale Factor

The parameters -y and k,, are readily determined by the standard step response

method. It remains to account for the nonlinear scale factor and hysteresis effects.

The nonlinear scale factor is caused by the deformation of the orthogonal piezo-

electric members (e.g. the y-axis element when x-axis is actuated). In the following,

polynomial curve fitting is applied to model the scale factor, and a gain compensator

is designed to eliminate the nonlinear effect.

With a 0.05Hz sinusoidal excitation, and magnitude ranging from 10Volts

to 500Volts uniformly 50 steps, Figure 6.1 shows the relationship between the

magnitudes of the input and output responses, where the sampling rate is 5Hz.

Defining the scale factor as the ratio of the magnitude of the output to that of the

input, it is clearly seen that the scale factor is nonlinear. Curve fitting shows that

the scale factor can be expressed as,

represent the magnitudes of the output response in meters and the input sinusoid

in Volts, respectively.

Figure 6.2 shows the block diagram of the system compensated for the

nonlinear scale factor, where the gain compensator is designed such that

51

Figure 6.1 Scale factor of the uncompensated system and polynomial fit

Figure 6.2 Block diagram of the nonlinear gain compensation

where u is the magnitude of the input sinusoid in Volts, and f(u) stands for the

function of the nonlinear gain compensator. Substituting x and v in equation (6.2)

to (6.1),

For x in μm, equation (6.2) is expressed as,

52

53

Figure 6.3 shows the compensated gain applied in this system, and the linear

relationship between the magnitudes of the reference input and those of the output

of the compensated system is obtained, as shown in Figure 6.4.

Figure 6.3 Compensated gain (x in μm)

Figure 6.4 Scale factor of the compensated system and polynomial fit

6.2 Off-Line Hysteresis Parameter Estimation

In the following, the analytic expressions of the first and the third harmonics in

Chapter 5 are applied in hysteresis parameter estimation. Rewrite the analytic

expressions in equation (5.21) as

where

Substituting equation (6.5) to (6.4) and simplifying the result, the following equation

is obtained:

Letting ka = kb = 1, k1 and Tic can be obtained by first calculating Ao in (6.7),

then solving (6.6) and (6.5). To obtain better estimated results, k 1 and F, are then

adjusted such that the simulated hysteresis loop is approach to the experimental

one. Knowing k 1 and Fc , ka and kb can then be obtained such that the first and the

third harmonics in simulation are sufficiently close to those of the experiment.

The systemic method to obtain k 1 , Fc , ka , kb is as follows:

1. Apply polynomial curve fit between hi and A 2 , where 14 and A2 have the

2. Calculate k, and 4 as:

where C1 and C2 are the coefficients of the curve fit polynomial.

3. Calculate A o from equation (6.6) using k 1 obtained in equation (6.8)

4. Apply polynomial curve fit between h 3 and A,) , and calculate Fc/kb from equation

54

where C3 is the coefficient of the curve fitting.

First harmonics (um) Third harmonics (pm)
Experiment 11.250 0.34733
Simulation 10.400 0.41305

Table 6.1 Experimental and simulated harmonics

5. Apply polynomial curve fitting between

equation (6.7):

where C4 is the coefficient of the curve fitting.

Hence k 1 , Fc , ka , kb are obtained by solving equations (6.8)-(6.11).

Figure 6.5 shows the experimental and simulated hysteresis loops with

hysteresis parameters shown in equation (4.2) and ka = 1.6, kb = 0.66. The

frequency and the magnitude of the reference sinusoid are 10Hz and 450V olts,

respectively. The harmonics are tabulated in Table 6.1, where it is noted that a

good fit is achieved in both time and frequency domains.

55

Figure 6.5 Hysteresis loop fitting using the estimated parameters (at 10Hz)

56

6.3 Effect of Frequency on Hysteresis Parameter Estimation

In the following, the modified second iteration results are applied to calculate the

hysteresis parameters when the frequency of the sinusoidal excitation is varied from

0.2Hz to 100Hz in 11 steps, i.e.,

[0.2 0.5 1 2 5 10 20 40 60 80 100] Hz

Three sets of data are obtained corresponding to the magnitude of the sinusoid 100,

200 and 300V olts. Figure 6.6 shows the hysteresis loops corresponding to 0.2 and

100Hz. The hysteresis loops with frequency between 0.2 and 100Hz fall to the

area bounded by the two loops. In general, the variation of the hysteresis loop is

small. The relationships between the first harmonics and the frequency, and the

third harmonics and the frequency are shown in Figure 6.7. It is observed that the

first and the third harmonics are approximately constant in the frequency range of

[0.2 100]Hz and [0.2 40]Hz, respectively.

Define the relative errors of the estimated hysteresis parameters as

where atrue stands for the true value of a parameter, and a is the vector containing

the estimated values of the parameter corresponding to different frequencies; max(•),

min(•), mean(•), abs(•) are functions to calculate the vector's maximum, minimum,

average and absolute values respectively. The relative errors of the estimated

parameters are listed in Table 6.2, where the maximum value is about 10%.

Figures 6.8 and 6.9 show the experimental results of the effect of frequency on

the hysteresis harmonics. Similar conclusions as those of the simulated results can

Figure 6.6 Simulation: Effect of frequency on hysteresis loops

57

Figure 6.7 Simulation: Effect of frequency on hysteresis harmonics

be reached. Define the relative errors as

The relative estimated errors of the hysteresis parameters are calculated and listed

in Table 6.3. The maximum relative mean errors of /c1 and F, are also within 10%.

Figure 6.8 Experiment: Effect of frequency on hysteresis loops

Figure 6.9 Experiment: Effect of frequency on hysteresis harmonics

6.4 Summary

In this chapter, the models of the piezoelectric actuator system are estimated from

the experimental data. Step response is applied in modeling the actuator dynamics,

and polynomial curve fitting in modeling the nonlinear scale factor. The explicit

expressions of hysteresis parameters are derived, and off-line estimation procedure

is given.

Furthermore, nonlinear scale factor compensator is proposed such that the

scale factor of the compensated system is constant.

59

mag(Volts) ek1 max ek1 min eki avg

100 2.7556 x 10 -2 2.9234 x 10 -3 8.0090 x 10 -3

200 1.2362 x 10 -2 6.4419 x 10 -3 8.1744 x 10 -3

300 1.3607 x 10 -2 1.2558 x 10' 8.5894 x 10 -3

mag(Volts) eFc max eFc min eFcavg

100 9.6562 x 10 -2 2.9420 x 10 -2 7.0010 x 10 -2

200 9.1888 x 10 -2 1.2281 x 10 -2 5.4333 x 10 -2

300 1.0295 x 10 -1 1.2043 x 10 -2 3.6822 x 10 -2

Table 6.2 Simulation: Effect of frequency on hysteresis parameters

mag(Volts) ek 1 max ek1 min ek1avg

100 0.15307 2.2073 x 10 -2 9.0997 x 10 -2

200 0.19213 1.4352 x 10 -2 9.8903 x 10 -2

300 0.20709 9.0032 x 10 -3 1.0076 x 10 -1

mag(Volts) eFc max eFc min eFcavg

100 0.20843 1.8027 x 10 -2 9.9144 x 10 -2

200 0.16149 9.2930 x 10 -3 6.9683 x 10 -2

300 0.15865 5.3886 x 10 -3 7.5628 x 10-2

Table 6.3 Experiment: Effect of frequency on hysteresis parameters

The modified second iteration results are applied to study the effect of

frequency on hysteresis harmonics and hysteresis parameter estimation. Both

simulated and experimental results show that the first and the third harmonics

are approximately constant in the frequency range of [0.2 100]Hz and [0.2

40] Hz, respectively. The maximum relative mean errors of the estimated hysteresis

parameters are with 10%.

CHAPTER 7

NONLINEAR OBSERVER HYSTERESIS COMPENSATION

Although conventional closed loop controllers such as PI or PID can suppress the

hysteresis effects [26], ignoring the hysteresis phenomenon may cause the closed loop

system to be unstable if sufficient phase margin is not provided [27], since hysteresis

causes nonlinear phase distortion.

Two kinds of hysteresis compensated schemes have been presented. In [18], an

adaptive dither compensation method is presented. The idea is that a dither signal

with a fast frequency can be applied to the system to reduce the hysteresis effect.

The larger the magnitude of the dither signal, the better the compensated effect

will be. The advantage of this method is that the hysteresis model is not needed.

However, experimental tests in the monolithic piezoelectric actuator show that the

method is not effective when the magnitude of the input sinusoid is greater than

50Volts.

The other compensation methods require hysteresis models. The motivation is

that hysteresis models are applied to predict the hysteresis output which is applied to

eliminate the actual hysteresis. [7] applied Maxwell model and proposed the scheme

of a PID controller augmented with a feedback linearization loop. [13, 14] applied

Preisach model and presented the scheme of a feedforward loop with a PID feedback

controller. However, since PID can alleviate the effect of hysteresis, how well the

compensated effect of either feedback linearization loop or a feed-forward loop is

hard to measure. Furthermore, as the models of the hysteresis are not analytic,

hysteresis estimation has to be processed off-line.

To compensate friction, [28] proposed friction observer algorithm based on an

analytic friction model. The predicted friction output was applied to cancel the

actual friction. Adaptive friction compensation schemes were further proposed in

[29] and [30], where the friction parameter was estimated on-line.

60

61

The observer compensated method is applied in this work, where a reduced

order nonlinear observer is proposed to predict the hysteresis output which is applied

to compensate the hysteresis nonlinearity.

7.1 Discrete-Time State Space Model

Consider the continuous time model of the piezoelectric actuator in equations (1.10)

and (1.11) with the estimated hysteresis parameters expressed by k1 and F. Letting

x 1 = x, x 2 = x , the state space model can be expressed as,

The corresponding discrete time state space model can be obtained as

where

and Ts is sampling time.

7.2 Nonlinear Observer Hysteresis Compensator

Equation (7.2) is a third-order nonlinear system which makes it difficult to estimate

the states directly. [9] avoided the problem by replacing x with the known it.

62

However, how well the model can predict the hysteresis phenomena was not

discussed.

In the present work, the reduced order nonlinear observer is proposed so that

state x 2 is first estimated using the reduced order observer in which F is as an input,

then F is calculated using the estimated x 2 . Hence,

where r is computed such that (a 22 — r an) has the desired observer pole; a ij and bij

are the elements of Ad and Bd, respectively; x 2 and F are the estimated states of x 2

and F, respectively. The hysteresis compensator is designed such that the control

law will cancel the effect of the actual hysteresis,

Substituting the continuous time version of equation (7.4) to (1.10), it can be seen

the effect of hysteresis is canceled. The procedure

of computer calculation is as following:

1. Set initial values ' 2 (0) = 0 and F(0) = 0

2. Calculate F(n + 1) and ' 2 (n + 1) from equation (7.3)

3. Apply controller output u(n), calculated from equation (7.4), to the system

4. Repeat steps 2 and 3

Figure 7.1 shows the block diagram of the hysteresis compensated system,

where the block of Gain Compensator has been discussed in Chapter 6, and the

blocks of Gain Adjust kcomp and Average Filter will be described in Sections 7.4 and

7.5, respectively.

Figure 7.1 Block diagram of hysteresis compensated system

7.3 Stability Analysis

The properties of the hysteresis model in equation (1.11) were discussed in [37], and

Property 1 in that work is described below.

Property 7.1 [37]: Assume that 0 < F,, < a. If 1F(0)1 < a then |F(t)| <= a

V t > 0.

Applying Property 7.1, following results can be further derived.

Lemma 7.1: Assuming 0 < Pc < a and choosing F(0) = 0, then Ifr(t)1 <= a

V t >= 0.

Lemma 7.2: The compensated system is bounded if

1. P(0) = 0 and 0 < Fc < = a

2. v in equation (7.4) is designed such that the linear system (k 1 = 0) is stable

3. lr is chosen such that the pole of the observer is within the unit circle

Proof: F is bounded which can be reached directly from condition 1 and

Lemma 7.1. If condition 2 is further satisfied, u in equation (7.4) is bounded, and

furthermore x (or x 1) in equation (1.10) is bounded. Rewrite equation (7.3) as

If condition 3 is met, ' 2 is bounded. Therefore, Lemma 7.2 is proved.

64

7.4 Simulation

In this section, an example is applied to illustrate the implementation of the compen-

sation scheme, and to study the effects of hysteresis parameter estimated errors and

gain kcomp on the compensation.

7.4.1 Control Law

In order to study the effect of hysteresis parameter estimated errors on hysteresis

compensation, symbols k J_ and are applied instead of their numerical values in

the following derivations. Considering the model in equations (1.10) and (1.11) with

parameters defined in equation (4.1), the coefficient matrices in equation (7.1) can

be obtained directly as

The coefficient matrices of the discrete time state space model in equation (7.2) with

a 5KHz sampling rate are computed as,

Hence, choosing the desired pole as 0.5, the gain of the reduce order observer 1, is

calculated as 5.8777 x 10 2 . The control law in equations (7.3) and (7.4) can then be

written as

65

7.4.2 Hysteresis Compensation

Figure 7.2 shows the responses of the systems with (right) and without (left)

hysteresis compensation. It is observed that with known hysteresis parameters, the

compensation scheme eliminates the hysteresis effects completely.

Figure 7.2 Simulated hysteresis loops (at 1Hz): uncompensated (left) and
compensated system (right)

7.4.3 Effect of Hysteresis Parameter Estimated Error

Applying perturbed values of Fc or k 1 to the compensation scheme along with a

400Volts sinusoid reference at 1Hz, the performance in time domain is simulated

and plotted in Figures 7.3 and 7.5. Figures 7.4 and 7.6 show their corresponding

frequency performance, measured by the normalized ratio. The results in time and

frequency domains indicate that the compensation scheme is robust when P c or k 1

is larger than its true value.

The compensated scheme is further tested using the perturbed hysteresis

parameters,

The results are shown in Figure 7.7. The normalized ratio between the third and

the first harmonics is 2.473 x 10 -3 . Hence the method is quite robust.

66

Figure 7.3 Simulated results in time domain: Effect of estimated error of F, on
hysteresis compensation

Figure 7.4 Simulated results in frequency domain: Effect of estimated error of F,
on hysteresis compensation

7.4.4 Compensation on the Parameter Estimated Error

The block Gain Adjust kcomp in Figure 7.1 is added to compensate the hysteresis

parameter estimated error. Figures 7.8 and 7.9 show the effect of kcomp on hysteresis

compensation when k and k 1 equal their true values. When kcomp = 1, the hysteresis

loop is completely eliminated and the normalized ratio of the first and the third

harmonics is minimum. When kcomp > 1, the hysteresis is over-compensated and

there appears a phase lead loop. On the other hand, when k comp < 1 the hysteresis

is under-compensated and the loop is phase lag. Hence by adjusting the value of

kcomp such that the hysteresis loop is minimum (the system without phase shift),

the effect of the hysteresis parameter estimated error is compensated.

67

Figure 7.5 Simulated results in time domain: Effect of estimated error of k 1 on
hysteresis compensation

Figure 7.6 Simulated results in frequency domain: Effect of estimated error of k1
on hysteresis compensation

7.5 Experiment

In this section, the compensation scheme shown in Figure 7.1 is experimentally

verified.

7.5.1 Average Filter

The Average Filter calculates and outputs the average value of every N samples. It

has two functions: eliminating background noise and down-sampling the sampling

rate to suit the need of the hysteresis compensator which is essentially a low

frequency operation.

68

Figure 7.7 Simulated response of the hysteresis compensated system with k1 =
8.0092 x 106 and Pc = 1.0664 x 10-5

Figure 7.8 Simulation in time domain: Effect of over-compensation and under-
compensation by kcomp

Figure 7.10 shows the effect of the Average Filter on eliminating background

noises. The inputs to the A/D channels are grounded, and hence the noise is

caused by the electric parts inside PC. With sampling rate of 10000Hz, the spectral

responses without and with 40-point Average Filter are shown in Figure 7.10. The

noise level is reduced from —40dB to —80dB.

The Average Filter is basically a low-pass filter. The sampling rate in Figure

7.10 is 10000Hz. Without Average Filter, the noise with frequency less than 5000Hz

is recovered. With 40-point Average Filter, only the noise with frequency less than

125Hz is recovered. Thus the background noise is significantly reduced.

69

Figure 7.9 Simulation in frequency domain: Effect of over-compensation and under-
compensation

Figure 7.10 Spectrum responses with (right) and without (left) the average filter

The other function of the Average Filter is down-sampling. In this experiment,

the sampling rate of the observer is 5000Hz. Applying a 20-point Average Filter,

the sampling rate of the hysteresis compensator is 250Hz.

7.5.2 Hysteresis Compensation

Without compensation, Figures 7.11 and 7.12 show the effect of the hysteresis in

time and frequency domains, respectively. Applied the nonlinear observer hysteresis

compensator in equation (7.5), with the hysteresis parameters described by equation

(4.2), Figures 7.13 and 7.14 show the results of hysteresis compensation. Comparing

Figure 7.11 with 7.13, it can be seen that the compensated system eliminates the

70

Figure 7.11 Experimental responses in time domain without hysteresis compen-
sation

Figure 7.12 Experimental responses in frequency domain without hysteresis
compensation

hysteresis loops completely. And as shown in Figures 7.12 and 7.14, the harmonics

of compensated system are greatly reduced.

Table 7.1 summarizes the ratios of the third, the fifth and the seventh

harmonics to the fundamental terms. It is noted that the ratios of the third

harmonics to the fundamental terms are reduced about 20dB. The small change of

the other ratios is caused by the sensitivity of the equipment.

71

Figure 7.13 Experimental responses in time domain with hysteresis compensation

Figure 7.14 Experimental responses in frequency domain with hysteresis compen-
sation

7.6 Performance Analysis

In this section, simulation is first applied to compare the tracking performance to a

sinusoidal input. Experiment is then applied to verify the simulated results.

Figure 7.15 shows the tracking performance of the three systems: open-loop

nonlinear system described by equations (1.10) and (1.11), its corresponding linear

system (k 1 = 0) with PI control, and the nonlinear system with PI-control and

observer compensator. The reference input is a sinusoid with magnitude of 400Volts

and frequency of 1Hz. And the sampling rate is 5000Hz. The coefficients of

72

PI-controller are lip = 2 k i = 1000. It can be observed that the tracking error

is greatly reduced by adding the hysteresis compensator, and the linear system

response is approximately restored.

Figure 7.15 Simulation: Tracking error to the reference sinusoid

Tables 7.2 and 7.3 show the tracking error for the different frequencies and

magnitudes of the input sinusoid. The ratios between the average mean square error

of the hysteresis compensated system and the open loop system are 1.6898 x 10 -2

in Table 7.2 and 3.9896 x 10 -2 in Table 7.3. The average mean square error ratios

between the hysteresis compensated system and the linear system are 1.0522 in

Table 7.2 and 1.1228 in Table 7.3.

Figure 7.16 shows the experimental results of the tracking performance with

input sinusoid of 100Volts and 1Hz. The sampling rate is 250Hz, and the coeffi-

cients of PI-controller are k p = 0.1 ki = 6. Clearly, the tracking performance is

greatly improved by adding the nonlinear compensator. Same result can be obtained

by comparing the tracking error shown in Figure 7.17. Tables 7.4 and 7.5 list the

mean square error for different frequencies and magnitudes of the input sinusoid.

The average mean square error ratio between hysteresis compensated system and

the open loop system are 0.22554 in Table 7.4 and 2.4802 x 10' in Table 7.5.

mag(Volts) uncompensated system (dB) compensated system (dB)
h3/h1 h5/h1 h7/h1 h3/h1 h5/h1 h7/h1

50 -40.693 -63.137 -65.006 -63.338 -68.516 -72.173
100 -37.447 -57.486 -69.475 -69.313 -73.404 -76.284
150 -36.045 -54.079 -72.054 -67.463 -74.040 -79.342
200 -35.179 -52.700 -67.222 -61.395 -72.585 -88.901
250 -34.157 -51.765 -66.373 -56.503 -69.451 -103.644
300 -32.925 -51.267 -65.931 -50.291 -63.105 -75.423

Table 7.1 Experiment: Harmonic ratios with and without hysteresis compensation

frequency
(Hz)

open-loop linear system
with PI control

nonlinear system
with PI + observer

1 2.0806 9.3860x 10 -4 1.0736x 10 -3

2 2.0873 3.7512x 10 -3 4.2011x 10 -3

4 2.1006 1.4952x 10 -2 1.5205 x10 -2

6 2.1140 3.3439 x 10 -2 3.4111 x 10 -2

8 2.1273 5.8941x 10 -2 5.9745x 10 -2

10 2.1406 9.1134 x10 -2 9.9424x 10 -2

Table 7.2 Simulation: MSE (μm2) for different sinusoidal frequencies

mag(Volts) open-loop linear system
with PI control

nonlinear system
with PI +observer

50 4.7430x 10 -2 1.4240x 10 -3 1.6396x 10 -3

100 1.8541 x10 -1 5.6959x 10 -3 6.5056x 10 -3

150 4.0153 x10 -1 1.2816 x10 -2 1.4502x 10 -2

200 6.7770 x 10 -1 2.2784 x 10 -2 2.5703 x 10 -2

250 9.9490x 10 -1 3.5599x 10 -2 3.9951x 10 -2

300 1.3400 5.1263x 10 -2 5.7197 x10-2

Table 7.3 Simulation: MSE (μm2) for different sinusoidal magnitudes

73

frequency (Hz) open-loop PI control PI + observer compensator
0.5 0.30874 3.6495 x 10 -3 1.5848x 10 -3

1 0.25722 1.2131 x 10 -2 2.7783x 10 -3

2 0.26865 4.7868 x 10 -2 6.1587 x10 -3

5 0.27711 3.0665 x 10 -1 4.6702 x10 -2

10 0.40531 1.1442 2.8492x 10 -1

Table 7.4 Experiment: MSE (pm t) for different sinusoidal frequencies

mag(Volts) open-loop PI control PI + observer
50 2.1480 x 10 -2 1.0542x 10 -3 4.6568x 10-4

100 2.4890 4.0631x 10 -3 1.7461x 10 -3

150 3.2033 9.6104x 10 -3 3.8362 x10 -3

200 3.2334 1.6002x 10 -3 6.6707x 10 -3

250 3.4628 2.4171x 10 -2 1.0420x 10 -2

300 2.9296 3.5016 x10 -2 1.4907x 10 -2

Table 7.5 Experiment: MSE (μm2) for different sinusoidal magnitudes

frequency(Hz) normalized ratios (dB(μm/μm/ Volts))
PI control deadbeat observer

(without PI)
deadbeat observer

and PI control
1 -113.0972 -161.6712 -139.8552

10 -94.5392 -132.2042 -124.3892
50 -90.1212 -106.0042 -112.8102
100 -90.4342 -104.3442 -111.1062
150 -89.7272 -103.3732 -105.1732
200 -88.4092 -95.6542 -101.5812

Table 7.6 Simulation: Hysteresis compensation with different frequencies

74

Figure 7.16 Experiment: Tracking performance to the reference sinusoid

75

Figure 7.17 Experiment: Tracking error to the reference sinusoid

Table 7.6 compares the effect of the hysteresis compensation for the systems

of nonlinear closed-loop PI control, nonlinear open-loop system with hysteresis

observer compensator, and nonlinear closed-loop PI control with hysteresis observer

compensator. And Table 7.7 lists the results of tracking errors of the the two closed

loop system. It can be noted that the system with hysteresis observer compensator

can achieve better results on eliminating the hysteresis phenomena than that with

PI control. The system with PI and hysteresis observer compensator combines

the advantages of the PI and hysteresis observer compensator and achieves the

best results in terms of reducing tracking error and nonlinearity. Comparing the

results of PI-control with and without hysteresis observer compensator, the average

normalized ratio is reduced by about 20dB [cm by adding the observer compensator,

76

frequency(Hz) peak to peak values of the tracking errors (μrn)
PI control deadbeat observer and PI control

1 0.14054 8.6750 x10 -2

10 1.4350 0.84590
50 5.2174 3.3053
100 6.7414 4.3674
150 7.0495 4.7482
200 7.3452 5.0075

Table 7.7 Simulation: Tracking errors with and without hysteresis compensation

mag(Volts) 100 200 300 400 500 600
error (μm) 0.78491 0.92760 1.6928 3.0652 4.6808 6.4091

Table 7.8 Simulation: Steady state error for different square magnitudes

and the relative error is reduced by 36%. Figures 7.18-7.20 show the spectrum

responses of the three systems. In experiment, Tables 7.4 and 7.5 show that the

improvement of the tracking error is 76% and 57.9% by introducing the hysteresis

compensator.

Simulation results in Figure 7.21 show the tracking performance to the input

square wave with different magnitudes, a situation commonly encountered with

command shaping strategies (see Chapter 9), where a feedforward component is

generated for high speed of response. However, the presence of hysteresis causes

substantial steady state errors. The use of the hysteresis observation alleviates

this problem significantly. For this study, deadbeat hysteresis observer is applied.

Comparing the results in Figure 7.21, it is noted that the hysteresis observer

compensated system has high overshoot during the first half period, which is caused

by the finite convergence rate of state estimation. After the first half period,

hysteresis compensated system produces better performance than the open-loop

system measured in terms of zero steady state error and quicker transient charac-

teristics. Table 7.8 shows the steady state error with different magnitudes of square

wave.

77

Figure 7.18 Simulated spectrum responses of the system with PI control and
hysteresis compensator

Figure 7.19 Simulated spectrum responses of the system with PI control

7.7 Summary

Nonlinear observer hysteresis compensator is proposed in this chapter to eliminate

the hysteresis effect in the piezoelectric actuator. Stability analysis shows that the

closed-loop system is stable if the controller and the observer designed assuming

k 1 = 0 are stable.

Simulation is applied to study the efficiency and the robustness of the

compensator. It is shown that the compensator is robust when k and k 1 are

bigger than their corresponding true values (20 and 5 times respectively). To

Figure 7.20 Simulated spectrum responses of the system with hysteresis
compensator

compensate the effect of hysteresis parameter estimated error, an adjustable gain is

added to the compensation scheme.

Both experiment and simulation show the efficiency of the hysteresis compensated

scheme. The hysteresis loop is eliminated in time domain and the harmonics are

greatly reduced in frequency domain.

Experiment and simulation are further applied to study the tracking error to

the reference sinusoid with different frequencies and magnitudes. Comparing with

open-loop control, the PI control with hysteresis compensator greatly reduces the

tracking error. Simulation also shows that the linear system performance can be

restored by adding the hysteresis compensator.

Figure 7.21 Simulation: Tracking performance to the square wave input (solid line:
hysteresis compensated output; dashed line: open-loop response)

CHAPTER 8

ADAPTIVE HYSTERESIS COMPENSATOR

The application of piezoelectric actuators in precision and fine motion control

requires highly consistent performance and accuracy. Due to variations in environ-

mental factors such as temperature, humidity, as well as the uncertainty in operating

conditions, an adaptive mechanism to update the control system is necessary. This

chapter describes an adaptive hysteresis compensator which tracks the hysteresis

parameters. The ideas is that the hysteresis parameters are estimated in real-time,

and the hysteresis compensator is updated accordingly to compensate the slowly

changing hysteresis nonlinearity.

Figure 8.1 shows the block diagram of the adaptive hysteresis compensator,

where the block of adaptive algorithm will be discussed in detail.

Figure 8.1 Block diagram of adaptive hysteresis compensator

8.1 Adaptive Hysteresis Compensated Scheme
8.1.1 Adaptive Algorithm

Assume the linear coefficients 7, km , kv, in equation (7.1) are known and constant,

while the hysteresis parameters F, and k 1 are unknown and may change slowly.

Hence the discrete time coefficient matrix Ad in equation (7.2), and the gain of the

reduce order observer 1, are constant. The adaptive algorithm is designed such that

80

81

the hysteresis parameters are estimated on-line, and the hysteresis compensator

is updated based on the estimated parameters. The procedure of the hysteresis

compensation in Chapter 7 is modified as:

1. Set initial values

2. Compute states F(n + 1) and - 2 (n + 1) from equation (7.3)

3. Calculate the first and the third harmonics h 1 and h3 using small sample DFT

discussed below

4. Update hysteresis parameters Pc and k 1 as,

5. Output u(n), calculated form equation (7.4), to the PZT system

6. Repeat steps 2-5

8.1.2 Harmonic Calculation Using Small Sample of Data

To estimate the hysteresis parameters in real-time, a small sample of data should

be applied to reduce the delay caused by collecting data and calculating DFT or

FFT. The small sample size can be efficiently utilized if signal leakage is properly

accounted for. That is to say, if sampling frequency is a harmonic multiple of a

signal's frequency, there is no leakage to the adjacent frequency bias. Harmonics

can then be calculated accurately without using windows.

Let freq stand for the frequency of an input sinusoid, and Fsa be sampling

rate. If Fsa = 20 x freq, the harmonics in frequency domain can then be expressed

as,

harmonics frequency =[0 1 2 3 4 5 6 7 8 9] x freq

82

This is because the number of samples in frequency domain equals

Hence, the first frequency point in FFT is

(Fsa /2)/(number of samples in frequency domain) = freq

Discrete Fourier Transform (DFT) is applied to calculate the harmonics, as below:

where N = 20. From the above frequency vector of the harmonics, it can be seen

that the second and the fourth elements of x(n) stand for the first and the third

harmonics, respectively.

8.2 Simulation

Considering the example in Section 7.4, the hysteresis compensation algorithm is

shown in equation (7.5). In the following, the example is applied to illustrate the

on-line hysteresis parameter estimation and the hysteresis compensation.

8.2.1 Real Time Hysteresis Parameter Estimation

For an input sinusoid with frequency of 1Hz and amplitude of 400Volts, Figure 8.2

shows the estimated parameters with different initial value of ii, and k 1 = 1.1 x 10 7 ,

and Figure 8.3 shows the estimated parameters with different initial value of k 1

and Pc = 7.5 x 10 -6 . During the first period (time less than 1sec), the estimated

hysteresis parameters are equal to their initial values. During the second period,

the data in the first period time are applied to calculate the hysteresis parameters

which are updated to the new values, and so on. The mechanism of the hysteresis

parameter estimation is that the (N + 1)th hysteresis parameter estimation are

calculated using the data in the Nth period. It can be seen that although the

estimated parameters do not approach to their true values, they are convergent,

83

1.0664 x 10- 5 and k 1 	8.0092 x 10 6 . The bias is mainly caused the inaccurate

harmonics expressions (k a and kb are chosen as one). The update speed can be

improved by increasing the frequency of the input sinusoid, and the bias can be

reduced by choosing ka = 1.6 and kb = 0.66, as shown in Figures 8.4 and 8.5 where

Figure 8.2 Hysteresis parameter estimation curves with different f',(0) (k 1 (0) =
1.1 x 10 7)

8.2.2 Adaptive Hysteresis Compensation

Since Pc can not be zero, an arbitrary value is chosen as its initial value. Letting

k 1 (0) = 0 and Fc(0) = 5 x 10 -5 , and applying the hysteresis compensated scheme in

Figure 8.3 Hysteresis parameter estimation curves with different k1(0) (P,(0) =
7.5 x 10 -6)

Section 8.1, the tracking error of the compensated system is shown in Figures 8.6,

together with the tracking errors of the linear and the nonlinear open-loop systems.

It can be observed that the tracking performance of the compensated system is

quite similar as that of the linear system, and the nonlinearity existed in the open-

loop system are eliminated. Figure 8.7 shows the responses of the three systems in

frequency domain. It can be seen that the harmonics in the hysteresis compensated

system are very small. Hence the results in time and frequency domains show that

Figure 8.4 Hysteresis parameter estimation curves with different Fc(0) (k1 (0) =
1.1 x 10 7)

the compensator effectively reduces the hysteresis effect, and the linear performance

is approximately achieved. The process of the hysteresis parameter estimation is

shown in Figure 8.8.

8.3 Experiment

Figures 8.9-8.12 show the responses of the PZT system with input sinusoid of 0.5Hz

and magnitude varied from 50V olts to 300V olts in six steps, i.e.,

mag = [50 100 150 200 250 300]Volts

Figure 8.5 Hysteresis parameter estimation curves with different k 1 (0) (F,(0) =
7.5 x 10 -6)

where the sampling rate of the observer is 5000Hz, and that of the controller is

250Hz. Figures 8.9 and 8.10 show the open loop responses. Hysteresis nonlin-

earity can be observed in time domain as hysteresis loops, and in frequency

domain as harmonics. Applying the control strategy shown in Figure 8.1 with

initial values of k 1 (0) = 0 and F,(0) = 7.5 x 10 -6 , and the coefficients of PID

as ki = 0.5 k = 0 kd = 0, the effect of hysteresis compensation is shown in

Figures 8.11 and 8.12. It is observed that the hysteresis loops are eliminated and

the harmonics are reduced significantly. For easy comparison, the normalized ratios

of the uncompensated and compensated systems are listed in Table 8.1. It is noted

that adding the hysteresis compensator, the ratios are reduced by 30dBμm. The

87

Figure 8.6 Simulation: The effect of hysteresis compensation in time domain

Figure 8.7 Simulation: The effect of hysteresis compensation in frequency domain

value of Fc(0) is chosen based on our best knowledge from Chapter 6, and k 1 (0) = 0

eliminates the hysteresis compensation during the first period in which the estimated

hysteresis parameters may be far from their true values.

8.4 Summary

An adaptive hysteresis compensator is proposed for an input sinusoid to compensate

slowly changed hysteresis parameters. Hysteresis parameters are calculated itera-

tively from the input and output of the PZT system. They are then applied in

hysteresis compensation. Simulation shows that the estimated hysteresis parameters

Figure 8.8 Hysteresis parameter estimation

mag(Volts) normalized ratios(dB(μm/μm/Volts))
uncompensated compensated

50 -75.3494 -113.1864
100 -78.3840 -111.5060
150 -80.8948 -111.5578
200 -82.4316 -114.2246
250 -83.7028 -114.7558
300 -84.5774 -115.3044

Table 8.1 The effect of adaptive hysteresis compensation

are convergent. Both simulated and experimental results show that the compensated

scheme can effectively eliminate the hysteresis effect.

88

Figure 8.9 Experiment: Time domain response of the hysteresis uncompensated
system

90

Figure 8.10 Experiment: Frequency domain response of the hysteresis uncom-
pensated system

Figure 8.11 Experiment: Time domain response of the hysteresis compensated
system

92

Figure 8.12 Experiment: Frequency domain response of the hysteresis compensated
system

CHAPTER 9

VIBRATION AND PRECISION CONTROL
TIME DIVISION MULTI-CONTROLLER

As discussed in Chapter 1, piezoelectric actuators are generally underdamped.

Without compensation, the open loop transient response exhibits high degree of

overshoot and residual vibration. The common control strategies such as PID

control or servo compensation are generally ineffective when constraints such as

actuator saturation and high speed of response are imposed. In this chapter, the

strategy of time division multi-controller is proposed to solve the problem.

9.1 Time Division Multi-Control Strategy

The block diagram of the control strategy is shown in Figure 9.1, where Gain

Compensator and Average Filter have been discussed in Chapters 6 and 7 respec-

tively. In the following, Input Shaper and time-division multi-controller strategy

will be discussed in detail.

Figure 9.1 Block diagram of time division multi-control system

9.1.1 Input Shaper

Input shaper has been successfully applied in vibration control, even in the presence

of modeling uncertainties and structural nonlinearities [31-34]. A number of design

methods have been proposed: Zero Vibration (ZV), Zero Vibration and Derivative

93

94

(ZVD), Extra Insensitive (EI), and Optimal [35]. Here ZVD is chosen to increase

the robustness of the impulse shaping sequence to modeling errors.

Input shaping is an open-loop scheme in which the square (or step) input is re-

shaped such that the system oscillations are canceled. The re-shaped input involves

a sequence of impulses with properly assigned weights and temporal separation.

Hence the system output is the addition of all the impulse responses. Although

vibration exists for each impulse response, the system oscillations can be canceled

by properly choosing weights and temporal separation. To simplify the discussions,

consider a second order system with the following transfer function,

The unit impulse response of (9.1) is given by:

Let yi (tN) be the impulse response to the impulse

M is the number of impulses. A i and t i are respectively, the impulse weight and

application time; then the total response at t = tN can be written as:

The goal is to minimize the level of residual vibration at t = tN:

For a ZVD shaper, the impulse parameters are given by,

where MM is percentage maximum overshoot and

undamped frequency and c as damping ratio. These values can be obtained directly

from a step response. Figure 9.2 shows the output of the input shaper of a square

95

input with magnitude of 0.5 and period of tp . The parameters are calculated from

equation (9.5), where the subscripts + and — stand for the rising and falling steps

respectively. The input shaper can thus be expressed as,

where t p and A are the period and the magnitude of the square wave; gshaper is

chosen such that the gain of the system with input shaper is equal to one. Hence

Figure 9.2 Parameter allocation of input shaping

Input shaping has the following advantages:

I. Very practical, since only the application time and the impulse weights need

to be stored

2. Very efficient in eliminating vibration, which will be illustrated later in this

chapter

3. Efficient under actuator saturation constraint

As shown in Figure 9.2, instead of applying the whole input drive at one time,

the input drive is divided into three parts. Only one part is applied at one

time, and hence the transient control effort is greatly reduced.

96

9.1.2 Time Division Multi-Controller Strategy

Although input shaper is efficient in reducing vibration and remaining fast transient

response, as an open-loop control scheme, it could not eliminate the steady state

error caused by drift and noise. Time division multi-control strategy effectively

combines input shaper and PI control and thus implements vibration and precision

control.

The time allocation of the strategy is as following: as shown in Figure 9.2,

during [0 2td+], input-shaping control is active and the output of the shaper follows

the signal in Figure 9.2. At the same time, PI controller is passive and its output

keeps the value before t < 0. During [2td+ tp/2], on the other hand, the input shaper

is passive and its output maintains the value at t 2td+ , while PI controller is active

and its output is calculated based on the error between the filtered output and the

reference input. Similar strategy is applied for the falling step.

Two sampling rates are applied in the strategy: fast sampling rate 10000Hz

for input shaping since the switching time is critical, and slow sampling rate 250Hz

for PI control. The reasons to choose the slow sampling rate for PI controller are as

following: Firstly, the fast sampling rate like 10000Hz will make the system more

sensitive to numerical errors because the poles of the discrete system approach z = 1.

Secondly, PI controller is used in the period of fine motion, and thus fast sampling

rate is not necessary. And finally, the Average Filter can be applied to eliminate

background noise and hence improve resolution.

9.2 Simulation

In the following, an example is applied to illustrate the implementation of the control

strategy. Considering the model in equations (1.10) and (1.11) with parameters

described by (4.1) and (4.2), the parameters of Mp and t d in equation (9.5) are

firstly obtained from the square response with frequency of 25Hz and magnitude of

97

50Volts. The parameters of the input shaper are then calculated as

A l = 0.645 A2 = 0.31624 A3 = 0.038763 t 1 = 6.625 x 10 -4 gshaper = 1.15

Figure 9.3 shows the responses of the systems with open loop control, input

shaping and time division multi-control strategy, where the coefficients of PI

controller are chosen as Kp = 0.1 and K = 100. It can be seen that input shaper

and time division multi-controller can greatly reduce vibration and hence improve

transient performance. Comparing with input shaper, Time division multi-controller

is more efficient in eliminating the steady state error caused by hysteresis, drift and

noise, which is to be discussed in the next section.

Figure 9.3 Simulated responses of the three control strategies: top: open-loop;
middle: input shaping; bottom: time division multi-controller

9.3 Experiment

Experiment is applied in this section to verify the control strategy. Some of the

parameters are given first.

1. The parameters of the PI controller are obtained using on-line tuning, /8: -2, = 0.1

and Ki = 200

98

2. The Gain Compensator is applied to eliminate the effect of the nonlinear scale

factor, as discussed in Chapter 6, with coefficients as

C4 = 0 C3 = 3.2223 x 10 -2 C2 = -0.33328 C1 = 2.0258 for x-axis

C4 = 0 C3 = 3.2920 x 10 -2 C2 = -0.32127 C1 = 1.9468 for y-axis

3. The parameters of the input shaper are obtained from square response, as

following

x-axis:

A i+ = 0.15477 A2+ = 0.47728 A3+ = 0.36796 td+ = 7.5 x 10 -4

A l_ = 0.28099 A2_ = 0.49819 A3_ = 0.22082 td_ = 7.5 x 10 -4

gshaper = 2.7027

y-axis:

A1+ = 0.21386 A2+ = 0.49718 A3+ = 0.28896 td+ = 7.45 x 10'
Al_ = 0.21386 A2_ = 0.49718 A3_ = 0.28896 td_ = 7.5 x 10-4

gshaper = 2.1368

Figure 9.4 shows the open-loop square response. The frequency and the

magnitude of the square wave are respectively 1Hz and 50Volts. High degree of

overshoot and vibration during the transient period are clearly seen. Figure 9.5

shows the system response with the input shaper only. It is observed that the

vibration is eliminated completely, though steady state error (mainly caused by

drift) still exists. Figure 9.5 shows the steady state error of 0.9μm in x-axis and

1.3μm in y-axis. Applying the scheme of time division multi-controller, Figure 9.6

shows the system responses with different magnitudes of the reference square wave.

The rise time is 1.5msecs and the steady state error is zero. Hence the controller

implements the objectives of vibration reduction, fast transient response and zero

steady state error. Figure 9.6 also shows the efficiency of the Average Filter in

reducing background noise and hence improving system's resolution.

Figure 9.4 Experiment: Open-loop square-wave response

99

Figure 9.5 Experiment: Vibration control using input shaping

9.4 Summary

Time division multi-control strategy is proposed in this chapter to reduce vibration,

implement fast transient response, and eliminate steady state error. The strategy

effectively combines input shaping and PI control in different time zones such that

input shaping is applied in intensive motion control and PI-control in fine motion

control. The efficiency of the strategy is verified by simulated and experimental

results.

Figure 9.6 Experiment: Vibration and precision control using time division multi-
controller: without filter (left) and with filter (right)

CHAPTER 10

CONCLUSIONS

Characteristics of the monolithic piezoelectric nano-actuator have been studied,

covering the areas of hysteresis characteristics analysis, system identification,

nonlinear compensation, vibration and precision control, and real-time control

software development.

Frequency domain analysis shows that the hysteresis nonlinearity possesses a

certain degree of weak scalability, so that a normalized harmonic ratio can be applied

to quantitatively measure the degree of hysteresis nonlinearity. Simulation and

experimental results also verify that the proposed simplified Dahl model can effec-

tively describe the hysteresis in the monolithic piezoelectric actuator. The hysteresis

parameter estimation is carried out using the first and the third harmonics.

A reduced order nonlinear hysteresis observer is proposed to compensate the

hysteresis nonlinearity. Stability analysis shows that the compensated system is

stable if the corresponding linear system is stable. Experimental and simulated

results verify the effectiveness of the compensation which reduces the normalized

ratio by about 20dB. Simulated results also show that the linear system performance

can be recovered. Furthermore, an adaptive hysteresis compensator is proposed to

track the slowly changed hysteresis parameters. This is followed by time-division

multi-control strategy which combines input shaping and PI control in different time

scales to carry out vibration suppression and precision control.

Real-time control strategies, such as PID-control, input shaping, reduced

order observer and low-pass filter are developed and successfully bench tested

on a TMS320C31 based digital signal processing platform. Furthermore, GUI is

developed in the LabVIEW environment to implement communication between the

code in DSP memory and LabVIEW. Hence the system signals can be monitored,

101

102

and the control variables be adjusted in real-time through LabVIEW Front Panel.

The GUI greatly simplifies the control system operation and control strategy test.

In summary, the main contributions of the work are:

1. Verified the hysteresis model in the monolithic piezoelectric actuator.

2. Introduced frequency domain method to analyze the hysteresis nonlinearity.

3. Proposed the method of multi-controller time division control.

4. Effectively reduced the hysteresis nonlinearity.

5. Developed reusable real-time control package.

Suggestions for the future work on the PZT system are listed below:

1. Investigate the effect of load on the system models.

2. Design an adaptive controller for slowly changed model parameters and

arbitrary input.

3. Replace the PI controller with a servo compensator, which is more general and

capable of handling a wider range of exogenous signals.

4. Improve the analytic expressions of the hysteresis harmonics.

5. Study the PZT system with six degrees of freedom.

APPENDIX A

DSP MEMORY DISTRIBUTION

Table A.1 defines the DSP memory for the variables in the user programs.

Address Variables Function
0x12F4 BIASF frequency offset
0x12F5 FREQX frequency of the reference signal in x-axis
0x12F6 CHECK1 1=data in memory is ready; 0=not ready
0x12F7 TIMER Sampling time
0x12F8 GRAB1 1=begin to store data; 0=clear counter
0x12FB FREQY frequency of the reference signal in y-axis
0x12FC MAGY magnitude of the reference signal in y-axis
0x12FD CONTY control signal in y-axis
0x12FE OUTY output signal in y-axis
0x12FF KPY coefficient of proportional control in y-axis
0x1300 KIY coefficient of integral control in y-axis
0x1301 KDY coefficient of derivative control in y-axis
0x1302 REFX reference signal in x-axis
0x1303 REFY reference signal in y-axis
0x1306 KCOMP adjustable gain in observer compensation
0x1308 SAFE1 switch from open-loop control to close-loop
0x1382 CONTX control signal in x-axis
0x1383 OUTX output signal in x-axis
0x1384 MAGX magnitude of the reference signal in x-axis
0x1385 KDX coefficient of derivative control in y-axis
0x1386 KPX coefficient of proportional control in y-axis
0x1387 KIX coefficient of integral control in y-axis
0x1388 start area for store experimental data

Table A.1 DSP memory distribution for user programs

103

APPENDIX B

NONLINEAR SCALAR FACTOR

The following code automatically generates a sinusoid with changed magnitude. The

signal is applied to the monolithic piezoelectric actuator to study the nonlinearity

of the scalar factor.

Section 1 implements the GUI between the code in DSP memory and Labview.

The program allows the user to input the maximum value of the magnitude, decide

when to store experimental data. Through the interface, the experimental results

are uploaded and shown in the Labview.

Section 2 implements real-time control strategy. Here a sinusoid with changed

magnitudes is generated and outputted to the PZT system, the system output and

the reference input are stored.

Section 3 is the graphical programs in Labview. Front Panel shows the signals

(reference input and system output) and the controlled variables. Block Diagram is

the code to implement the functions.

B.1 Graphical User Interface Between DSP and Labview

/* 	 CIN source file — modeln.c

Objective:

Implement the connection between the control buttons in Labview and DSP

*/

#include "extcode.h"

#include <stdio.h>

#include <math.h>

#include <conio.h>

#define CHECK1 0x12F6

#define GRAB1 0x12F8

104

105

#define REF2PC 0x1382

#define Y 0x1383

#define REF2DSP 0x1384

#define SCALING 500000.

#define MASK 0x0000FFFFL

CIN MgErr CINRun(float64 *ref2dsp, float64 *ref2pc, float64 *output, int32

*check, int32 *var5);

CIN MgErr CINRun(float64 *ref2dsp, float64 *ref2pc, float64 *output, int32

*check, int32 *var5) {

long int longv, longh, long';

outp(0x306,0x0); /*page value*/

// read check1 from DSP memory

outpw(0x302,CHECK1); /*0x12F6*/

long' = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long' (longh <<16) ;

*check = (int32) (longv);

//Write grab' to DSP memory

outpw(0x302, GRAB1); 	 /*0x12F8*/

outpw(0x300,*var5);

outpw(0x300,(*var5)>>16);

/ /read ref from DSP memory

outpw(0x302,REF2PC); /*0x1382*/

long' = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long' (longh << 16) ;

*ref2pc = (float64) (longv)/2047*4.9976;

//read output from DSP memory

outpw(0x302,Y); /*0x1383*/

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh << 16);

*output = (float64) (longv)/8191*4.99939;

//Write magnitude of reference sinusoid to DSP memory

longv 	 (long int)((*ref2dsp)*SCALING);

outpw(0x302, REF2DSP); 	 /*0x1384*/

outpw(0x300,longv);

outpw(0x300,longv >>16);

return noErr;

}//end of file

/* 	 - CIN source file modeln_d.c 	

Objective:

Upload the experimental data in DSP memory when ready.

Outputs:

sampling_freq - sampling rate; y, ref - signals uploaded

*/

#include "extcode.h"

#include < stdio.h >

#include < math.h >

#include < conio.h >

#define Timer 0x12F7

#define Y 0x1388

#define REF 0x3A98

#define MASK 0x0000FFFFL

106

#define DATASIZE 5000

#define SCALING 500000.

typedef struct {

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hd1;

CIN MgErr CINRun(float64 *Sampling_freq, TD1Hd1 y, TD1Hd1 ref);

CIN MgErr CINRun(float64 *Sampling_freq, TD1Hd1 y, TD1Hd1 ref) {

long int longv, longh, longl,i;

MgErr err=noErr;

outp(0x306,0x0);

outpw(0x302,Timer);

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh << 16) ;

*Sampling_freq = (float64) 400.0*SCALING/longv;

if (err = NumericArrayResize(fD, 1L, (UHandle *) &y, 2*DATASIZE))

goto out;

(*y)->dimSize = 2*DATASIZE;

for (i=0;i < 2*DATASIZE;i++) {

outpw(0x302,(Y 	 i));

long1 = inpw(0x300) 0x0000FFFF;

longh= inpw(0x300) & 0x0000FFFF;

longv= long1 (longh <<16);

(*y)->arg1[i]= (float64) (longv)/8191*4.99939;

107

}

/

if (err = NumericArrayResize(fD, 1L, (UHandle *) &ref, 2*DATASIZE))

goto out;

(*ref)->dimSize = 2*DATASIZE;

for (i=0;i < 2*DATASIZE;i++) {

outpw(0x302,(REF + i));

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (lough << 16);

(*ref)->argl[i]= (float64) (longv)/2047*4.9976;

}

out:

return noErr;

Wend of file

B.2 C Source Code for Real-time Operation System (DSP)

	 sine12.0 	

Objective: generate a sinusoid with changed magnitude

Notes:

Sampling rate = 50*10^6/(TIMPER0*8*numcalls)

where numcalls mean ReadAdc(=1) only

Fs = 500Hz, 100-point average filter (NFILTER = 100)

nperiod = Fs/freq = 500/0.05 = 10000

total time = 10000/(500/100)/60 = 34mins

#data stored = NMAG * nperiod * 2/NFILTER = 10k (per signal)

*/

#define TIMPER0 12500

#include < math.h >

108

#include "d310biox.H"

// 	 Memory address distribution

#define CHECK1 0x12F6

#define GRAB1 0x12F8

#define TIMER 0x12F7

#define REF2PC 0x1382

#define Y 0x1383

#define V 0x1384

#define MEMORYLSTART 0x1388

#define MEMORY2_START 0x3A98

#define DATA_SIZE 5000

#define PI 3.14159265358979

#define SCALING 500000.

#define NMAG 50

#define NFILTER 100

int *grabl;

long *check1, * ptr_to_v,*int_ptr[2];

/* 	 store date 	

Objective: filter and store data.

inputs:

data1 - Y from A/D converter;

data2 - reference generated from computer

grab1 - control signal

DATA_SIZE - #data stored

NFILTER - #data averaged

*/

void StoreData(int data1,int data2) {

109

110

static long ndata=1,ndummy=0,sumf[2]={0,0};

if ((*grab1) == 1) {

if (ndata <= 2* DATA_SIZE) {

if (ndummy < NFILTER)

sumf[0] = sumf[0] + data1;

sumf[1] = sumf[1] + data2;

ndummy++;

}

if (ndummy 	 NFILTER) {

*(int_ptr[0]+ndata) =(long)((double)(sumf[0])/NFILTER);

*(int_ptr[1]+ndata) =(long)((double)(sumf[1])/NFILTER);

ndata++;

sumf[0] = sumf[1] = ndummy 0;

}

}

else

*check1= (int)(1);

}//endif

else

{

*check1 =(int)(0);

ndata=0;

}

}

// 	 - Main() function

void main() {

double gain,ref = 0, freq=0.05,

Fs=(double)(50000000)/(TIMPER0*8*1);

double coe[4]={-9.7409e-003,1.0593e-001,-4.5859e-001,1.8338};

int i=1, k=0, index1, *int_ref, *int_y;

long *int_time, nperiod;

InitDsp();

	 - set memory address 	

//for StoreData:

check1 = (long int *) CHECK1; //0x12F6

* check1 = (int) (0); //1=data in mem. ready

grab1 	 (int *) GRAB1; //0x12F8

* grab1 = (int) (0); //1=store data; 0=reset

int_ptr[0] = (long *) MEMORY1_START; //0x1388

int_ptr[1] = (long *) MEMORY2_START; //0x3A98

//for main function:

int_time = (long int *) TIMER; //0x12F7

* int_time = (long int) (1/Fs*SCALING*400);

int_ref = (int *) REF2PC; //0x1382 control

int_y = (int *) Y; //0x1383 ReadAdc

ptr_to_v = (long int *) V; //0x1384 mag. of ref.

* ptr_to_v = (int) (0*SCALING);

nperiod = (long)(Fs/freq);

WriteDACs(0,0);

while(1) {

for (i=1;i <=NMAG*2;i++){

/* test magnitude i=NMAG -> mag=maximum */

//i=NMAG;

//if (i==NMAG){

111

112

//-- magnitude 	

if (i < =NMAG) index1=i;

else index1=NMAG*2-i;

// 	 run one period 	

for (k=0;1(< nperiod;k++){

*int_y = ReadAdc(1);

ref =(double)(*ptr_to_v)/SCALING*index1/NMAG;

// dynamic gain compensation

gain=ref*ref;

gain = coe[0]*gain*ref+coe[1]*gain+coe[2]*ref+coe[3];

ref =(1-*checkl)*ref*sin((float)k*2*PI/nperiod);

*int_ref = (int) (2047.0/4.9976 *ref*gain);

WriteDAC(*int_ref,0);

StoreData(*int_y,(int)(2047.0/4.9976*ref));

// 	 reset ref signal 	

if((*ptr_to_v)==0) {

k=nperiod;

i=0;

//endif

} //endfor

} //endfor

}//endwhile

} //end of file

B.3 Labview Program

113

Figure B.1 Labview program for modeling PZT system

Figure B.2 Labview program for modeling PZT system (continued)

114

Figure B.3 Labview program for modeling PZT system (continued)

115

APPENDIX C

HYSTERESIS OBSERVER COMPENSATION

The following code implements the control strategy of the nonlinear hysteresis

observer compensation, where reference input is sinusoid.

Section 1 implements the GUI between the code in DSP memory and Labview.

The program allows the user to change the magnitude and the frequency of the

sinusoid, the estimated hysteresis parameters, and the PID coefficients, decide when

to store the experimental data, and choose one of the control strategies.

Section 2 implements the real-time control strategies, where average filter is

applied to implement the functions of eliminating background noise and down-

sampling. The code is designed to have the flexibility of switching among open-

loop control, closed-loop with PID control, and closed-loop with PID and hysteresis

compensation. The filtered system output and the reference input are stored.

Section 3 is the graphical programs in Labview. Front Panel shows the signals

and the controlled variables, where pushbutton (unsafe) shows the open-loop control

is chosen. If safe is chosen by clicking the pushbutton again, PID control is applied

if k1_a = 0, and PID with hysteresis compensation is applied otherwise. The exper-

imental data are uploaded and shown in time and frequency domains.

C.1 Graphical User Interface between DSP and Labview

/* 	

Objective:

implement the connection between the code in DSP memory and Labview

	 */

#include "extcode.h"

#include < stdio.h >

CIN source file — observ6.c

116

117

#include < math.h >

#include < conio.h >

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define GRAB1 0x12F8

#define SAFE1 0x12F9

#define REFX 0x1302

#define CONTR 0x1382

#define Y 0x1383

#define MAGX 0x1384

#define KDX 0x1385

#define KPX 0x1386

#define KIX 0x1387

#define K1_A 0x1306

#define FC_A 0x1307

#define SCALING 500000.

#define FSCALING 5000.

CIN MgErr CINRun(float64 *mag, float64 *freq, float64 *kp, float64 *ki,

float64 *kd, float64 *Fc_a, float64 *k1_a, int32 *safe1, float64 *ref,

float64 *control, float64 *output, int32 *check, int32 *grab1);

CIN MgErr CINRun(float64 *mag, float64 *freq, float64 *kp, float64 *ki,

float64 *kd, float64 *Fc_a, float64 *k1_a, int32 *safe1, float64 *ref,

float64 *control, float64 *output, int32 *check, int32 *grab1)

long int longv, lough, long1;

outp(0x306,0x0); /*page value*/

//Write freq1 to DSP memory

longv = (long)((*freq)*FSCALING);

118

outpw(0x302, FREQX); 	 /*0x12F5*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

// read check1 from DSP memory

outpw(0x302,CHECK1); /*0x12F6*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*check = (int32) (longv);

//Write grab1 to DSP memory

outpw(0x302, GRAB1); 	 /*0x12F8*/

outpw(0x300,*grab 1);

outpw(0x300,(*grab1)>>16);

//Write safe1 to DSP memory

outpw(0x302, SAFE1); 	 /*0x12F9*/

outpw(0x300,*safel);

outpw(0x300,(*safel)>>16);

//read ref from Dsp memory

outpw(0x302,REFX); 	 /*0x1302*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*ref = (float64) (longv)/2047*4.9976;

//Write k1a to DSP memory

longv = (long)((*k1_a)*FSCALING);

outpw(0x302, K1_A); 	 /*0x1306*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

//Write Fca to DSP memory

longv = (long)((*Fc_a)*FSCALING);

outpw(0x302, FC_A); 	 /*0x1307*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

//read control from Dsp memory

outpw(0x302,CONTR); /*0x1382*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh<<16) ;

*control = (float64) (longv)/2047*4.9976;

//output

outpw(0x302,Y); /*0x1383*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh << 16);

*output = (float64) (longv)/8191*4.99939;

//Write mag. to DSP memory

longv = (long)((*mag)*SCALING);

outpw(0x302, MAGX); 	 /*0x1384*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

//Write kd to DSP memory

longv = (long)((*kd)*SCALING);

outpw(0x302, KDX); 	 /*0x1385*/

outpw(0x300,longv);

119

outpw(0x300,longv>>16);

//Write kp to DSP memory

longv = (long)((*kp)*SCALING);

outpw(0x302, KPX); 	 /*0x1386*/

outpw(0x300,longv);

outpw(0x300,longv>> 16);

//Write ki to DSP memory

longv 	 (long)((*ki)*SCALING);

outpw(0x302, KIX); 	 /*0x1387*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

return noErr;

Wend of file

/* 	 - CIN source file d_observ.c 	

Objective: upload the experimental data stored in DSP memory when ready.

Outputs:

sampling_freq - sampling rate

Y2 - signal to be uploaded

*/

#include "extcode.h"

#include<stdio.h>

#include<math.h>

#include<conio.h>

#define Timer 0x12F7

#define Y 0x1388

#define DATASIZE 5000

#define SCALING 500000

120

121

typedef struct {

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hd1;

CIN MgErr CINRun(float64 *Fs, TD1Hd1 Y2);

CIN MgErr CINRun(float64 *Fs, TD1Hd1 Y2) {

long int longv, longh, long1,i;

MgErr err=noErr;

outp(0x306,0x0);

outpw(0x302,Timer);

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 1 (longh<<16) ;

*Fs = (float64) 400.0*SCALING/longv;

if (err = NumericArrayResize(fD, 1L, (UHandle *) &Y2, 4*DATASIZE))

goto out;

(*Y2)->dimSize = 4*DATASIZE;

for (i=0;i<4*DATASIZE;i++) {

outpw(0x302,(Y + i));

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 1 (longh<<16) ;

if (i < 2*DATASIZE)

(*Y2)->arg1 [i]= (float64) (longv)*4.99939/8191.0;

else

(*Y2)->arg1 [i] = (float64) (longv)*4.9976/2047.0;

/

}

out:

return noErr;

}//end of file

C.2 C Source Code for Real-time Operation System (DSP)

122

observer.c

Objective: implement control strategies of open-loop control, closed-loop with PID

control and closed-loop with PID and hysteresis compensation

Notes:

Sampling rate = 50*10^6/(TIMPER0*8*numcalls)

where numcalls mean ReadAdc only

maximum freq of ref. sinusoid = 50Hz

Sampling rate of observer Fs = 5kHz

Sampling rate of controller Fsc=5000/20=250Hz (NSTORE=20)

sampling rate of storing data Fsd=Fs/NFILTER

Total data stored = Fs/NFILTER/freq*period

*/

#define TIMPER0 1250

#include <math.h>

#include"d310biox.H"

// 	 - mem. distribution 	 -

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define TIMER 0x12F7

#define GRAB1 0x12F8

#define SAFE1 0x12F9

123

#define REFX 0x1302

#define K1_A 0x1306

#define FC_A 0x1307

#define CONTR 0x1382

#define Y 0x1383

#define MAGX 0x1384

#define KDX 0x1385

#define KPX 0x1386

#define KIX 0x1387

#define MEMORY1_START 0x1388

#define MEMORY2_START 0x3A98

#define DATA_SIZE 1000

#define PI 3.14159265358979

#define SCALING 500000.

#define FSCALING 5000.

#define NSTORE 20

#define NFILTER 11

int * checkl, *grab1, *safe1, *contr, *int_y;

long * int_ptr[2],*mag, *freq,*k1a,*fca,*kp,*ki,*kd;

double Fs= (double)50000000/(TIMPER0*8*1),ref = 0;

/* 	 - Signal function 	 -

Objective: generate reference sinusoidal

Inputs:

(*freq)/FSCALING - frequency of reference signal

(*mag) /SCALING - magnitude of reference signal

Fs - sampling rate

Outputs:

ref — reference sine wave(-5 => +5)

gain_c — for compensating dynamic gain

Note: Fs=5KHz,max_freq=50Hz <=Fs/freq=100

*/

double Signal(void){

static double msin[100] = {0, 6.279051952931337e-002,

1.253332335643043e-001, 1.873813145857246e-001,

2.486898871648548e-001, 3.090169943749474e-001,

3.681245526846780e-001, 4.257792915650727e-001,

4.817536741017153e-001, 5.358267949789967e-001,

5.877852522924731e-001, 6.374239897486898e-001,

6.845471059286887e-001, 7.289686274214116e-001,

7.705132427757893e-001, 8.090169943749475e-001,

8.443279255020151e-001, 8.763066800438637e-001,

9.048270524660196e-001, 9.297764858882515e-001,

9.510565162951535e-001, 9.685831611286311e-001,

9.822872507286887e-001, 9.921147013144779e-001,

9.980267284282716e-001, 1.000000000000000,

9.980267284282716e-001, 9.921147013144778e-001,

9.822872507286886e-001, 9.685831611286311e-001,

9.510565162951535e-001, 9.297764858882514e-001,

9.048270524660195e-001, 8.763066800438635e-001,

8.443279255020150e-001, 8.090169943749475e-001,

7.705132427757893e-001, 7.289686274214114e-001,

6.845471059286885e-001, 6.374239897486895e-001,

5.877852522924733e-001, 5.358267949789967e-001,

4.817536741017152e-001, 4.257792915650725e-001,

124

3.681245526846778e-001, 3.090169943749471e-001,

2.486898871648548e-001, 1.873813145857246e-001,

1.253332335643041e-001, 6.279051952931314e-002,

1.224606353822377e-016, -6.279051952931335e-002,

-1.253332335643043e-001, -1.873813145857248e-001,

-2.486898871648546e-001, -3.090169943749473e-001,

-3.681245526846779e-001, -4.257792915650727e-001,

-4.817536741017154e-001, -5.358267949789968e-001,

-5.877852522924730e-001, -6.374239897486896e-001,

-6.845471059286887e-001, -7.289686274214116e-001,

-7.705132427757894e-001, -8.090169943749473e-001,

-8.443279255020149e-001, -8.763066800438636e-001,

-9.048270524660198e-001, -9.297764858882515e-001,

-9.510565162951535e-001, -9.685831611286310e-001,

-9.822872507286887e-001, -9.921147013144779e-001,

-9.980267284282716e-001, -1.000000000000000,

-9.980267284282716e-001, -9.921147013144779e-001,

-9.822872507286886e-001, -9.685831611286311e-001,

-9.510565162951536e-001, -9.297764858882512e-001,

-9.048270524660196e-001, -8.763066800438634e-001,

-8.443279255020150e-001, -8.090169943749476e-001,

-7.705132427757890e-001, -7.289686274214116e-001,

-6.845471059286883e-001, -6.374239897486896e-001,

-5.877852522924734e-001, -5.358267949789963e-001,

-4.817536741017153e-001, -4.257792915650722e-001,

-3.681245526846779e-001, -3.090169943749476e-001,

-2.486898871648545e-001, -1.873813145857247e-001,

125

126

-1.253332335643038e-001, -6.279051952931326e-002};

double static coe_g[4]={-9.7409e-003,1.0593e-001,-4.5859e-001,1.8338};

static long m=0, k=0;

double dmag, gain_c;

int ref_c=0;

//dynamic gain compensation

dmag =(double) (*mag)/SCALING;

gain_c=dmag*dmag;

gain_c = coe_g[0]*gain_c*dmag+coe_g[1]*gain_c+coe_g[2]*dmag+coe_g[3];

//ref sinusoid

ref_c = (int)(Fs*FSCALING / (* freq)/100);

if (m == ref_c) {

if (k >= 100) k=0;

ref = msin[k] * dmag;

k++;

m=-1;

}

if (m > ref_c) m=-1;

m++;

return gain_c;

}

/* 	 — Observer function

Objective: predict the output of hysteresis

Inputs:

*contr - normalized controller output(v);

gain_c - dynamic gain compensation

*int_y - normalized sensor output(v), 1st state

127

Fs — sampling rate

*safe1 — initialize state of observer

Output:

Fout — hysteresis output

*/

double Observer(double gain_c)

static int x1_old = 0;

static double x2 = 0, Fout = 0,

//e: \xuemei \ backup \ thesis \proposal\ estimate \exp \param.m

coe[5] = { 5.0e-001, 3.587455094129822e-001, -1.478006271299153,

6.483578033886975, -1.696103904526040e+003};

if((*safe1)==1){ 	 //open loop, initialize

x2=Fout=0;

}

//nonlinear part

Fout = Fout+(x2-Fout*fabs(x2)/(*fca)*FSCALING)/Fs;

//linear part

x2 = coe[0]*x2 coe[1]*(*int_y) 	 coe[2]*x1_old +coe[3]*(*contr)/gain_c

coe[4]*Fout;

//iteration

x1_old = *int_y;

return Fout;

}

/* 	 store date

Objective: filter and store data.

inputs:

data1 — Y from A/D converter;

128

data2 - reference generated from computer

* grab1 - control signal

DATA_SIZE - #data stored

NFILTER - #data averaged

-*/

void StoreData(long data1,long data2) {

static long ndata=0,dummy=0,sumd[2]={0,0};

//int NFILTER;

HNFILTER= (int)(10.0*FSCALING /(double) (* freq))+1;

if ((*grab1) == 1) {

if (ndata < DATA_SIZE) {

if (dummy < NFILTER)

sumd[0] = sumd[0] + datal;

sumd[1] = sumd[1] + data2;

dummy++;

}

if (dummy == NFILTER) {

*(int_ptr[0]+ndata) = (long)((double)(sumd[0])/NFILTER);

*(int_ptr[1]+ndata)=(long)((double)(sumd[1])/NFILTER);

ndata++;

dummy = 0;

sumd[0] = sumd[1]=0;

}

else

*check1= (int)(1);

}//endif

else

{

*check1 =(int)(0);

ndata= dummy=0;

sumd[0]=sumd[1]=0;

PID controller

Objective: eliminate drift effect and implement precision control

Inputs:

avg_ref — normalized ref input

avg_y — normalized system output

*ki, *kp, *kd — PI control parameters in interger

SCALING — coefficient to calculate ki and kp

Fs — sampling rate

NSTORE — coeff. to compute control sampling rate

Output:

errc — output of PID controller

*/

double Control(double avg_ref, double avg_y) {

double errc;

static double sumc, err_old = 0;

if ((*ki)==0) sumc=0; 	 //reset integral term

errc = avg_ref-avg_y/8191.0*2047.0;

sumc = sumc (double)(*ki)/SCALING/Fs*NSTORE*errc;

if((sumc>=2047.0) && (errc>0))

sumc = 2047.0;

129

}

}

/*

130

if((sumc<=-2047.0) 	 (errc<0))

sumc = -2047.0;

errc = errc*(*kp)/SCALING sumc (errc-err_old)*(*kd)/SCALING;

err_old = errc;

return errc;

}

/* 	 Filterl function

Objectives: eliminate noise and implement down-sampling

Inputs:

yl — data from A/D converter;

ref — reference sinusoid input(-5 => +5)

Fout — observer output

NSTORE — #data averaged

(*k1a) — coefficient for hysterisis compensation

gain_c — nonlinear scalar factor compensation Outputs:

y_avg — avg. output

*contr — controller output

Note:

set y_avg to be static in order to keep it constant between NSTORE points

*/

double Filterl(int yl,double Fout,double gain_c) {

static long ndummy=0;

static double sumf[3]={0,0,0}, y_avg=0, ref_avg=0, F_avg=0;

// average filter

if (ndummy < NSTORE) {

sumf[0] = sumf[0] 	 (double)yl;

sumf[1] = sumf[1] + ref;

131

sumf[2] = sumf[2] + Fout;

ndummy++;

}

if (ndummy == NSTORE) {

y_avg =sumf[0]/NSTORE;

ref_avg =sumf[1]/NSTORE*2047/4.9976;

F_avg =sumf[2]/NSTORE;

ndummy=0;

sumf[0]= sumf[1]= sumf[2]=0;

}

//controller output

if ((*safe1) == 1) { 	 //open-loop sinusoid with Fs=5KHz

//*contr = (int)(ref*2047.0/4.9976); //test sinusoid

*contr=(int)(ref*2047.0/4.9976*gain_c);//scalar factor compensation

}

else 	 //hysteresis compensation:

//*contr = (int)((ref_avg + (double)(*k1a) / FSCALING * F_avg) *

gain_c);

//hysteresis compensation (*k1a!=0) + PID controller

*contr (int)((Control(ref_avg,y_avg) + (double)(*k1a) / FSCALING

* F_avg) * gain_c);

return y_avg;

}

// 	 main function 	

void main() {

double yf, y_obv, gain_c;

long *int_time, *int_ref;

InitDsp();

set mem. address

//for store data

check1 	 = (int *) CHECK1; //0x12F6

* check1 = (int) (0); //1: data in mem. ready

grab1 	 = (int *) GRAB1; //0x12F8

* grab1 = (int) (0); //1=store;0=reset

safe1 = (int *) SAFE1; //0x12F9

* safe1 = (int) (1); //0=compensated;1=open loop

int_ptr[0] = (long *) MEMORY1_START; //0x1388

int_ptr[1] = (long *) MEMORY2_START; //0x3A98

//for signals

freq 	 = (long *) FREQX; //0x12F5

*freq = (int) (0.05*FSCALING);

int_time = (long *) TIMER; //0x12F7

*int_time = (long) (SCALING*400/Fs*NSTORE);

int_ref = (long *) REFX; //0x1302

*int_ref 	 (int)(0);

contr = (int *) CONTR; //0x1382 control

*contr = (int) (0);

int_y 	 (int *) Y; 	 //0x1383 ReadAdc

*int_y 	 = (int)(0);

mag 	 = (long *) MAGX; //0x1384 mag. of ref.

*mag 	 = (int) (0.0*SCALING);

kd = (long *) KDX; //0x1385

* kd = (int) (0*SCALING);

kp = (long *) KPX; //0x1386

132

/ /

133

* kp = (int) (0*SCALING);

ki = (long *) KIX; //0x1387

* ki = (int) (0*SCALING);

//adjust hysteresis parameters

k1a 	 = (long *) K1_A; //0x1306

*k1a = (int) (0*FSCALING);

fca = (long *) FC_A; //0x1307

*fca = (int) (3.0*FSCALING);

WriteDACs(0,0);

while(1)

*int_y = - ReadAdc(1);

gain_c = Signal(); 	 //output=ref, gain_c

y_obv= Observer(gain_c); // output=F[n]

*int_ref = (long)(ref*2047.0/4.9976);

yf = Filterl(*int_y, y_obv, gain_c);//outputs=avg. *int_y, *contr

WriteDACs((int)(y_obv*2047/4.9976),*contr);

//WriteDAC(*contr,1);

StoreData((long)*int_y, *int_ref);

} //endwhile

}//end of file

C.3 Labview Program

134

Figure C.1 Labview program of hysteresis compensation

Figure C.2 Labview program of hysteresis compensation (continued)

135

Figure C.3 Labview program of hysteresis compensation (continued)

136

APPENDIX D

ADAPTIVE HYSTERESIS COMPENSATION

The following code implements the control strategy of the adaptive hysteresis

observer compensation, where reference input is sinusoid.

Section 1 implements the GUI between the code in DSP memory and Labview.

The program allows the user to change the magnitude and the frequency of the

sinusoid and the PID coefficients, decide when to store the experimental data,

switch between open-loop and closed-loop control strategies, and define the filter

in Labview.

Section 2 implements the real-time control strategies, where average filter

is applied to implement the functions of eliminating background noise and down-

sampling. The code is designed to have the flexibility of switching between open-

loop control, and closed-loop with PID and adaptive hysteresis compensation. The

filtered system output and the reference input are stored.

Section 3 is the graphical programs in Labview. Front Panel shows the signals

and the controlled variables, where pushbutton (unsafe) shows the open-loop control

is chosen. The closed-loop PID control with adaptive hysteresis compensation is

chosen by clicking the pushbutton again(safe will be shown). The experimental

data are uploaded and shown in time and frequency domains.

D.1 Graphical User Interface between DSP and Labview

/* 	 CIN source file — obadp2.c

Objective: implement the connection between the code in DSP memory and Labview

	 */

#include "extcode.h"

#include <stdio.h>

137

138

#include <math.h>

#include <conio.h>

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define GRAB1 0x12F8

#define SAFE1 0x12F9

#define REFX 0x1302

#define CONTR 0x1382

#define Y 0x1383

#define MAGX 0x1384

#define KDX 0x1385

#define KPX 0x1386

#define KIX 0x1387

#define SCALING 500000.

#define FSCALING 5000.

CIN MgErr CINRun(float64 *mag, float64 *freq, float64 *kp, float64 *ki,

float64 *kd, int32 *safe1, float64 *ref, float64 *control, float64 *output, int32 *check,

int32 *grab1);

CIN MgErr CINRun(float64 *mag, float64 *freq, float64 *kp, float64 *ki,

float64 *kd, int32 *safel, float64 *ref, float64 *control, float64 *output, int32 *check,

int32 *grab1) {

long int longv, longh, long';

outp(0x306,0x0); 	 /*page value*/

//Write freq1 to DSP memory

longv = (long)((*freq)*FSCALING);

outpw(0x302, FREQX); 	 /*0x12F5*/

outpw(0x300,longv);

outpw(0x300,longv>> 16);

// read check l from DSP memory

outpw(0x302,CHECK1); 	 /*0x12F6*/

long1 inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv long1 (longh << 16) ;

*check = (int32) (longv);

//Write grab1 to DSP memory

outpw(0x302, GRAB1); 	 /*0x12F8*/

outpw(0x300,*grab1);

outpw(0x300,(*grab1)>>16);

//Write safe1 to DSP memory

outpw(0x302, SAFE1); 	 /*0x12F9*/

outpw(0x300,*safe1);

outpw(0x300,(*safe1)>>16);

//read ref from Dsp memory

outpw(0x302,REFX); 	 /*0x1302*/

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh <<16) ;

*ref = (float64) (longv)/2047*4.9976;

//read control from Dsp memory

outpw(0x302,CONTR); 	 /*0x1382*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh <<16) ;

*control = (float64) (longv)/2047*4.9976;

139

//output

outpw(0x302,Y); /*0x1383*/

long1 = inpw(0x300) 0x0000FFFF;

lough = inpw(0x300) Ox0000FFFF;

longv = long1 (longh << 16);

*output 	 (float64) (longv)/8191*4.99939;

//Write mag. to DSP memory

longv = (long)((*mag)*SCALING);

outpw(0x302, MAGX); 	 /*0x1384*/

outpw(0x300,longv);

outpw(0x300,longv >>16);

//Write kd to DSP memory

longv = (long)((*kd)*SCALING);

outpw(0x302, KDX); 	 /*0x1385*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

//Write kp to DSP memory

longv = (long)((*kp)*SCALING);

outpw(0x302, KPX); 	 /*0x1386*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

//Write ki to DSP memory

longv = (long)((*ki)*SCALING);

outpw(0x302, KIX); 	 /*0x1387*/

outpw(0x300,longv);

outpw(0x300,longv>>16);

return noErr;

140

} //end of file

/* CIN source file - d_observ.c

Objective: upload the experimental data from the DSP memory to Labview

*/

#include "extcode.h"

#include <stdio.h>

#include <math.h>

#include <conio.h>

#define Timer 0x12F7

#define Y 0x1388

#define DATASIZE 5000

#define SCALING 500000

typedef struct {

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hd1;

CIN MgErr CINRun(float64 *Fs, TD1Hd1 Y2);

CIN MgErr CINRun(float64 *Fs, TD1Hd1 Y2) {

long int longv, longh, long1,i;

MgErr err=noErr;

outp(0x306,0x0);

outpw(0x302,Timer);

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh << 16) ;

*Fs = (float64) 400.0*SCALING/longv;

141

142

if (err = NumericArrayResize(fD, 1L, (UHandle *) &Y2, 4*DATASIZE))

goto out;

(*Y2)— >dimSize = 4*DATASIZE;

for (i=0;i<4*DATASIZE;i++) {

outpw(0x302,(Y 	 i));

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh<<16) ;

if (i < 2*DATASIZE)

(*Y2)— >arg1[i]= (float64) (longv)*4.99939/8191.0;

else

(*Y2)— >arg1[i]= (float64) (longv)*4.9976/2047.0;

}

out:

return noErr;

//end of file

D.2 C Source Code for Real-time Operation System (DSP)

/ * 	Adaptive Observer obs_adp2.c 	

Objective:

implement the control strategies of open loop control and

closed-loop with PID and adaptive hysteresis observer compensation

Notes:

Sampling rate of observer Fs = 5kHz

Sampling rate of controller Fsc = 5000/20 = 250Hz (NSTORE = 20)

Sampling rate of storing data Fsd = Fs/NFILTER

Total data stored = Fs/NFILTER/freq*period

NFILTER*freq = 10 => nsample/period = 500

(period = 2 and DATA_SIZE = 1000)

	 _*/

#define TIMPER0 1250

#include <math.h>

#include "d310biox.H"

// 	 - mem. distribution 	 -

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define TIMER 0x12F7

#define GRAB1 0x12F8

#define SAFE1 0x12F9

#define REFX 0x1302

#define CONTR 0x1382

#define Y 0x 1383

#define MAGX 0x1384

#define KPX 0x1386

#define KIX 0x1387

#define MEMORY1_START 0x1388

#define MEMORY2_START 0x3A98

#define DATA_SIZE 1000

#define PI 3.14159265358979

#define SCALING 500000.

#define FSCALING 5000.

#define NSTORE 20

#define NFILTER 100

int * checkl, *grabl, *safel, *contr, *int_y;

143

144

long * int_ptr[2],*mag, *freq,*kp,*ki;

double Fs= (double)50000000/(TIMPER0*8*1),ref

fca=3;

/ * 	 - Signal function

Objective: generate reference sinusoid

Inputs:

(*freq)/FSCALING — frequency of the sinusoid

(*mag) /SCALING — magnitude of the sinusoid

Fs — sampling rate

Outputs:

ref — reference sine wave(between -5 and 5)

gain_c — for compensating dynamic gain

freqd — for calculate hysteresis param

Note: Fs=5KHz,max_freq=50Hz <=Fs/freq=100

*/

double Signal(void) {

= 0,dmag, freqd, k1a=0,

static double msin[100] = { 0, 6.279051952931337e-002,

1.253332335643043e-001, 1.873813145857246e-001,

2.486898871648548e-001, 3.090169943749474e-001,

3.681245526846780e-001, 4.257792915650727e-001,

4.817536741017153e-001, 5.358267949789967e-001,

5.877852522924731e-001, 6.374239897486898e-001,

6.845471059286887e-001, 7.289686274214116e-001,

7.705132427757893e-001, 8.090169943749475e-001,

8.443279255020151e-001, 8.763066800438637e-001,

9.048270524660196e-001, 9.297764858882515e-001,

9.510565162951535e-001, 9.685831611286311e-001,

9.822872507286887e-001, 9.921147013144779e-001,

9.980267284282716e-001, 1.000000000000000,

9.980267284282716e-001, 9.921147013144778e-001,

9.822872507286886e-001, 9.685831611286311e-001,

9.510565162951535e-001, 9.297764858882514e-001,

9.048270524660195e-001, 8.763066800438635e-001,

8.443279255020150e-001, 8.090169943749475e-001,

7.705132427757893e-001, 7.289686274214114e-001,

6.845471059286885e-001, 6.374239897486895e-001,

5.877852522924733e-001, 5.358267949789967e-001,

4.817536741017152e-001, 4.257792915650725e-001,

3.681245526846778e-001, 3.090169943749471e-001,

2.486898871648548e-001, 1.873813145857246e-001,

1.253332335643041e-001, 6.279051952931314e-002,

1.224606353822377e-016, -6.279051952931335e-002,

-1.253332335643043e-001, -1.873813145857248e-001,

-2.486898871648546e-001, -3.090169943749473e-001,

-3.681245526846779e-001, -4.257792915650727e-001,

-4.817536741017154e-001, -5.358267949789968e-001,

-5.877852522924730e-001, -6.374239897486896e-001,

-6.845471059286887e-001, -7.289686274214116e-001,

-7.705132427757894e-001, -8.090169943749473e-001,

-8.443279255020149e-001, -8.763066800438636e-001,

-9.048270524660198e-001, -9.297764858882515e-001,

-9.510565162951535e-001, -9.685831611286310e-001,

-9.822872507286887e-001, -9.921147013144779e-001,

-9.980267284282716e-001, -1.000000000000000,

145

146

-9.980267284282716e-001, -9.921147013144779e-001,

-9.822872507286886e-001, -9.685831611286311e-001,

-9.510565162951536e-001, -9.297764858882512e-001,

-9.048270524660196e-001, -8.763066800438634e-001,

-8.443279255020150e-001, -8.090169943749476e-001,

-7.705132427757890e-001, -7.289686274214116e-001,

-6.845471059286883e-001, -6.374239897486896e-001,

-5.877852522924734e-001, -5.358267949789963e-001,

-4.817536741017153e-001, -4.257792915650722e-001,

-3.681245526846779e-001, -3.090169943749476e-001,

-2.486898871648545e-001, -1.873813145857247e-001,

-1.253332335643038e-001, -6.279051952931326e-002};

double static coe_g[4]={-9.7409e-003,1.0593e-001,-4.5859e-001,1.8338};

static long m=1,k=0;

double gain_c;

int ref_c=0;

//dynamic gain compensation

dmag =(double) (*mag)/SCALING;

gain_c=dmag*dmag;

gain_c=coe_g[0]*gain_c*dmag+coe_g[1]*gain_c+coe_g[2]*dmag+coe_g[3];

//ref sinusoid

freqd=(double)(* freq)/FSCALING;

ref_c = (int)(Fs/freqd/100);

if (m 	 ref_c) {

if (k 	 100) k=0;

ref = msin[k] * dmag;

k++;

m=0;

}

if (m > ref_c) m=0;

m++;

return gain_c;

Observer function

Objective: implement a reduced order observer to predict hysteresis output

Inputs:

contr — normalized controller output(v)

gain_c — dynamic gain compensator

int_y — normalized sensor output(v), 1st state

Fs — sampling rate

safe1 — initialize state of observer

k1a,fca — hysteresis parameters

Output: Fout — hysteresis output

*/

double Observer(double gain_c) {

static int x1_old = 0;

static double x2 = 0, Fout = 0,

coe[5] = {5.0e-001, 3.587455094150691e-001, -1.478006271301299,

6.483578033887466, -1.696103904526040e0003};

coe[4] =-1.541912640478336e-004*k1a;

if((*safe1)==1) { //open loop, initialize

k1a = x1_old = x2 = Fout = 0;

}

//nonlinear part

147

}

/*

Fout = Fout+(x2-Fout*fabs(x2)/fca)/Fs;

//linear part

x2 = coe[0]*x2 + coe[1]*(*int_y) + coe[2]*x1_old +

coe[3]*(*contr) /gain_c+coe[4]*Fout;

//iteration

x1_old = *int_y;

return Fout;

}

/ * 	 adaptive algorithm

Objective: calculate hysteresis parameters Fc, k1

Input: data1 — Y from A/D converter

Outputs: k1a, fca — estimated hysteresis parameters

*/

int Parm(int datal)

static long ndata=0,dummy=0,sumd=0,N=20;

static double avg_y[20], kn = 1.1893e+007, kv = 1.72231e+007;

long double X1[2]={0,0}, X3[2]={0,0};

long n, block;

/ * 	 DFT 	 */

block= (long)(Fs/(N*freqd));

if (ndata < N) {

if (dummy > block){

ndata = dummy = sumd = 0;

}

else if (dummy < block) {

sumd = sumd + datal;

dummy++;

148

149

}

if (dummy == block){

avg_y[ndata] =((double)(sumd)/block);// Y filtered

ndata++;

sumd = dummy = 0;

}

}

if (ndata == N) {

dummy = sumd = ndata=0;

X1[0]=X1[1]=X3[0]=X3[1]=0;

for (n=0; n<N; n++) {

// X1=X1+avg_y(n)*exp(-j*2*PI*n/N);

X1[0]=X1[0]+avg_y[n]*cos(2*PI*n/N);

X1[1]=X1[1]-avg_y[n]*sin(2*PI*n/N);

//X3=X3+avg_y(n)*exp(-j*2*PI*3*n/N);

X3[0]=X3[0]+avg_y[n]*cos(2*PI*3*n/N);

X3[1]=X3[1]-avg_y[n]*sin(2*PI*3*n/N);

}

X1[0], sqrt(X1[0]*X1[0]+X1[1]*X1[1])*2/N;

X3[0] = sqrt(X3[0]*X3[0]+X3[1]*X3[1])*2/1\1;

i* 	 hysteresis parameters

A0=sqrt(hl*h1-36*h3*h3); k1a=kv*mag/A0-kn;

fca=2*k1a*A0^2/(9*pi*kn*h3); 20*log10(h3/h1/mag)>-60

*/

if (dmag<0.1) k1a=0;

else if (Xl[0]>6*X3[0] && X3[0]>0 && X3[0]/X1[0]/dmag>0.001){

X1[1] =sqrt(X1[0]*X1[0]-36*X3[0]*X3[0]);

/ *

X3[1] = k1a+kv*dmag/X1[1]-kn;

if (X3[1]>10){

k1a=X3[1];

fca=fca+2*k1a*X1[1]*X1[1]/(9*PI*X3[0]*kn);

}

}

}

return (int)(X1[0]*2047/4.9976);

}

150

store date

Objective: filter and store data

Inputs:

data1 - Y from A/D converter

data2 - reference generated from computer

grab1 - control signal from "pi2.vi"

DATA_SIZE - #data stored

NFILTER - #data averaged

*/

void StoreData(long data1,long data2) {

static long ndata=0,dummy=0,sumd[2]={0,0};

if ((*grab1) == 1){

if (ndata < DATA_SIZE){

if (dummy < NFILTER){

sumd[0] = sumd[0] + data1;

sumd[1] = sumd[1] + data2;

dummy++;

if (dummy == NFILTER) {

*(int_ptr[0]+ndata) .(long)((double)(sumd[0])/NFILTER);

*(int_ptr[1]+ndata) =(long)((double)(sumd[1])/NFILTER);

ndata++;

sumd[0]=--sumd[1] ,dummy = 0;

}

}

else

*check1= (int)(1);

1//endif

else {

*check1 =(int)(0);

ndata= dummy=0;

sumd[0], sumd[1]=0;

}

}

151

PI controller/*

Objective: implement PI control which is used to eliminate steady state error

Inputs:

avg_ref - normalized ref input

avg_y - normalized system output

ki,*kp - PI control parameters in interger

SCALING- coefficient to calculate ki and kp

Fs - sampling rate

NSTORE- coeff. to compute control sampling rate

Output: errc

double Control(double avg_ref, double avg_y) {

double errc;

static double sumc;

if ((*ki)==0) sumc=0; //reset integral term

errc = avg_ref-avg_y/8191.0*2047.0;

sumc = sumc + (double)(*ki)/SCALING/Fs*NSTORE*errc;

	

if((sumc >=2047.0) 	 (errc > 0))

sumc = 2047.0;

	

if((sumc <=-2047.0) 	 (errc < 0))

sumc = -2047.0;

errc = errc*(*kp)/SCALING + sumc;

return errc;

}

	/* Filterl function

Objective:

implement average filter to eliminate background noise and down-sampling

Inputs:

yl — data from A/D converter

ref — reference input from "Signal"(-5 => +5)

Fout — observer output

NSTORE — data averaged

k1a — coefficient for hysteresis compensation

gain_c — dynamic gain compensation

Outputs:

y_avg — average output

contr — controller output

152

153

Note: set y_avg to be static in order to keep it constant between NSTORE points

*/

double Filter1(int y1,double Fout,double gain_c) {

static long ndummy=0;

static double sumf[3]={0,0,0},y_avg=0, ref_avg=0 ,F_avg=0;

// average filter

if (ndummy < NSTORE){

sumf[0] = sumf[0] + (double)y1;

sumf[1] = sumf[1] + ref;

sumf[2] = sumf[2] + Fout;

ndummy++;

}

if (ndummy 	 NSTORE) {

y_avg =sumf[0]/NSTORE;

ref_avg =sumf[1]/NSTORE*2047/4.9976;

F_avg = sumf[2]/NSTORE;

ndummy=0;

sumf[0] , sumf[1] = sumf[2]=0;

}

//open-loop control with sampling rate Fs=5KHz

if ((*safe1) == 1) {

*contr = (int)(ref*2047.0/4.9976); //test sinusoid

//scale factor compensation

//*contr = (int)(ref*2047.0/4.9976*gain_c);

}

//hysteresis compensation

else

154

//*contr = (int)((ref_avg + 2.378181665153533e-005 * k1a * F_avg)

* gain_c);

//with PID control, *k1a = 0 => PID controller only

*contr = (int)((Control(ref_avg,y_avg) + 2.378181665153533e-005 *

k1a * F_avg) * gain_c);

return y_avg;

}

// 	

void main() {

double yf, y_obv, gain_c;

long *int_time, *int_ref;

int harm;

InitDsp();

ii 	 set mem. address

//for store data

check1 = (int *) CHECK1; 	 //0x12F6

* check1 = (int *) (0); 	 //1=data in mem. ready

grab1 = (int *) GRAB1; 	 //0x12F8

* grab1 = (int) (0); 	 //1=store;0=reset

safe1 = (int *) SAFE1; 	 //0x12F9

* safe1 = (int) (1); 	 //0=compensated;1=open loop

int_ptr[0] = (long *) MEMORY1_START; 	 //0x1388

int_ptr[1] = (long *) MEMORY2_START; 	 //0x3A98

//for signals

freq = (long *) FREQX; 	 //0x12F5

*freq = (int) (0.1*FSCALING);

int_time = (long *) TIMER; 	 //0x12F7

main function

*int_time = (long) (SCALING*400/Fs*NSTORE);

int_ref = (long *) REFX; 	 //0x1302

*int_ref = (int)(0);

contr = (int *) CONTR; 	 //0x1382 control

*contr = (int) (0);

int_y = (int *) Y; 	 //0x1383 ReadAdc

*int_y = (int)(0);

mag = (long *) MAGX; 	 //0x1384 mag. of ref.

*mag = (int) (0.0*SCALING);

kp = (long *) KPX; 	 //0x1386

* kp = (int) (0*SCALING);

ki = (long *) KIX; 	 //0x1387

* ki = (int) (0*SCALING);

WriteDACs(0,0);

while(1) {

*int_y = - ReadAdc(1);

gain_c = Signal(); 	 //outputs = ref,dmag freqd, gain_c

harm = Parm(*int_y); 	 //outputs = k1a, fca

y_obv= Observer(gain_c); 	 //output = F[n]

*int_ref = (long)(ref*2047.0/4.9976);

/* 	 dither compensation 	 */

yf=Filter1(*int_y, y_obv, gain_c); //outputs=avg. *int_y, *contr

//WriteDACs((int)(*int_ref),*contr);

WriteDAC(*contr,1);

StoreData((long)*int_y, *int_ref);

//endwhile

} //end of file

155

156

D.3 Labview Program

Figure D.1 Labview program of adaptive hysteresis compensation

157

Figure D.2 Labview program of adaptive hysteresis compensation (continued)

Figure D.3 Labview program of adaptive hysteresis compensation (continued)

APPENDIX E

FINE MOTION CONTROL AND
TIME DIVISION MULTI-CONTROLLER

The following code implements the system control in two axes at the same time.

Fine motion control is to study the system's resolution, and time division multi-

controller is to implement fast transient response, low vibration, and zero steady

state error.

Section 1 implements the GUI between the code in DSP memory and Labview.

The program allows the user to input the magnitudes and frequencies of the input

signals and the coefficients of PI-controller, and decide when to store the exper-

imental data. Through the interface, the experimental data stored in the DSP

memory are uploaded and shown in the Labview.

Section 2 implements the real-time control strategies. For time division multi-

controller, the code is designed to have the flexibility of choosing open-loop control

with input square or input shaper, and closed-loop PI-control with input square or

input shaper. The filtered system output and the reference input are stored.

Section 3 is the graphical programs in Labview. Front Panel shows the signals

and the controlled variables. Block Diagram is the code to implement the functions.

E.1 Graphical User Interface between DSP and Labview

/* 	 CIN source file pi2m.c 	 —

Objective: implement the connection between the code in DSP memory and Labview

 */

#include "extcode.h"

#include <stdio.h>

#include <math.h>

#include <conio.h>

159

160

// 	 memory address distribution 	 —

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define GRAB1 0x12F8

#define FREQY 0x12FB

#define MAGY 0x12FC

#define CONTY 0x12FD

#define OUTPUTY 0x12FE

#define KPY Ox12FF

#define KIY 0x1300

#define REFY 0x1303

#define REFX 0x1302

#define CONTX 0x1382

#define OUTPUTX 0x1383

#define MAGX 0x1384

#define KPX 0x1386

#define KIX 0x1387

#define SCALING 	 500000

#define FSCALING 	 5000

#define MASK 0x0000FFFFL

CIN MgErr CINRun(float64 *magx, float64 *kpx, float64 *kix, float64 *freqx,

float64 *magy, float64 *kpy, float64 *kiy, float64 *freqy, float64 *refx, float64

*outputx, float64 *controlx, float64 *refy, float64 *outputy, float64 *controly, int32

*check, int32 *varl4);

CIN MgErr CINRun(float64 *magx, float64 *kpx, float64 *kix, float64 *freqx,

float64 *magy, float64 *kpy, float64 *kiy, float64 *freqy, float64 *refx, float64

161

*outputx, float64 *controlx, float64 *refy, float64 *outputy,float64 *controly, int32

*check, int32 *varl4) {

long int longv, longh, long1;

outp(0x306,0x0); 	 /*page value*/

//Write freqx to DSP memory

longv = (long int)((*freqx)*FSCALING);

outpw(0x302, FREQX); 	 /*0x12F5*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

// read check1 from DSP memory

outpw(0x302,CHECK1); 	 /*0x12F6*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*check = (int32) (longv);

//Write grab1 to DSP memory

outpw(0x302, GRAB1); 	 /*0x12F8*/

outpw(0x300,*varl4);

outpw(0x300,(*var14)>>16);

//Write freqy to DSP memory

longv = (long int)((*freqy)*FSCALING);

outpw(0x302, FREQY); /*0x12FB*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//Write magy to DSP memory

longv = (long int)((*magy)*SCALING);

outpw(0x302, MAGY); 	 /*0x12FC*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//read control_y from Dsp memory

outpw(0x302,CONTY); 	 /*0x12FD*/

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*controly = (float64) (longv)/2047*4.9976;

//read output_y from DSP

outpw(0x302,OUTPUTY); 	 /*0x12FE*/

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh << 16);

*outputy = (float64) (longv)/8191*4.99939;

//Write kpy to DSP memory

longv = (long int)((*kpy)*SCALING);

outpw(0x302, KPY); 	 /*0x12FF*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//Write kiy to DSP memory

longv = (long int)((*kiy)*SCALING);

outpw(0x302, KIY); 	 /*0x1300*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//Read refx from DSP memory

outpw(0x302,REFX); 	 /*0x1302*/

long1 = inpw(0x300) & 0x0000FFFF;

162

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh << 16);

*refx = (float64) (longv)/2047*4.9976;

//Read refy from DSP memory

outpw(0x302,REFY); 	 /*0x1303*/

long1 = inpw(0x300) & 0x0000FFFF;

longh inpw(0x300) & 0x0000FFFF;

longv = long1 (longh << 16);

*refy = (float64) (longv)/2047*4.9976;

//read control_x from Dsp memory

outpw(0x302,CONTX); 	 /*0x1382*/

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*controlx = (float64) (longv)/2047*4.9976;

//read output_x from DSP

outpw(0x302,OUTPUTX); 	 /*0x1383*/

long1 = inpw(0x300) & Ox0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh << 16);

*outputx = (float64) (longv)/8191*4.99939;

//Write magx to DSP memory

longv = (long int)((*magx)*SCALING);

outpw(0x302, MAGX); 	 /*0x1384*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//Write kpx to DSP memory

163

164

longv = (long int)((*kpx)*SCALING);

outpw(0x302, KPX); 	 /*0x1386*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

//Write kix to DSP memory

longv = (long int)((*kix)*SCALING);

outpw(0x302, KIX); 	 /*0x1387*/

outpw(0x300,longv);

outpw(0x300,(longv)>>16);

return noErr;

//end of file

/* 	 - CIN source file data_s.c 	

Objective: upload the experimental data stored in the DSP memory when ready.

Outputs:

sampling_freq — sampling rate

Y2 — signal to be plotted

*/

#include "extcode.h"

#include <stdio.h>

#include <math.h>

#include <conio.h>

#define Timer 0x12F7

#define Y 0x1388

#define MASK 0x0000FFFFL /* Should this be a long? */

#define DATASIZE 5000

#define SCALING 500000.

typedef struct {

165

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(float64 *Sampling_freq, TD1Hd1 Y2);

CIN MgErr CINRun(float64 *Sampling_freq, TD1Hd1 Y2) {

long int longv, longh, long1,i;

MgErr err=noErr;

outp(0x306,0x0);

outpw(0x302,Timer);

long1 = inpw(0x300) & 0x0000FFFF;

longh = inpw(0x300) & 0x0000FFFF;

longv = long1 (longh<<16) ;

*Sampling_freq = (float64) 400.0*SCALING/longv;

if (err = NumericArrayResize(fD, 1L, (UHandle *) (0(2, 8*DATASIZE))

goto out;

(*Y2)->dimSize = 8*DATASIZE;

for (i=0;i<8*DATASIZE;i++) {

outpw(0x302,(Y 	 i));

long1 = inpw(0x300) 0x0000FFFF;

longh = inpw(0x300) 0x0000FFFF;

longv = long1 (longh<<16) ;

(*Y2)->arg1[i]-=- (float64) (longv)/8191*4.99939;

}

out:

return noErr;

//end of file

/* shadpi5.c

E.2 C Source Codes for Real-time Operation System (DSP)
E.2.1 Time Division Multi-Controller

166

Objective: implement the strategy of time division multi-controller

Note: Check the maximum sampling rate.

*/

#define TIMPER0 0x138

#include <math.h>

#include "d310biox.H"

// 	 memory address distribution —

#define CHECK1 0x12F6

#define TIMER 0x12F7

#define GRAB1 0x12F8

#define MAGY 0x12FC

#define CONTY 0x12FD

#define OUTPUTY 0x12FE

#define KPY 0x12FF

#define KIY 0x1300

#define FREQX 0x12F5

#define CONTX 0x1382

#define OUTPUTX 0x1383

#define MAGX 0x1384

#define KPX 0x1386

#define KIX 0x1387

#define MEMORY1_START 0x1388

#define MEMORY2_START 0x61A8

// - table of constant

#define DATA_SIZE 20000

#define PI 3.14159265358979

#define SCALING 500000.

#define FSCALING 5000.

#define NSAMPLES 40

#define NSTORE 1

/* 	 global variables 	

Objective: use global variables to increase the program's speed

	 */

int * check1, *grabl, *cont[2], delayl[2], delayh[2];

long * int_ptr[2],*output1[2],*kp[2], *ki[2],*mag[2];

double Fs = (double)50000000/(TIMPER0*8*2),dref[2],

poly[2] [4] ={0,0,0,0,-9. 7409e-003,1.0593e-001,-4.5859e-001,1.8338},

Mph[2]={ 1.5419,7.0e-001},Mpl[2] ,{8.8649e-001,7.0e-001},

tdelayh[2]={0,9.2417e-004}, tdelayl[2]={0,9.2417e-004},

// tdelayh[2]={0,0}, tdelayl[2]={0,0},

gshaper[2]={1,1}, Alh[2],A2h[2],A3h[2],A11[2],A21[2],A31[2];

/* 	 - Input shaping 	 —

Objective: implement ZVD shaper signal

Inputs:

nsamples — total #samples in half square period

recurrent — current sample time

mag[2] — amplitude of square wave

poly[2][4] — coefficients. of nonlinear scalar factor x and y axis

gshaper[2] — nonlinear scalar factor compensator

Outputs:

gshaper[2] — used in PI control to obtain reference

167

168

dref[2] - double shaper signals

*/

void Shaperf(long nsamples,long ncurrent,int channel) {

double dmag;

dmag= (double)(*mag[channel])/S CA LING;

gshaper[channel]=dmag*dmag;

gshaper[channel] =poly[channel][0]*gshaper[channel]*dmag + poly[channel][1]

*gshaper[channel]+poly[channel][2]*dmag +poly[channel][3];

dref[channel]=gshaper[channel]*dmag*2;

if (ncurrent < delayh[channel])

dref[channel]= dref[channel]*(Alh[channel]-0.5);

else if (ncurrent < (2*delayh[channel]))

dref [channel] = dref[channel]*(Alh[channel]+A2h[channel]-0.5);

else if (ncurrent < nsamples)

dref[channel]=0.5*dref[channel];

else if (ncurrent < (delayl[channel] + nsamples))

dref[channel] = dref[channel]*(A31[channel]+A21[channel]-0.5);

else if (ncurrent < (2*delayl[channel]+ nsamples))

dref [channel] = dref[channel]*(A31[channel]-0.5);

else

dref[channel]= -0.5*dref[channel];

}//endif

/* 	 store data 	

Objective: filter and store data.

Inputs:

data1 - Y from A/D converter

169

data2 - reference generated from computer

grab1 - control signal from "pi2.vi"

DATA_SIZE - #data stored

NSTORE - #data averaged

void StoreData(void)

static long ndata=1,ndummy=0,sumf[2]={0,0};

if ((*grab1) == 1) {

if (ndata 	 SIZE/NSTORE) {

if (ndummy < NSTORE)

sumf[0] = sumf[0] + (*output1[0]);

sumf[1] = sumf[1] + (*outputl[1]);

ndummy++;

}

if (ndummy == NSTORE) {

// Y filtered:

*(int_ptr[0]+ndata) =(long)((double)(sumf[0])/NSTORE);

*(int_ptr[1]+ndata) =(long)((double)(sumf[1])/NSTORE);

ndata++;

ndummy=1;

sumf[0]=(*output1[0]);

sumf[1]= (*output 1 [1]) ;

}

}

else

*check1= (int)(1);}//endif

*/

else {

*check1 =(int)(0);

ndata=0;

170

PI controller

Objective: implement PI-control

Inputs:

refc — reference signal

yc — system output or DSP input from A/D converter

(filtered — *output 1 [2] ; without filtered — input [2])

channel — the channel from which yc come from

Fs/NSAMPLES— sampling rate used in computing I-control

Output:

errc — control output

*/

double Plcontrol(double refc,long yc, int channel) {

double dyc, errc;

static double sumc[2]={0,0};

//reset integral term:

if ((*ki[channel])==0) sumc[channel]=0;

dyc =(double)(yc)*6.10351e-004;

errc = refc-dyc;

sumc[channel] = sumc[channel]

(double)(*ki[channel])/SCALING/(Fs/NSAMPLES)*errc;

if((sumc[channel]>=4.9976) 	 (errc>0))

sumc[channel] = 4.9976;

171

if((sumc[channel]<=-4.9976) && (errc<0))

sumc[channel] = -4.9976;

errc = errc*(*kp[channel])/SCALING sumc[channel];

return errc;

}

/* 	 - controller (shaper + filter PI)

Objective: generate controller signals

Inputs:

square_c — current sampling time

totaln— total sampling number in half square period

input— system output or A/D input signals

dref— shaping reference

Outputs:

*output1[2] — data to be stored;

*cont[2] — control signals

Notes:

ki=kp=0, input shaping + average steady state signal.

open-loop control: PI control-> "dcon[2]" = constant,

shaper "dref[2]" = various

closed-loop control: PI control-> "dcon[2]" = various,

shaper "dref[2]" = constant

	 */

void Control2(long square_c,long totaln, int input, int channel) {

static long pi_c[2]={0,0}, sumi[2]={0,0};

static int dcont[2]={0,0};

if ((square_c < 2*delayh[channel]) (square_c >= totaln 	 square_c <

totaln+2*delayl[channel]))

172

*output1[channel] , (long)input;

else if ((square_c == 2*delayh[channel])

(square_c == totaln+2*delayl[channel])) {

*output 1 [channel] = (long) input;

pi_c[channel] = sumi[channel]=0;

}

else {

if (pi_c[channel] < NSAMPLES) {

sumi[channel] = sumi[channel]+input;

pi_c[channel]++;

}

if (pi_c[channel] == NSAMPLES) {

*output1[channel] = (long)(sumi[channel]/NSAMPLES);

dcont [channel] = (int) (PIcontrol(dref[channel] /gshaper [channel] ,

*output1[channel],channel)*409.5966);

sumi[channel] = input;

pi_c[channel]=1;

}

}

*cont [channel] = (int) (dref[channel] *409.5966) + dcont [channel] ;

Main() function

void main() {

int input [2];

long i, *int_time, counter, *freq;

InitDsp();

	 set memory address

}

/*

//for store data

check1 = (int *) CHECK1; 	 //0x12F6

* check1 = (int) (0); 	 //1: data in mem. ready

int_time = (long *) TIMER; 	 //0x12F7

* int_time = (long)) (SCALING*400/Fs*NSTORE);

grab1 = (int *) GRAB1; 	 //0x12F8

* grab1 	 (int) (0); 	 //1=store data; 0=reset

int_ptr[0] = (long *) MEMORY1_START;

int_ptr[1] = (long *) MEMORY2_START;

//for main()

mag[1] = (long *) MAGY; 	 //0x12FC

* mag[1] = (int) (0*SCALING);

cont[1] = (int *) CONTY; 	 //0x12FD

output1[1] = (long *) OUTPUTY; 	 //0x12FE

kp[1] = (long *) KPY; 	 //0x12ff

* kp[1] = (int) (0*SCALING);

ki[1] = (long *) KIY; 	 //0x1300

* ki[1] = (int) (0*SCALING);

freq = (long *) FREQX; 	 //0x12F5

* freq = (int) (1.0*FSCALING);

mag[0] = (long *) MAGX; 	 //0x1384

* mag[0] = (int) (0*SCALING);

cont[0] = (int *) CONTX; 	 //0x1382

output1[0] = (long *) OUTPUTX; 	 //0x1383

kp[0] = (long *) KPX; 	 //0x1386

* kp[0] = (int) (0*SCALING);

ki[0] = (long *) KIX; 	 //0x1387

173

* ki[0] = (int) (0*SCALING);

	 set shaper parameters 	

for (i=0;i<=1;i++) {

A1h[i]= 1/(1+2*Mph[i]+Mph[i]*Mph[i]);

A2h[i] = 2*Mph[i]/(1+2*Mph[i]+Mph[i]*Mph[i]);

A3h[i]=1-A1h[i]-A2h[i];

A1l[i]= 1/(1+2*Mpl[i]+Mpl[i]*Mpl[i]);

A21[i] = 2*Mpl[i]/(1-1-2*Mpl[i]+Mpl[i]*Mpl[i]);

A31[i]=1-A1l[i]-A21[i];

delayh[i] = (int)(tdelayh[i]*Fs);

delayl[i] = (int)(tdelayl[i]*Fs);

}

// 	

i=0;

WriteDACs(0,0);

counter = (long)(Fs*FSCALING/2/(*freq)); 	 //half period

while(1) {

input[0] = ReadAdc(0);

counter = (long)(Fs*FSCALING/2/(*freq)); 	 //half period

if (i>=2*counter) i=0;

Shaperf(counter,i 3 0); 	 //output= double dref[0],gshaper[0]

/* 	 - 1. Open-loop control

tdelay =0 => square input (mag=gshaper*(*mag))

tdelay!=0 => shaper input (mag=gshaper*(*mag))

NSTORE =1 => without average. filter

*/

174

/*

175

*cont[0] = (int)(dref[0]*2047/4.9976);

*output1[0] = (long)input[0];

input[1] = ReadAdc(1);

Shaperf(counter,i,1); 	 //output= double dref[1],gshaper[1]

*cont[1] = (int)(dref[1]*2047/4.9976);

WriteDACs(*cont[0],*cont[1]);

output1[1] = (long)input[1];

*/

/ * 	

kp=ki=0:

tdelay =0 => square(mag=(*mag))+average

tdelay!=0 => square(mag=(*mag))+average when t>2*tdelay

*/

/ *

dref[0] =(double)(*mag[0])/SCALING; 	 //square wave — start

if (i >= counter) 	 dref[0] = - dref[0]; 	 //square wave — end

//average: output=*cont[0],*output1[0]

Control2(i,counter,input[0],0);

input[1] 	 ReadAdc(1);

dref[1] =(double)(*mag[1])/SCALING;

if (i >= counter) 	 dref[1] = - dref[1];

Control2(i,counter,input[1],1); 	 //output=*cont[1], *output1[1]

WriteDACs(*cont[0],*cont[1]);

*/

/* 	 3. closed-loop control

ki=kp=0 => shaper + average

ki=kp=0; tdelay=0 => square(mag=gshaper*(*mag)) + average

2. open loop + average

176

ki=kp!=0; tdelay=0 => square +pi+ average

ki=kp!=0; tdelay!=0 => shaper +pi+ average

*/

Control2(i,counter,input[0],0); 	 lloutput=*cont[0], *output 1 [0]

input[1] = ReadAdc(1);

Shaperf(counter,i,1); 	 //output= double dref[1],gshaper[1]

Control2(i,counter,input[1],1);

WriteDACs(*cont[0],*cont[1]);

StoreData();

i++;

} //endwhile

} //end of file

//output=*cont[1], *output1[1]

E.2.2 Fine Motion Control

/ * 	 fine motion control (pifine)

Objective: implement fine motion control to study the system's resolution

Notes:

Check the frequency of the reference sinusoid, which will be far from the expected

value if the sampling rate is too big to be implemented

Fs=5000Hz, Fs_pi=5000/NSTORE=5000/100=50Hz

#data_stored = 2*NMAG*NSAMPLES=10000 (per signal);

total time=10000/50=200sec

*/

#define TIMPER0 0x271

#include <math.h>

#include"d310biox.H"

177

// 	 - mem. distribution —

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define TIMER 0x12F7

#define GRAB1 0x12F8

#define MAGY 0x12FC

#define CONTY 0x12FD

#define OUTPUTY 0x12FE

#define KPY 0x12FF

#define KIY 0x1300

#define REFY 0x1303

#define REFX 0x1302

#define CONTX 0x1382

#define OUTPUTX 0x1383

#define MAGX 0x1384

#define KPX 0x1386

#define KIX 0x1387

#define MEMORY1_START 0x1388

#define MEMORY2_START 0x61A8

#define DATA_SIZE 10000

#define PI 3.14159265358979

#define SCALING 500000.

#define NMAG 10

#define NSAMPLES 500

#define NSTORE 100

int * checkl, *grab1,*cont[2];

long *output[2], * int_ptr[2], *kp[2], *ki[2];

double Fs= (double)50000000.0/(TIMPER0*8*2),refs[2];

/ * 	 Magref function 	

Objective: generate stair triangle signal

Inputs:

NMAG - # amplitude level

mrefl, mref2 - maximum magnitude of the signals in x and y axes

i - current amplitude loop => generate the current amplitude

check1 - reset D/A signal when finish

Output:

refs[2] - ref. in x, y axis

*/

void Magref(int i,long int mrefl,long int mref2) {

double indexl;

if (i<=NMAG) index1=(double) i;

else

indexl = (double)(NMAG*2-i);

refs[0] =(double)(mrefl)/SCALING*(indexl/NMAG)*(1-*checkl);

refs[1] =(double)(mref2)/SCALING*(indexl/NMAG)*(1-*checkl);

StoreData function

Objective: store data

Inputs:

y1,y2 - Y from A/D converter

grab1 - I: acquire data; 0: reset counter

DATA_SIZE - #data stored

178

}

/*

void StoreData(long y1,long y2) {

static long ndata=1;

if ((*grab1) == 1) {

if (ndata <=DATA_SIZE) {

*(int_ptr[0]+ndata) = yl;

*(int_ptr[1]+ndata) = y2;

ndata++;

}

else

*checkl= (int)(1);

}//endif

else {

*check1 =(int)(0);

ndata=0;

}

Plcontrol function 	

Objective: implement PI-control

Inputs:

refs - reference signal

yc - system response or DSP input

(filtered - *output[2]; without filtered - input[2])

channel - channel of A/D converter

Fs/NSTORE - sampling freq. used to compute I-control

Output:

control - output of PI-controller

	 */

int Plcontrol(long yc, int channel) {

179

}

/*

180

double errc;

static double sumc[2]={0,0};

int control;

errc = refs[channel]- 4.99939/8191.0*yc;

if ((*ki[channel])==0) sumc[channel]=0; 	 //reset integral term

sumc[channel] = sumc[channel] 	 (double)(*ki[channel]) / SCALING /

Fs * NSTORE * errc;

if((sumc[channel]>=4.9976) && (errc>0))

sumc[channel] = 4.9976;

if((sumc[channel]<=-4.9976) 	 (errc<0))

sumc[channel] = -4.9976;

control = (int)(2047./4.9976 * (errc * (*kp[channel]) / SCALING +

sumc[channel]));

return control;

}

/ * 	 - Control2 function

Objectives: implement PI-control with down-sampling

Inputs:

input — system response or A/D input signals

Channel — channel of A/D converter

outputs:

output1[2] — filtered system response

cont[2] — control signals

	 */

void Control2(int input, int channel) {

static long pi_c[2]={0,0}, sumi[2]={0,0};

if (pi_c[channel] < NSTORE) {

sumi[channel] = sumi[channel]+input;

pi_c[channel]++;

}

if (pi_c[channel] == NSTORE) {

*output[channel] = (long)(sumi[channel] /NSTORE);

*cont[channel]=PIcontrol(*output[channel],channel);

sumi[channel]= input;

pi_c[channel]=1;

if(channel == 1)

StoreData(*output[0],*output[1]);

}

}

/* 	 Main() function 	 */

void main() {

int i, k, *freqx, input[2];

long int *mag[2], *intlime, *ref[2];

InitDsp();

	 set mem. address

//for store data

check1 = (int *) CHECK1; 	 //0x12F6

* check1 = (int) (0); 	 //1: data in mem. ready

grab1 = (int *) GRAB1; 	 //0x12F8

* grab1 = (int) (0); 	 //1 store data

int_ptr[0] = (long *) MEMORY1_START; 	 //0x1388 store yl

int_ptr[1] = (long *) MEMORY2_START; 	 //0x2710 store refl

//for main()

freqx = (int *) FREQX; 	 //0x12F5

181

182

* freqx = (int) (0); 	 //0: reset

int_time = (long *) TIMER; 	 //0x12F7

*int_time = (long) (SCALING*400/Fs*NSTORE); 	 //Ts<10

cont[0] = (int *) CONTX; 	 //0x1382 x-controller

*cont[0] = 0;

output[0] = (long *) OUTPUTX; 	 //0x1383 yresponse

mag[0] = (long int *) MAGX; 	 //0x1384 p-p ref.

* mag[0] = (int) (0.0*SCALING);

ref[0] = (long *) REFX; 	 //0x1302 refx

kp[0] = (long int *) KPX; 	 //0x1386

* kp[0] = (int) (0.0*SCALING);

ki[0] = (long int *) KIX; 	 //0x1387

* ki[0] = (int) (0.0*SCALING);

cont[1] = (int *) CONTY; 	 //0x12FD y-controller

*cont[1] = 0;

output[1] = (long *) OUTPUTY; 	 //0x12fe ReadAdc

mag[1] = (long int *) MAGY; 	 //0x12fc p-p ref.

* mag[1] = (int) (0.0*SCALING);

ref[1] = (long *) REFY; 	 //0x1303 refx

kp[1] = (long int *) KPY; 	 //0x12fF

* kp[1] = (int) (0.0*SCALING);

ki[1] = (long int *) KIY; 	 //0x1300

* ki[1] = (int) (0.0*SCALING);

WriteDACs(0,0);

while(1) {

for (i=1;i<=NMAG*2;i++){

// 	 test magnitude of ref sinusoid 	 —

// i=NMAG, mag. of ref. Sinusoid = max

//i=NMAG;

//if (i==NMAG){

/ /
Magref(i,*mag[0],*mag[1]); 	 //double refs[2]

*ref[0]=(long)(refs[0]*2047/4.9976);

*ref[1] = (long)(refs[1]*2047/4.9976);

for (k=0;k<NSAMPLES*NSTORE;k++) {

input[0] =(long) ReadAdc(0);

Control2(input[0],0); 	 Houtput=*cont[0],*output[0]

if((*freqx)==0){

k=NSAMPLES;

i=0;

}

input[1] =(long) ReadAdc(1);

Control2(input[1],1); 	 Houtput=*cont[1],*output[1]

WriteDACs(*cont[0],*cont[1]);

//test ref. signal

//WriteDACs((short)(*ref[0]),(short)(*ref[1]));

//test pi control

//WriteDACs((short)(*ref[0]),*cont[0]);

//endfor

} Hendfor

} //endwhile

// end of file

7* 	 PI control with sinusoid ref. (pi2sine.c)

#define TIMPER0 0x30D4

183

#include <math.h>

#include"d310biox.H"

// 	 - mem. distribution 	

#define FREQX 0x12F5

#define CHECK1 0x12F6

#define TIMER 0x12F7

#define GRAB1 0x12F8

#define FREQY 0x12FB

#define MAGY 0x12FC

#define CONTY 0x12FD

#define OUTPUTY 0x12FE

#define KPY 0x12FF

#define KIY 0x1300

#define REFY 0x1303

#define REFX 0x1302

#define CONTX 0x1382

#define OUTPUTX 0x1383

#define MAGX 0x1384

#define KPX 0x1386

#define KIX 0x1387

#define MEMORYLSTART 0x1388

#define MEMORY2_START 0x3A98

#define MEMORY3_START 0x61A8

#define MEMORY4_START 0x88B8

#define DATA_SIZE 5000

#define PI 3.14159265358979

#define SCALING 500000.

184

185

#define FSCALING 5000

int * checkl, *grabl;

double refs[2];

long * int_ptr[4];

double Fs= (double)50000000.0/(TIMPER0*8*2);

/* 	 StoreData function 	

Objective: store data

inputs:

y1,y2 - Y from A/D converter

grab1 - control signal from "pi2.vi"

DATA_SIZE - #data stored

	 */

void StoreData(long y1,long y2) {

static long int data_count=0;

if ((*grab1) == 1) {

if (data_count < 2*DATA_SIZE) {

*(int_ptr[0]+data_count) = yl;

*(int_ptr[1]+data_count) = (long)(refs[0]*8191.0/4.99939);

*(int_ptr[2]+data_count) = y2;

*(int_ptr[3]+data_count) = (long)(refs[1]*8191.0/4.99939);

data_count++;

}

else

*check1= (int)(1);

}//endif

else {

*check1 =(int)(0);

data_count=0;

} / /endelse

Plcontrol function

Objective: implement PI-control

Inputs:

refc — reference signal

yc — system output or DSP input

(filtered — *output[2]; 	 without filtered — input[2])

channel — from which yc comes

Fs — sampling rate

kic, kpc — coefficients of PI controller

Output: control

*/

int Control(double refc,long yc, long kic,long kpc,int channel) {

double errc;

static double sumc[2]={0,0};

int control;

if (kic==0) sumc[channel]=0; //reset integral term

errc = refc- 4.99939/8191.0*yc;

sumc[channel] = sumc[channel] (double)kic/SCALING/Fs*errc;

if((sumc[channel]>=4.9976) 	 (errc>0))

sumc[channel] = 4.9976;

if((sumc[channel]<=-4.9976) 	 (errc<0))

sumc[channel] = -4.9976;

control = (int)(2047./4.9976*(errc*kpc/SCALING 	 sumc[channel]));

return control;

186

/*

187

}

/* 	 Main() function 	 */

void main() {

int n, m, *cont[2];

long *mag[2], *freq[2], *int_time, *kp[2], *ki[2], count[2],

*output[2], *ref[2];

InitDsp();

//for store data

check1 = (int *) CHECK1; 	 //0x12F6

* check1 = (int) (0); 	 //1: data in mem. ready

grab1 = (int *) GRABl; 	 //0x12F8

* grab1 = (int) (0); 	 //1 store data

int_ptr[0] = (long *) MEMORY1_START; 	 //0x1388 store y in x-axis

int_ptr[1] = (long *) MEMORY2_START; 	 //0x3A98

int_ptr[2] = (long *) MEMORY3_START; 	 //0x61A8 store y in y-axis

int_ptr[3] = (long *) MEMORY4_START; 	 //0x88B8

//for main()

int_time = (long *) TIMER; 	 //0x12F7

*int_time = (long) (SCALING*400/Fs); 	 //Ts<10

// x_direction

freq[0] = (long *) FREQX; 	 //0x12F5

* freq[0] 	 (int) (1.0*FSCALING); 	 //1: data in mem. ready

cont[0] = (int *) CONTX; 	 //0x1382 x-controller

*cont[0] = 0;

output[0] = (long *) OUTPUTX; 	 //0x1383 y_response

mag[0] = (long *) MAGX; 	 //0x1384 peak-to-peak of ref.

* mag[0] = (int) (0*SCALING);

188

ref[0] = (long*) REFX; 	 //0x1302 refx

kp[0] = (long int *) KPX; 	 //0x1386

* kp[0] = (int) (0.001*SCALING);

ki[0] = (long int *) KIX; 	 //0x1387

* ki[0] = (int) (0.0*SCALING);

// y_direction

freq[1] = (long int *) FREQY; 	 //0x12FB

* freq[1] = (int) (1.0*FSCALING); 	 //1: data in mem. ready

cont[1] = (int *) CONTY; 	 //0x12FD y_controller

*cont[1] = 0;

output[1] = (long *) OUTPUTY; 	 //0x12fe ReadAdc

mag[1] = (long int *) MAGY; 	 //0x12fc p-p ref.

* mag[1] = (int) (0*SCALING);

ref[1] -=- (long *) REFY; 	 //0x1303 refx

kp[1] = (long int *) KPY; 	 //0x12ff

* kp[1] = (int) (0.001*SCALING);

ki[1] = (long int *) KIY; 	 //0x1300

* ki[1] = (int) (0.0*SCALING);

count[0] = (long)(Fs*FSCALING/(*freq[0]));

count[1] = (long)(Fs*FSCALING/(*freq[1]));

WriteDACs(0,0);

while(1) {

*output[0] = (long)ReadAdc(0);

*output[1] = (long)ReadAdc(1);

count[0]=(long int)(Fs*FSCALING/(*freq[0]));

count[1]=(long int)(Fs*FSCALING/(*freq[1]));

if (n>=count[0]) n = 0;

refs[0]=(double)(*mag[0])/SCALING*sin(2*PI*n/count[0]);

II++;

if (m>=count[1]) m = 0;

refs[1], (double)(*mag[1])/SCALING*sin(2*PI*m/count[1]);

m++;

*cont[0]=Control(refs[0],*output[0],*ki[0],*kp[0],0);

*cont[1]=Control(refs[1],*output[1],*ki[1],*kp[1],1);

WriteDACs(*cont[0],*cont[1]);

*ref[0]=(long)(refs[0]*2047/4.9976);

*ref[1] = (long)(refs[1]*2047/4.9976);

//test ref. signal

//WriteDACs((short)(*ref[0]),(short)(*ref[1]));

//test pi control

//WriteDACs((short)(*ref[0]),*cont[0]);

StoreData(*output[0],*output[1]);

//endwhile

} //end of file

189

E.3 Labview Program

190

Figure E.1 Labview program for time division multi-control and fine motion control

191

Figure E.2 Labview program for time division multi-control and fine motion control
(continued)

Figure E.3 Labview program for time division multi-control and fine motion control
(continued)

APPENDIX F

ITERATION DERIVATION USING MATLAB

Matlab symbolic toolbox is applied to derive the hysteresis harmonics, as below.

	 Iteration derivation

% Objective: derive the analytic expression of hysteresis harmonics

% Model:ddot(x)+r*dot(x)d-kn*x=A*sin(w*t)-kl*F

% dot(F)=dot(x)-F/Fc* Idot(x)1;

% 1st iteration:

% Model: dot(x0)+r*dot(x0)+kn*x0=A*sin(w*t)-kl*F0

F0=x0;

% Results: x0= (A*(-0+k1+kn)*sin(w*t)-A*r*w*cos(w*t))...

/(kn2 +2*kn*kl-2*kn* w2+k12- 2*kl* w 2 +w2 * r 2 +w4)

syms r kn w k1 A s t

X0=laplace(A*sin(w*t),t, ․)/(s 2 d-r*s+kn+k1);

x0=ilaplace(X0,s,t)

% 2nd iteration results

% Model: ddot(xl)d-r*dot(x1)+kn*x1=A*sin(w*t)-kl*F1

dFl=dx0-F0/Fc * dx0

% Results:

193

194

syms r kn k1 Fc w phi n A0 At s

T=2*pi/w; x0=A0*sin(w*t+phi); F0=x0; %lst iteration results

dx0=diff(x0,t); %dx0=A0*cos(w*t+phi)*w=A0*w*sin(w*td-phid-pi/2)

% for f(t)=h*sin(w*t+phil),

% abs_f(t)=1/3*(6*h-4*h*cos(2*phil+2*w*t))/pi, seen"Fourierl.m"

h = A0*w; phil = phi+pi/2;

dF1 = diff(x0,t)-F0/Fc*(2*h/pi-4*h/3/pi*cos(2*w*t+2*phil));

F1 = ilaplace(laplace(dFl,t, ․)/s,s,t)

X1 = laplace(A*sin(w*t),t, ․)/(s 2d-r*s+kn)- kl*laplace(dFl,t, ․)/s/(s 2 -Fr*s-l-kn);

xl = ilaplace(Xl,s,t);

% end of file

REFERENCES

1. L. Fulton, "Two-axis motion apparatus utilizing piezoelectric material," U. S.
Patent 5170089, 1992.

2. M. Toda, "Piezoelectric position device," U.S. Patent 4678955, 1982.

3. T. Chang, "Piezoelectric multiple degree of freedom actuator," U.S Patent
pending, 1998.

4. Patrick M. Sain, Michael K. Sain and B. F. Spencer, "Models for hysteresis and
application to structural control," Proceedings of the American Control
Conference, pp. 16-20, 1997.

5. Michael Goldfarb and Nikola Celanovic, "Modeling piezoelectric stack actuators
for control of micromanipulation," IEEE Control Systems Magazine, vol.
17, n. 3, pp. 69-79, June 1997.

6. Michael Goldfarb and Nikola Celanovic, "Behavioral implications of piezo-
electric stack actuators for control of micromanipulation," Proceedings
of the 1996 IEEE International Conference on Robotics and Automation
Minneapolis, Minnesota, April 1996.

7. Gi Sang Choi, Hie-Sik Kim and Gi Heung Choi, "A study on position control
of piezoelectric actuators," ISIE'97.

8. Yi-Kwei Wen and M. Asce, "Method for random vibration of hyterestic
systems," Journal of the Engineering Mechanics Division, vol. 102, pp.
249-263, 1976.

9. Musa Jouaneh and Huawei Tian, "Accuracy enhancement of a piezo-
electric actuator with hysteresis," Japan/USA Symposium on Flexible
Automation, vol. 1, ASME 1992.

10. Mayergoyz, Mathematical Models of Hysteresis, New York: Springer-Verlag,
1991.

11. T. Doong and I. Mayergoyz, "On numerical implementation for hysteresis
models," IEEE Trans. Magnetics, vol. 21, pp. 1853-1855, 1985.

12. Ping Ge and Musa Jouaneh, "Modeling hysteresis in piezoceramic actuators,"
Precision Engineering, vol. 17, No. 3, July 1995.

13. Ping Ge and Musa Jouaneh, "Generalized preisach model for hysteresis nonlin-
earity of piezoceramic actuators," Precision Engineering, vol. 20, No. 2,
March 1997.

14. Ping Ge and Musa Jouaneh, "Tracking control of a piezoceramic actuators,"
IEEE Transactions on Control Systems Technology, vol. 4, No. 3, May
1996.

195

196

15. P. R. Dahl, "Solid fraction damping of mechanical vibrations," AIAA, vol. 14,
Dec. 1976.

16. P. R. Dahl, "Math model of hysteresis in piezo-electric Actuators for precision
pointing systems," EL Segundo, California, Feb. 1985.

17. Tian Hong, Thesis: Control of Smart Structure Using Adaptive Dither, Oct.
1994.

18. Tian Hong and Timothy N. Chang, "Control of nonlinear piezoelectric stack
using adaptive dither," Proceedings of the 1995 American Control
Conference, Seattle, WA., pp. 76-80.

19. Operator's Manual - Model 601B-PCB High-Voltage Amplifier, Trek Incor-
porated.

20. ADE 380 OEM Gaging System - User's Guide, ADE P/N 024418-01, 3800
Preliminary User's Guide.

21. Model 310 Data Acquisition and Signal Processing Board for the IBM PC and
ISA Bus compatible, Dalanco Spry

22. Labview User Manual, National Instruments, January 1998, part number
320999B-01.

23. Labview Code Interface Reference Manual, National Instruments Corporation,
January 1996, part number 320539c-01.

24. Robert W. Newcomb, Nonlinear System Analysis, Prentice-Hall Electrical
Engineering Series.

25. Timothy N. Chang, Xuemei Sun, Zhiming Ji, Reggie Caudill, "Analysis and
control of monolithic piezoelectric nano-actuator," Proceeding of the 2000
ACC, Chicago, IL, pp.3086-3090.

26. E. Kouno, "A fast response piezoelectric actuator for servo correction of
systematic errors in precision machining," Annals of the CIRP, vol. 33,
pp. 369-372, Jan. 1984.

27. E. Crawely and E. Anderson, "Detailed models of piezoceramic actuation of
beams," Proceedings of the 30th Structures, Structural Dynamics and
Materials Conference, AIAA, pp. 2000-2010, April 1989.

28. Hayesh Amin, Bernard Friedland and Avraham Harnoy, "Implementation of a
friction estimation and compensation technique," IEEE Control Systems,
pp. 71-76, August 1997.

29. Bernard Friedland and Young-kin Park, "On adaptive friction compensation,"
Proceedings of the 30th Conference on Decision and Control, pp. 2899-
2902, December 1991.

197

30. Bernard Friedland and Sophia Mentzelopoulou, "On adaptive friction compen-
sation without velocity measurement," 1992 IEEE, pp. 1076-1081.

31. N. Singer and W. Seering, "Pre-shaping command inputs to reduce system
vibration," ASME J. Dyn. Sys., Meas., and Contr., 112(1), 1990.

32. T. Singh and S. R. Vadali, "Robust time-optimal control: a frequency domain
approach," AIAA J. Guid., Contr., and Dyn., 17(2), 1990.

33. W. Singhose, W. Seering, and N. Singer, "Residual vibration reduction using
vector diagrams to generate shaped inputs," ASME J. Mech. Design,

116(41994.

34. B. Wie, R. Sinha, and Q. Liu, "Robust time-optimal control of uncertain
structural dynamic systems," AIAA J. Guid., Contr., and Dyn., 16(5),
1993.

35. L. Pao, T. Chang, and E. Hou, "Input shaper design for minimizing the
expected level of residual vibration in flexible systems," Proc. American
Control Conference, pp. 3542-3546, 1997.

36. P. Chen and S. Montgomery, "A macroscopic theory for the existence of the
hysteresis and butterfly loops in ferroelectricity," Ferroelectr., vol. 23,
pp. 199-207, 1980.

37. C. Canudas de Wit, H. Olsson, K. J. Astrom and P. Lischinsky, "A new model
for control of systems with friction," IEEE Transactions on Automatic
Control, vol. 40, No. 3, pp. 419-425, March 1995.

38. Timothy Chang, X. Sun, Z. Ji, R. Caudill, "High precision multiple degree of
freedom piezoelectric manipulator," Proceedings to the 1998 SPIE Inter-
national Symposium on Intelligent Systems and Advanced Manufacturing,
Nov. 1-5, 1998.

	Analysis and control of monolithic piezoelectric nano-actuator
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Hardware Descriptions
	Chapter 3: Real Time Operating System
	Chapter 4: Hysteresis Characteristics
	Chapter 5: Analytic Expressions Of Hysteresis Harmonics
	Chapter 6: Piezoelectric Actuator Model
	Chapter 7: Nonlinear Observer Hysteresis Compensation
	Chapter 8: Adaptive Hysteresis Compensator
	Chapter 9: Vibration and Precision Control Time Division Multi-Controller
	Chapter 10: Conclusions
	appendix A: DSP Memory Distribution
	Appendix B: Nonlinear Scalar Factor
	Appendix C: Hysteresis Observer Compensation
	Appendix D: Adaptive Hysteresis Compensation
	Appendix E: Fine Motion Control And Time Division Multi-Controller
	Appendix F: Iteration Derivation Using Matlab
	References

	List of Tables
	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)

