92 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Ultra-low Power Circuits and Architectures for Neuromorphic Computing Accelerators with Emerging TFETs and ReRAMs

    Get PDF
    Neuromorphic computing using post-CMOS technologies is gaining increasing popularity due to its promising potential to resolve the power constraints in Von-Neumann machine and its similarity to the operation of the real human brain. To design the ultra-low voltage and ultra-low power analog-to-digital converters (ADCs) for the neuromorphic computing systems, we explore advantages of tunnel field effect transistor (TFET) analog-to-digital converters (ADCs) on energy efficiency and temperature stability. A fully-differential SAR ADC is designed using 20 nm TFET technology with doubled input swing and controlled comparator input common-mode voltage. To further increase the resolution of the ADC, we design an energy efficient 12-bit noise shaping (NS) successive-approximation register (SAR) ADC. The 2nd-order noise shaping architecture with multiple feed-forward paths is adopted and analyzed to optimize system design parameters. By utilizing tunnel field effect transistors (TFETs), the Delta-Sigma SAR is realized under an ultra-low supply voltage VDD with high energy efficiency. The stochastic neuron is a key for event-based probabilistic neural networks. We propose a stochastic neuron using a metal-oxide resistive random-access memory (ReRAM). The ReRAM\u27s conducting filament with built-in stochasticity is used to mimic the neuron\u27s membrane capacitor, which temporally integrates input spikes. A capacitor-less neuron circuit is designed, laid out, and simulated. The output spiking train of the neuron obeys the Poisson distribution. Based on the ReRAM based neuron, we propose a scalable and reconfigurable architecture that exploits the ReRAM-based neurons for deep Spiking Neural Networks (SNNs). In prior publications, neurons were implemented using dedicated analog or digital circuits that are not area and energy efficient. In our work, for the first time, we address the scaling and power bottlenecks of neuromorphic architecture by utilizing a single one-transistor-one-ReRAM (1T1R) cell to emulate the neuron. We show that the ReRAM-based neurons can be integrated within the synaptic crossbar to build extremely dense Process Element (PE)–spiking neural network in memory array–with high throughput. We provide microarchitecture and circuit designs to enable the deep spiking neural network computing in memory with an insignificant area overhead

    Stochastic learning in oxide binary synaptic device for neuromorphic computing

    Get PDF
    abstract: Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.View the article as published at http://journal.frontiersin.org/article/10.3389/fnins.2013.00186/ful

    Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling

    Get PDF
    We increasingly rely on deep learning algorithms to process colossal amount of unstructured visual data. Commonly, these deep learning algorithms are deployed as software models on digital hardware, predominantly in data centers. Intrinsic high energy consumption of Cloud-based deployment of deep neural networks (DNNs) inspired researchers to look for alternatives, resulting in a high interest in Spiking Neural Networks (SNNs) and dedicated mixed-signal neuromorphic hardware. As a result, there is an emerging challenge to transfer DNN architecture functionality to energy-efficient spiking non-volatile memory (NVM)-based hardware with minimal loss in the accuracy of visual data processing. Convolutional Neural Network (CNN) is the staple choice of DNN for visual data processing. However, the lack of analog-friendly spiking implementations and alternatives for some core CNN functions, such as MaxPool, hinders the conversion of CNNs into the spike domain, thus hampering neuromorphic hardware development. To address this gap, in this work, we propose MaxPool with temporal multiplexing for Spiking CNNs (SCNNs), which is amenable for implementation in mixed-signal circuits. In this work, we leverage the temporal dynamics of internal membrane potential of Integrate & Fire neurons to enable MaxPool decision-making in the spiking domain. The proposed MaxPool models are implemented and tested within the SCNN architecture using a modified version of the aihwkit framework, a PyTorch-based toolkit for modeling and simulating hardware-based neural networks. The proposed spiking MaxPool scheme can decide even before the complete spatiotemporal input is applied, thus selectively trading off latency with accuracy. It is observed that by allocating just 10% of the spatiotemporal input window for a pooling decision, the proposed spiking MaxPool achieves up to 61.74% accuracy with a 2-bit weight resolution in the CIFAR10 dataset classification task after training with back propagation, with only about 1% performance drop compared to 62.78% accuracy of the 100% spatiotemporal window case with the 2-bit weight resolution to reflect foundry-integrated ReRAM limitations. In addition, we propose the realization of one of the proposed spiking MaxPool techniques in an NVM crossbar array along with periphery circuits designed in a 130nm CMOS technology. The energy-efficiency estimation results show competitive performance compared to recent neuromorphic chip designs

    Energy-Efficient In-Memory Architectures Leveraging Intrinsic Behaviors of Embedded MRAM Devices

    Get PDF
    For decades, innovations to surmount the processor versus memory gap and move beyond conventional von Neumann architectures continue to be sought and explored. Recent machine learning models still expend orders of magnitude more time and energy to access data in memory in addition to merely performing the computation itself. This phenomenon referred to as a memory-wall bottleneck, is addressed herein via a completely fresh perspective on logic and memory technology design. The specific solutions developed in this dissertation focus on utilizing intrinsic switching behaviors of embedded MRAM devices to design cross-layer and energy-efficient Compute-in-Memory (CiM) architectures, accelerate the computationally-intensive operations in various Artificial Neural Networks (ANNs), achieve higher density and reduce the power consumption as crucial requirements in future Internet of Things (IoT) devices. The first cross-layer platform developed herein is an Approximate Generative Adversarial Network (ApGAN) designed to accelerate the Generative Adversarial Networks from both algorithm and hardware implementation perspectives. In addition to binarizing the weights, further reduction in storage and computation resources is achieved by leveraging an in-memory addition scheme. Moreover, a memristor-based CiM accelerator for ApGAN is developed. The second design is a biologically-inspired memory architecture. The Short-Term Memory and Long-Term Memory features in biology are realized in hardware via a beyond-CMOS-based learning approach derived from the repeated input information and retrieval of the encoded data. The third cross-layer architecture is a programmable energy-efficient hardware implementation for Recurrent Neural Network with ultra-low power, area-efficient spin-based activation functions. A novel CiM architecture is proposed to leverage data-level parallelism during the evaluation phase. Specifically, we employ an MRAM-based Adjustable Probabilistic Activation Function (APAF) via a low-power tunable activation mechanism, providing adjustable accuracy levels to mimic ideal sigmoid and tanh thresholding along with a matching algorithm to regulate neuronal properties. Finally, the APAF design is utilized in the Long Short-Term Memory (LSTM) network to evaluate the network performance using binary and non-binary activation functions. The simulation results indicate up to 74.5 x 215; energy-efficiency, 35-fold speedup and ~11x area reduction compared with the similar baseline designs. These can form basis for future post-CMOS based non-Von Neumann architectures suitable for intermittently powered energy harvesting devices capable of pushing intelligence towards the edge of computing network

    Emulating short-term synaptic dynamics with memristive devices

    Get PDF
    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems

    Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems

    Get PDF
    This book aims to convey the most recent progress in hardware-driven neuromorphic systems based on semiconductor memory technologies. Machine learning systems and various types of artificial neural networks to realize the learning process have mainly focused on software technologies. Tremendous advances have been made, particularly in the area of data inference and recognition, in which humans have great superiority compared to conventional computers. In order to more effectively mimic our way of thinking in a further hardware sense, more synapse-like components in terms of integration density, completeness in realizing biological synaptic behaviors, and most importantly, energy-efficient operation capability, should be prepared. For higher resemblance with the biological nervous system, future developments ought to take power consumption into account and foster revolutions at the device level, which can be realized by memory technologies. This book consists of seven articles in which most recent research findings on neuromorphic systems are reported in the highlights of various memory devices and architectures. Synaptic devices and their behaviors, many-core neuromorphic platforms in close relation with memory, novel materials enabling the low-power synaptic operations based on memory devices are studied, along with evaluations and applications. Some of them can be practically realized due to high Si processing and structure compatibility with contemporary semiconductor memory technologies in production, which provides perspectives of neuromorphic chips for mass production

    Deep Liquid State Machines with Neural Plasticity and On-Device Learning

    Get PDF
    The Liquid State Machine (LSM) is a recurrent spiking neural network designed for efficient processing of spatio-temporal streams of information. LSMs have several inbuilt features such as robustness, fast training and inference speed, generalizability, continual learning (no catastrophic forgetting), and energy efficiency. These features make LSM’s an ideal network for deploying intelligence on-device. In general, single LSMs are unable to solve complex real-world tasks. Recent literature has shown emergence of hierarchical architectures to support temporal information processing over different time scales. However, these approaches do not typically investigate the optimum topology for communication between layers in the hierarchical network, or assume prior knowledge about the target problem and are not generalizable. In this thesis, a deep Liquid State Machine (deep-LSM) network architecture is proposed. The deep-LSM uses staggered reservoirs to process temporal information on multiple timescales. A key feature of this network is that neural plasticity and attention are embedded in the topology to bolster its performance for complex spatio-temporal tasks. An advantage of the deep-LSM is that it exploits the random projection native to the LSM as well as local plasticity mechanisms to optimize the data transfer between sequential layers. Both random projections and local plasticity mechanisms are ideal for on-device learning due to their low computational complexity and the absence of backpropagating error. The deep-LSM is deployed on a custom learning architecture with memristors to study the feasibility of on-device learning. The performance of the deep-LSM is demonstrated on speech recognition and seizure detection applications

    The Effects of Radiation on Memristor-Based Electronic Spiking Neural Networks

    Get PDF
    In this dissertation, memristor-based spiking neural networks (SNNs) are used to analyze the effect of radiation on the spatio-temporal pattern recognition (STPR) capability of the networks. Two-terminal resistive memory devices (memristors) are used as synapses to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern learning and is achieved using biphasic shaped pre- and post-synaptic spikes. A TiO2 based non-linear drift memristor model designed in Verilog-A implements synaptic behavior and is modified to include experimentally observed effects of state-altering, ionizing, and off-state degradation radiation on the device. The impact of neuron “death” (disabled neuron circuits) due to radiation is also examined. In general, radiation interaction events distort the STDP learning curve undesirably, favoring synaptic potentiation. At lower short-term flux, the network is able to recover and relearn the pattern with consistent training, although some pixels may be affected due to stability issues. As the radiation flux and duration increases, it can overwhelm the leaky integrate-and-fire (LIF) post-synaptic neuron circuit, and the network does not learn the pattern. On the other hand, in the absence of the pattern, the radiation effects cumulate, and the system never regains stability. Neuron-death simulation results emphasize the importance of non-participating neurons during the learning process, concluding that non-participating afferents contribute to improving the learning ability of the neural network. Instantaneous neuron death proves to be more detrimental for the network compared to when the afferents die over time thus, retaining the network’s pattern learning capability
    corecore