2,203 research outputs found

    On the mechanical contribution of head stabilization to passive dynamics of anthropometric walkers

    Get PDF
    During the steady gait, humans stabilize their head around the vertical orientation. While there are sensori-cognitive explanations for this phenomenon, its mechanical e fect on the body dynamics remains un-explored. In this study, we take profit from the similarities that human steady gait share with the locomotion of passive dynamics robots. We introduce a simplified anthropometric D model to reproduce a broad walking dynamics. In a previous study, we showed heuristically that the presence of a stabilized head-neck system significantly influences the dynamics of walking. This paper gives new insights that lead to understanding this mechanical e fect. In particular, we introduce an original cart upper-body model that allows to better understand the mechanical interest of head stabilization when walking, and we study how this e fect is sensitive to the choice of control parameters

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Initiation and control of gait from first principles: a mathematically animated model of the foot

    Get PDF
    The initiation of bipedal gait is a willed action that causes a body at rest to move. Newton's first principle of motion is applied to experimental footprint data. leading to the premise that the big toe is the source of the body action force that initiates and controls bipedal gait

    Toward Standardizing the Classification of Robotic Gait Rehabilitation Systems

    Get PDF

    Evaluation of a Soft Robotic Knee Exosuit for Assistance in Stair Ascent

    Get PDF
    abstract: Muscular weakness is a common manifestation for Stroke survivors and for patients with Anterior Cruciate Ligament reconstruction leading to reduced functional independence, especially mobility. Several rigid orthotic devices are being designed to assist mobility. However, limitations in majority of these devices are: 1) that they are constrained only to level walking applications, 2) are mostly bulky and rigid lacking user comfort. For these reasons, rehabilitation using soft-robotics can serve as a powerful modality in gait assistance and potentially accelerate functional recovery. The characteristics of soft robotic exosuit is that it’s more flexible, delivers high power to weight ratio, and conforms with the user’s body structure making it a suitable choice. This work explores the implementation of an existing soft robotic exosuit in assisting knee joint mechanism during stair ascent for patients with muscular weakness. The exosuit assists by compensating the lack of joint moment and minimizing the load on the affected limb. It consists of two I-cross-section soft pneumatic actuators encased within a sleeve along with insole sensor shoes and control electronics. The exosuit actuators were mechanically characterized at different angles, in accordance to knee flexion in stair gait, to enable the generation of the desired joint moments. A linear relation between the actuator stiffness and internal pressure as a function of the knee angle was obtained. Results from this characterization along with the insole sensor outputs were used to provide assistance to the knee joint. Analysis of stair gait with and without the exosuit ‘active’ was performed, using surface electromyography (sEMG) sensors, for two healthy participants at a slow walking speed. Preliminary user testing with the exosuit presented a promising 16% reduction in average muscular activity of Vastus Lateralis muscle and a 3.6% reduction on Gluteus Maximus muscle during the stance phase and unrestrained motion during the swing phase of ascent thereby demonstrating the applicability of the soft-inflatable exosuit in rehabilitation.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Design and development of a hominid robot with local control in its adaptable feet to enhance locomotion capabilities

    Get PDF
    With increasing mechanization of our daily lives, the expectations and demands in robotic systems increase in the general public and in scientists alike. In recent events such as the Deepwater Horizon''-accident or the nuclear disaster at Fukushima, mobile robotic systems were used, e.g., to support local task forces by gaining visual material to allow an analysis of the situation. Especially the Fukushima example shows that the robotic systems not only have to face a variety of different tasks during operation but also have to deal with different demands regarding the robot's mobility characteristics. To be able to cope with future requirements, it seems necessary to develop kinematically complex systems that feature several different operating modes. That is where this thesis comes in: A robotic system is developed, whose morphology is oriented on chimpanzees and which has the possibility due to its electro-mechanical structure and the degrees of freedom in its arms and legs to walk with different gaits in different postures. For the proposed robot, the chimpanzee was chosen as a model, since these animals show a multitude of different gaits in nature. A quadrupedal gait like crawl allows the robot to traverse safely and stable over rough terrain. A change into the humanoid, bipedal posture enables the robot to move in man-made environments. The structures, which are necessary to ensure an effective and stable locomotion in these two poses, e.g., the feet, are presented in more detail within the thesis. This includes the biological model and an abstraction to allow a technical implementation. In addition, biological spines are analyzed and the development of an active, artificial spine for the robotic system is described. These additional degrees of freedom can increase the robot's locomotion and manipulation capabilities and even allow to show movements, which are not possible without a spine. Unfortunately, the benefits of using an artificial spine in robotic systems are nowadays still neglected, due to the increased complexity of system design and control. To be able to control such a kinematically complex system, a multitude of sensors is installed within the robot's structures. By placing evaluation electronics close by, a local and decentralized preprocessing is realized. Due to this preprocessing is it possible to realize behaviors on the lowest level of robot control: in this thesis it is exemplarily demonstrated by a local controller in the robot's lower leg. In addition to the development and evaluation of robot's structures, the functionality of the overall system is analyzed in different environments. This includes the presentation of detailed data to show the advantages and disadvantages of the local controller. The robot can change its posture independently from a quadrupedal into a bipedal stance and the other way around without external assistance. Once the robot stands upright, it is to investigate to what extent the quadrupedal walking pattern and control structures (like the local controller) have to be modified to contribute to the bipedal walking as well
    • …
    corecore