
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Energy-Efficient In-Memory Architectures Leveraging Intrinsic Energy-Efficient In-Memory Architectures Leveraging Intrinsic

Behaviors of Embedded MRAM Devices Behaviors of Embedded MRAM Devices

Shadi Sheikhfaal
University of Central Florida

 Part of the Computer and Systems Architecture Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Sheikhfaal, Shadi, "Energy-Efficient In-Memory Architectures Leveraging Intrinsic Behaviors of Embedded
MRAM Devices" (2021). Electronic Theses and Dissertations, 2020-. 762.
https://stars.library.ucf.edu/etd2020/762

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
http://network.bepress.com/hgg/discipline/259?utm_source=stars.library.ucf.edu%2Fetd2020%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/762?utm_source=stars.library.ucf.edu%2Fetd2020%2F762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

ENERGY-EFFICIENT IN-MEMORY ARCHITECTURES

 LEVERAGING INTRINSIC BEHAVIORS OF EMBEDDED MRAM DEVICES

by

SHADI SHEIKHFAAL

B.S. Azad University, Ardebil Branch, 2012

M.S. Azad University, Science and Research Branch, 2014

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2021

Major Professor: Ronald F. DeMara

ii

© 2021 Shadi Sheikhfaal

iii

ABSTRACT

For decades, innovations to surmount the processor versus memory gap and move beyond

conventional von Neumann architectures continue to be sought and explored. Recent machine

learning models still expend orders of magnitude more time and energy to access data in memory

in addition to merely performing the computation itself. This phenomenon referred to as a

memory-wall bottleneck, is addressed herein via a completely fresh perspective on logic and

memory technology design. The specific solutions developed in this dissertation focus on utilizing

intrinsic switching behaviors of embedded MRAM devices to design cross-layer and energy-

efficient Compute-in-Memory (CiM) architectures, accelerate the computationally-intensive

operations in various Artificial Neural Networks (ANNs), achieve higher density and reduce the

power consumption as crucial requirements in future Internet of Things (IoT) devices.

The first cross-layer platform developed herein is an Approximate Generative Adversarial

Network (ApGAN) designed to accelerate the Generative Adversarial Networks from both

algorithm and hardware implementation perspectives. In addition to binarizing the weights, further

reduction in storage and computation resources is achieved by leveraging an in-memory addition

scheme. Moreover, a memristor-based CiM accelerator for ApGAN is developed. The second

design is a biologically-inspired memory architecture. The Short-Term Memory and Long-Term

Memory features in biology are realized in hardware via a beyond-CMOS-based learning approach

derived from the repeated input information and retrieval of the encoded data. The third cross-

layer architecture is a programmable energy-efficient hardware implementation for Recurrent

Neural Network with ultra-low power, area-efficient spin-based activation functions. A novel CiM

iv

architecture is proposed to leverage data-level parallelism during the evaluation phase.

Specifically, we employ an MRAM-based Adjustable Probabilistic Activation Function (APAF)

via a low-power tunable activation mechanism, providing adjustable accuracy levels to mimic

ideal sigmoid and tanh thresholding along with a matching algorithm to regulate neuronal

properties. Finally, the APAF design is utilized in the Long Short-Term Memory (LSTM) network

to evaluate the network performance using binary and non-binary activation functions. The

simulation results indicate up to 74.5× energy-efficiency, 35-fold speedup and ~11× area reduction

compared with the similar baseline designs. These can form basis for future post-CMOS based

non-Von Neumann architectures suitable for intermittently powered energy harvesting devices

capable of pushing intelligence towards the edge of computing network.

v

Dedicated to my dear family for their selfless support.

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. DeMara who provided me an opportunity to

join the Computer Architecture Laboratory (CAL) research team and guided me through my

research under his supervision. He has kindly supported me during this project, and his insightful

comments helped me to proceed my research along the right direction leading to several

publications in prestigious journals. I would also like to thank my committee members, Dr.

Kalpathy Sundaram, Dr. Azadeh Vosoughi, Dr. Jun Wang, and Dr. Vikram Kapoor for their

support.

Furthermore, this work was supported in part by the Center for Probabilistic Spin Logic for Low-

Energy Boolean and Non-Boolean Computing (CAPSL), one of the Nanoelectronic Computing

Research (nCORE) Centers as task 2759.006, a Semiconductor Research Corporation (SRC)

program sponsored by the NSF through CCF 1739635. This work was also partly sponsored by

the NSF through HRD 1953606.

vii

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

CHAPTER 1 : INTRODUCTION .. 1

1.1 Research Motivation ... 1

1.2 Need for Energy-Efficient Machine Learning Architectures .. 2

1.3 Contribution of the Dissertation.. 5

CHAPTER 2 : BACKGROUND .. 10

2.1 Spintronic Devices .. 11

2.1.1 Magnetic Tunnel Junction (MTJ) .. 14

2.1.2 Magnetic Field Switching .. 17

2.1.3 Spin Transfer Torque (STT) Switching ... 18

2.1.4. Spin Hall Effect (SHE) Switching .. 21

2.1.5 Probabilistic Spintronic Device (p-bit) .. 23

2.2 Explored Neural Networks ... 26

2.2.1 Generative Adversarial Networks .. 27

2.2.2 Recurrent Neural Networks ... 28

2.2.3 Long Short-Term Memory (LSTM) Networks .. 30

CHAPTER 3 : APPROXIMATE GENERATIVE ADVERSERIAL NETWORK (APGAN) 33

viii

3.1. Fundamentals of Generative Adversarial Networks .. 33

3.2. Approximate GAN (ApGAN) Architecture... 35

3.3 ApGAN Training .. 36

3.4 Partial Approximate Computing Unit ... 40

3.5 ApGAN Accelerator ... 41

3.5.1 Architecture.. 41

3.5.2 Resistive Computational Sub-Array .. 43

3.5.3 Configurable In-Memory Addition Scheme .. 45

3.5.4 Instructions ... 45

3.5.5 Hardware Mapping .. 46

3.5.6 Parallelism.. 48

3.6 Performance Evaluation .. 49

3.6.1 Experimental Setup and Results .. 49

3.6.2 Hardware Setup and Results .. 54

3.7. Conclusion ... 60

CHAPTER 4 : STM-LTM ARCHITECTURE ... 62

4.1. Fundamentals of Biologically-Inspired Computing... 62

4.2. Biologically Inspired STM-LTM Architecture .. 65

4.2.1. Memory Units ... 66

ix

4.2.2. Circuit Architecture .. 69

4.3. STM-LTM Transition .. 72

4.4. Simulation Results ... 74

4.4.1. Evaluation Setup ... 74

4.4.2. Results ... 75

4.4.3 Energy/Delay Comparison ... 81

4.5. Conclusion .. 82

CHAPTER 5 : ENERGY-EFFICIENT RECURRENT NEURAL NETWORKS 84

5.1. Prior Work on Activation Function Unit ... 86

5.2. Proposed RNN Architecture .. 88

5.2.1 Microarchitectural Design ... 88

5.2.2. Adjustable Probabilistic Activation Function (APAF) ... 91

5.3 Results ... 96

5.3.1 Evaluation Framework ... 96

5.3.2. Functionality Analysis of APAF ... 99

5.3.3. Application-level Evaluation .. 101

5.4. Conclusion .. 108

CHAPTER 6 : CONCLUSION AND FUTURE WORK ... 109

6.1. Technical Summary ... 110

x

6.2. Future Work ... 112

APPENDIX: COPYRIGHT PERMISSIONS ... 114

REFERENCES ... 116

xi

LIST OF FIGURES

Figure 1.1: Research motivation and objective... 5

Figure 1.2: Cross-layer research flow. .. 6

Figure 2.1: Spin momentum and the energy barrier of a nanomagnet.. 12

Figure 2.2: (a) GMR effect in parallel state, and (b) GMR effect in anti-parallel state [29]. 13

Figure 2.3: A TMR device in anti-parallel and parallel configurations. 14

Figure 2.4: (a) vertical view of the MTJ structure [20], (b) In-plane MTJ (IMTJ), and (c)

Perpendicular MTJ (PMTJ) [29]. .. 15

Figure 2.5: Magnetic field switching approach for MTJ [29]. ... 17

Figure 2.6: Spin filtering effect in STT , (a) electrons flowing from the pinned layer to free layer,

switch the nanomagnet to parallel state, and (b) electrons flowing from the free layer to pinned

layer, switch the nanomagnet to anti-parallel state [29]. .. 18

Figure 2.7: The dynamics of a nanomagnet under the spin transfer torque impact. 20

Figure 2.8: (a) A positive current in the +x direction generates a spin current in the +z

direction.The applied spin current generates the needed spin torque for adjusting the magnetic

direction of the FM in +y direction, (b) Top view [29]. ... 21

Figure 2.9: (a) Structure of a SHE-MTJ, (b) Resistive equivalent read circuit of SHE-MTJ. 22

Figure 2.10: Time-averaged behavior of the SHE-MTJ based p-bit device showing the

magnetization fluctuations. ... 23

Figure 2.11: Folded and unfolded RNN structures. .. 29

xii

Figure 3.1: GAN structure. D downsamples the input data, while G is given a uniform noise

distribution to generate fake samples (1) In (2), fine-tuning of training is performed. 34

Figure 3.2: Approximate GAN system and its training loop from (T1) to (T8). 36

Figure 3.3: Number of layers and binarization error (be) w.r.t degree of redundancy (ψ). 39

Figure 3.4: (a) ApGAN’s binary convolution, and (b) partial approximate computing on three

LSBs. ... 40

Figure 3.5: (a) The ApGAN accelerator, (b) memristive computational subarray architecture, (c)

configurable memory sense amplifier, (d) 3-input majority functions realization using resistive

references, and (e) MAJ3’s transient response for four different inputs. 42

Figure 3.6: Mapping and parallel in-memory addition within the resistive computational sub-

array of ApGAN. .. 47

Figure 3.7: Fully-paralleled training method for ApGAN. ... 49

Figure 3.8: Energy consumption versus IS regarding number of approximated bits. 51

Figure 3.9: Inception score on CIFAR-10 and STL-10 datasets leveraging full precision and

ApGAN for different GANs. .. 53

Figure 3.10: Generated images for various datasets by ApGAN.. 54

Figure 3.11: Value of losses in (a) 32-bit (full precision) DCGAN, (b) fully-binarized DCGAN,

and (c) proposed ApGAN. .. 55

Figure 3.12: Energy-efficiency evaluation of various platforms normalized to the area (Y-axis:

log scale). .. 56

Figure 3.13: Performance evaluation of various platforms normalized to the area (Y-axis: log

scale). .. 57

xiii

Figure 3.14: : (a) Three main hardware cost sources in ApGAN’s sub-array. Note: access

transistors and CD are not shown for simplicity, and (b) area overhead breakdown of ApGAN. 58

Figure 3.15: Memory bottleneck ratio for different platforms ... 59

Figure 4.1: The Schematic of biological multistore memory model. ... 62

Figure 4.2: The proposed STM-LTM memory architecture with VM and NVM components. ... 66

Figure 4.3: (a) Structure of a SHE-MTJ as NVM, (b) Resistive equivalent read circuit of SHE-

MTJ, (c) VM structure programming path. .. 67

Figure 4.4: Realization of the capacitive network [129] within the proposed LTM-STM memory

architecture. ... 69

Figure 4.5: (a) STM to LTM transfer and (b) LTM to STM transfer modes. 70

Figure 4.6: A sample pulse interval (PI (min)) of 20ns and number of stimuli recorded by STM-

LTM memory controller. When Nst reaches the preset Nth, STM-to-LTM transition is

accomplished... 73

Figure 4.7: The transient simulation results of moving data from STM to LTM. Glossary: P.S.,

C.S., and S.A. stand for Precharged State, Charge Sharing state and Sense Amplification state. 73

Figure 4.8: The transition probability versus STM to LTM threshold under different pulse

intervals. .. 75

Figure 4.9: The breakdown of energy consumption for different array sizes with the impact of

thermal noise. .. 77

Figure 4.10: (a) Monte-Carlo simulation of sense voltage of SHE-MTJ with (a) tox =1.3nm (b)

tox =1.8nm, (c) Voltage margin of SHE-MTJ vs. thickness of MTJ oxide in two case studies. . 78

xiv

Figure 4.11: The breakdown of (a) Synapse programming energy and (b) STM-to-LTM energy

reported in Table 4.3. .. 79

Figure 5.1: The proposed RNN CiM accelerator architecture. ... 89

Figure 5.2: The proposed ReRAM-based RNN architecture with stochastic activation functions

as neurons.. 89

Figure 5.3: The building block of Spin-based activation functions (p-bit) [55]. 91

Figure 5.4: Time-averaged behavior of the SHE-MTJ based p-bit device, (a) is the magnetization

fluctuations, (b) and (c) are the implemented sigmoid and tanh behaviors respectively. 92

Figure 5.5: The proposed Adjustable Probabilistic Activation Function (APAF) design with Al=

5... 94

Figure 5.6: HW-SW cross-layer evaluation framework developed in this work. 98

Figure 5.7: The transient simulation result of the neuron w.r.t. the crossbar SL current. 99

Figure 5.8: Components of energy consumption for ReRAM crossbar designs with various sub-

array sizes (note: left y-axis: log-scaled). ... 102

Figure 5.9: Trade-off between energy consumption and accuracy w.r.t. Al on MNIST data-set.

... 103

Figure 5.10: The experimental results of the LSTM network with (a) ideal, (b) binary and (c)

proposed non-binary APAF-based neuron.. 104

Figure 5.11: Breakdown of area overhead of peripherals for (a) D3 as the base-line and (b) the

proposed RNN accelerator with Al= 5. .. 106

Figure 5.12: Resource utilization ratio for different platforms. .. 108

Figure 6.1: Multibit stochastic SOT-MRAM-based. .. 112

xv

LIST OF TABLES

Table 1.1: Energy consumption of various operations in 45nm CMOS processor [13]. 3

Table 2.1: p-bit device parameters. ... 26

Table 3.1: IS Values on CIFAR-10 and STL10 Datasets. .. 52

Table 4.1. The operation modes of the STM-LTM architecture... 68

Table 4.2. SHE-MTJ simulation Parameters .. 74

Table 4.3. Comparison between STM-LTM architectures ... 80

Table 5.1: The p-bit output error rate vs. the APAF error rate. .. 100

Table 5.2: The comparison of APAF with CMOS-based designs. ... 101

1

CHAPTER 1 : INTRODUCTION

1.1 Research Motivation

With notable advancements in complementary metal-oxide-semiconductor (CMOS) technology,

the feature size of these charge-based Field-Effect Transistors (FETs) has scaled down and the

number of transistors on integrated circuits has doubled nearly every two years as predicted by the

Moor’s law [1]. The scaling (miniaturization) of CMOS technology has provided enhanced chip

performance at a reduced cost through the increase of transistor density and switching speed, as

the main objective of silicon technology for decades [2]. However, the scale down of this

technology is reaching to nano ranges, where it exceeds the required spacing for the quantum

mechanical tunneling of electrons leading to the well-known leakage challenge. Additionally, there

are other critical challenges in the CMOS technology scaling such as high leakage currents, high

power density, limited gate control, higher circuit noise sensitivity and increased lithography costs.

On the other hand, with the convergence of multiple technologies such as embedded systems,

machine learning, and cloud computing, Internet-of-Things (IoT) devices have evolved into the

most popular and growing technology in the recent decade. IoTs employ self-sufficient ambient-

powered circuits with small area overhead, which provide intermittent operations, low-power data

acquisition and processing capabilities while maintaining a low cost [3, 4]. Moreover, due to the

limited energy budget and challenges caused by the device scaling, achieving energy-efficient and

high-performance computing is one of the main objectives within IoT applications. These

challenges have motivated the research towards designing hybrid and novel energy-efficient

circuits by combining the mature CMOS technology with emerging technologies such as

2

Spintronics [5, 6]. Spintronic technology is specifically compatible with the CMOS technology as

a result of the possibility of 3D integration at the back-end process, which is able to merge the

logic and memory and reduce the dynamic power. The main features of Spintronic devices that

make them a suitable candidate for the next-generation hybrid technologies are non-volatility,

reduced area overhead or high integration density, and near-zero static power. Moreover, the non-

volatility feature significantly reduces the standby power as it can maintain the data while the

power is off. These features can be leveraged to develop area-efficient digital circuits with instant

store/restore functionality for power gating purposes in intermittent computations, designing

arrays of non-volatile memory and novel activation function units for neuromorphic computational

architectures, and most importantly designing energy-efficient circuits and architectures for IoT

devices [7].

1.2 Need for Energy-Efficient Machine Learning Architectures

In the last few years, with advancements in technology and increasing production rates of

electronic companies, the number of the edge devices such as smartphones, laptops, and other IoT

devices are increasing significantly and it is expected to have billions of connected devices

generating vast amount of raw data [8]. Drastically-reduced energy consumption is one of the main

objectives in designing next generation IoT devices such that these devices are able to operate

using only ambient sources of light, kinetic, thermal, and electromagnetic energy and achieve

battery-free computing [9]. On the other hand, machine learning methods have drawn great

3

Table 1.1: Energy consumption of various operations in 45nm CMOS processor [13].

attention and have achieved notable advancements in various domains such as computer vision,

image recognition, speech recognition, machine translation and etc. [10]. To achieve higher

accuracy levels in various Deep Neural Networks (DNNs) applications such as image

classification as a subset of big data, larger model sizes and higher computing workload are

required. Typically, for running a DNN on an IoT device, the process of inference is performed on

the cloud. However, executing the inference on the edge device itself is gaining more attention as

it reduces the latency, enhances privacy, and moderates the execution time [11, 12]. On the other

hand, edge devices have limited on-chip cache memory capacity (typically <10 Mb) and high-

performance models must be located in the off-chip main memory [8]. There are several algorithms

for pre-processing big data, which typically run on general purpose conventional processors.

However, von Neumann processing architectures cannot process big data efficiently due to the

high demand of data movement between separated processing and memory units, referred to as

memory bottleneck. Studies show that Dynamic Random-Access Memory (DRAM) read

operation in a 32-bit system consumes orders higher energy than a 32-bit floating point

multiplication compared to the on-chip operations as depicted in Table 1.1 [13].

In order to overcome the aforementioned constraints and challenges as shown in Figure 1.1,

Compute-in-Memory (CiM) architectures have been proposed to eliminate the high energy

Operations Energy (pJ) Relative Energy Cost

32-bit integer addition 0.1 1

32-bit floating-point addition 0.9 9

32-bit integer multiplication 3.1 31

32-bit floating-point multiplication 3.7 37

32-bit SRAM Access 5 50

32-bit DRAM Access 640 6400

4

consumption and memory access latency by regulating data movement [14-17]. CiM architectures

employ the analog characteristics of emerging non-volatile memory devices to provide in-place

computations. This method is especially influential in designing DNN accelerators, which demand

computationally expensive operations such as multiplication. On the other hand, non-volatile

memory devices such as Magnetic Tunnel Junction (MTJ) and Resistive Random-Access Memory

(ReRAM) can provide the required characteristics for future low-power computational IoT edge

devices. Hence, this dissertation focuses on designing energy efficient cross-layer CiM

architectures leveraging customized in-memory algorithms for various DNNs and exploits the

intrinsic behaviors of high/low energy barrier Magnetic Random-Access Memories (MRAMs) to

achieve yet more efficiency. Figure 1.1 shows the research motivations in this dissertation.

Considering the challenges in this field of research and with focusing on application characteristics

of the IoT devices, this dissertation aims to design energy-efficient, high performance, low area

overhead acceleration designs utilizing neuromorphic computing, cross-layer evaluations and

digital CiM frameworks.

5

Figure 1.1: Research motivation and objective.

1.3 Contribution of the Dissertation

In consequence of the motivations, this dissertation focuses on designing energy efficient cross

layer CiM architectures leveraging customized in-memory algorithms for various DNNs and

exploits the intrinsic behaviors of high/low energy barrier Magnetic Random-Access Memories

(MRAMs) to achieve yet more efficiency as shown in Figure 1.2. The main focus of this

dissertation is to develop a cross-layer framework, starting from device/circuit to architecture and

6

application, which provides customized algorithms to guarantee the high performance. In

summary, the major contributions in this dissertation can be listed as follows:

Figure 1.2: Cross-layer research flow.

▪ In the first cross-layer design, an Approximate Generative Adversarial Network (ApGAN)

is developed. A GAN is an adversarial learning approach which empowers conventional

deep learning methods by alleviating the demands of massive labeled datasets. However,

GAN training can be computationally-intensive limiting its feasibility in resource-limited

edge devices. In this chapter, we propose an approximate GAN (ApGAN) for accelerating

7

GANs from both algorithm and hardware implementation perspectives. First, inspired by

the binary pattern feature extraction method along with binarized representation entropy,

the existing Deep Convolutional GAN (DCGAN) algorithm is modified by binarizing the

weights for a specific portion of layers within both the generator and discriminator models.

Further reduction in storage and computation resources is achieved by leveraging a novel

hardware-configurable in-memory addition scheme, which can operate in the accurate and

approximate modes. Finally, a memristor-based processing-in-memory accelerator for

ApGAN is developed. The performance of the ApGAN accelerator on different data-sets

such as Fashion-MNIST, CIFAR-10, STL-10, and celeb-A is evaluated and compared with

recent GAN accelerator designs. With almost the same Inception Score (IS) to the baseline

GAN, the ApGAN accelerator can increase the energy-efficiency by ~28.6× achieving 35-

fold speedup compared with a baseline GPU platform. Additionally, it shows 2.5× and

5.8× higher energy-efficiency and speedup over CMOS-ASIC accelerator subject to an 11

percent reduction in IS [18].

▪ The second cross-layer design is a biologically inspired Short-Term Long-Term Memory

architecture. Biological memory structures impart enormous retention capacity while

automatically pro-viding vital functions for chronological information management and

update the resolution of the domain and episodic knowledge. A crucial requirement for

hardware realization of such cortical operations found in biology is to first design both

short-term memory (STM) and long-term memory (LTM). Herein, these memory features

are realized via a beyond-CMOS-based learning approach derived from the repeated input

information and retrieval of the encoded data. We first propose a new binary STM-LTM

8

architecture with composite synapse of the Spin Hall Effect-driven Magnetic Tunnel

Junction (SHE-MTJ) and capacitive memory bit cell to mimic the behavior of biological

synapses. This STM-LTM platform realizes the memory potentiation through a continual

update process using STM-to-LTM transfer, which is applied to neural networks based on

the established capacitive crossbar. We then propose a hardware-enabled and customized

STM-LTM transition algorithm for the platform considering the real hardware parameters.

We validate the functionality of the design using SPICE simulations that show the proposed

synapse has the potential of reaching ~30.2 pJ energy consumption for STM-to-LTM

transfer and 65 pJ during STM programming. We further analyze the correlation between

energy, array size, and STM-to-LTM threshold utilizing the MNIST data set [8].

▪ The third cross-layer CiM architecture is a customized design for Recurrent Neural

Networks (RNNs) and Long Short-Term Memory (LSTM) networks. As research in RNNs

continue preeminent algorithmic refinements, the use of conventional hardware structures

requires higher energy and latency to process the sophisticated computations. Herein, we

develop a programmable energy-efficient hardware implementation for RNNs and LSTMs

with Resistive Random-Access Memory (ReRAM) synapses and ultra-low power, area-

efficient spin-based activation functions. To attain high energy-efficiency while

maintaining accuracy, a novel Computing-in-Memory (CiM) architecture is proposed to

leverage data-level parallelism during the evaluation phase. Specifically, we employ an

MRAM-based Adjustable Probabilistic Activation Function (APAF) via a low-power

tunable activation mechanism, providing adjustable levels of accuracy to mimic ideal

sigmoid and tanh thresholding along with a matching algorithm to regulate the neuron

9

properties. To evaluate the performance of the proposed design, we present a

hardware/software cross-layer framework. The simulations show that our proposed design

achieves up to 74.5× energy-efficiency with ~11× area reduction compared to its

counterpart designs while keeping the accuracy comparable with the baseline designs. We

also have examined the performance of an LSTM network for name prediction purposes

utilizing ideal, binary, and the proposed non-binary APAF based neuron. The comparison

of the results shows that our proposed neuron can achieve up to 85% accuracy and

perplexity of 1.56, which attains performance similar to algorithmic expectations of near-

ideal neurons. The simulations show that our proposed neuron achieves up to 34-fold

improvement in energy efficiency and 2-fold area reduction compared to the CMOS-based

non-binary designs.

10

CHAPTER 2 : BACKGROUND

Magnetic tunnel junction (MTJ) devices are the building block of any spin-based structure, which

can be configured into two different resistant levels as parallel (P) and anti-parallel (AP) states. As

a result of the tunnel magnetoresistance (TMR) effect, the P and AP states show high and low

resistance, denoting “1” and “0” in binary, respectively. There are two different switching

approaches originated for MTJs as Spin-Transfer Torque (STT) [19] and Spin-Orbit Torque (SOT)

[20], in which only one bidirectional ultra-small current is required. Recent fabrications and

experiments of nano-magnets show that switching the magnetization can be achieved with high

speed (sub-nanosecond), below fJ/bit memory write energy, and long endurance (10 years). In the

STT switching approach, the bidirectional current passes through an MTJ resulting in either AP or

P state. STT provides several improvements compared to the previous switching methods such as

field-induced magnetic switching (FIMS) [21] and thermally assisted switching (TAS) [22].

However, this method is affected by some challenges in its overall functionality such as switching

asymmetry, high write current [23, 24] and a shared read and write path. Accordingly, during read

operation, malfunctions such as unwanted switching may appear, that can flip the stored data

unintentionally. However, SHE-MTJ as a potential alternative to STT-MTJ has been investigated,

which is a 3-terminal device, offering advantages including separated read and write paths, higher

energy efficiency and higher write speed [25-27].

11

2.1 Spintronic Devices

Spintronics is a relatively novel computing paradigm that utilizes the spin of electrons as the state

variable for computation by means of spin-polarized current [28]. There are two stable

polarizations for the spin-based devices as 0° denoting up-spin, and 180° denoting down-spin

magnet spin momentum. The state of the device is retained in a magnet with no constant electrical

power requirement due to its non-volatility coming from the energy barrier (𝐸𝐵). The correlation

between the energy barrier and the information retention time is expressed by Equation 2.1:

𝑇𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑇0 𝑒
(

𝐸𝐵
𝐾𝐵𝑇

)
, 𝐸𝐵 = 𝐾𝑢𝑉 (2.1)

where 𝐾𝐵 is the Boltzmann’s constant, 𝑇 is the temperature, 𝑇0 is the characteristic time, 𝐾𝑢 is the

magnetic anisotropy, and 𝑉 is the magnet volume. The energy barrier (𝐸𝐵) in majority of the spin-

based memory and logic realizations, is set to 40 resulting in ten years of retention time

(𝑇𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛). Figure 2.1 shows the two stable states (0° and 180°), and the unstable (90°) state

referred to in the following sections as probabilistic state, with regards to the 𝐸𝐵 [29].

The spin polarization and magnetoresistance are the main characteristics of the Spintronics which

are employed to perform read and write operations, respectively. The spin population can be

defined as the imbalance of up-spin (n↑) and down-spin (n↓) numbers in ferromagnetic (FM)

devices, which is defined as:

𝑃 =
|𝑛↑− 𝑛↓|

𝑛↑+ 𝑛↓
 (2.2)

12

Figure 2.1: Spin momentum and the energy barrier of a nanomagnet.

A charge current passing through a ferromagnet becomes polarized corresponding to the local

magnetic momentum, which consequently, outputs a spin-polarized current. The distributing of

the electrons on the ferromagnetic layers identifies the magnetoresistance. To sense the states of

magnetic devices, high or low magnetoresistance (MR) are utilized for magnetic materials. In the

metal multilayer films Giant Magnetoresistance (GMR) [30, 31] and Tunneling Magnetoresistance

(TMR) [32, 33] are the most employed MR effects. The GMR devices are fabricated from two

ferromagnetic layers, sandwiching a thin layer of metal such as copper. In the parallel

configuration case with similar magnetization directions of two FM layers, the spin-down or spin-

up electrons pass through the device with no scattering contributing to a lower resistance. On the

other hand, for the anti-parallel configuration (AP) with opposite magnetization directions of FM

layers, both spin-down and spin-up electrons will have scattering condition resulting in higher

13

Figure 2.2: (a) GMR effect in parallel state, and (b) GMR effect in anti-parallel state [29].

resistance. One of the commonly used GMR-based applications is the spin valve model, leveraged

as reading heads in conventional hard disk drives. Figure 2.2 illustrates the GMR effect in two-

channel multilayer films. TMR effect can be detected, if the non-magnetic layer in a GMR

structure is replaced by a thin oxide insulator such as MgO [34], and AlxOy [35]. The thickness

of this spacer is designed to allow the tunneling effect for the electrons. Figure 2.3 demonstrations

a TMR device with its two stable states. Similar to the GMR effect, TMR can define AP

magnetization orientation by high and P magnetization orientation by low resistance. Nevertheless,

there are two main differences that set the two devices apart in addition to the barrier material

difference for GMR and TMR devices.

14

Figure 2.3: A TMR device in anti-parallel and parallel configurations.

 The first difference is in the GMR structure. In this case, current flows in both “perpendicular to

plane” (CPP), or “in the layer plane” (CIP) [36]. However, in TMR, current only flows in a

perpendicular way. The second difference is that in GMR, all the layers are conductors, which

leads to larger current transfer. On the other hand, TMR devices have insulators which is

preferable in logic and non-volatile memory designs.

2.1.1 Magnetic Tunnel Junction (MTJ)

Figure 2.4 (a) shows the vertical structure of an MTJ, where two FM layers i.e., Free Layer (FL)

and Pinned Layer (PL) with distinct coercivities, sandwich a thin oxide barrier, e.g. MgO [37].

The magnetization orientation of the pinned layer is fixed magnetically and is used as the reference

layer. However, the magnetization of the free layer can be switched to be anti-parallel or parallel

15

Figure 2.4: (a) vertical view of the MTJ structure [20], (b) In-plane MTJ (IMTJ), and (c)

Perpendicular MTJ (PMTJ) [29].

to the pinned layer orientation as depicted in Figure 2.4 (b). The resistance of the MTJ is referred

to as tunneling magnetoresistance (TMR) [37] and the TMR ration determines the performance of

an MTJ as defined below:

 𝑇𝑀𝑅 =
∆𝑅

𝑅𝑃
=

𝑅𝐴𝑃−𝑅𝑃

𝑅𝑃
=

𝐺𝑃−𝐺𝐴𝑃

𝐺𝐴𝑃
 (2.3)

where 𝐺𝑃 and 𝐺𝐴𝑃 are the conductance of anti-parallel and parallel states. The conductance

expressions are given by:

 𝐺𝑃 = 𝑁𝑀1𝑁𝑀2 + 𝑁𝑚1𝑁𝑚2

 𝐺𝐴𝑃 = 𝑁𝑀1𝑁𝑚2 + 𝑁𝑚1𝑁𝑀2 (2.4)

where 𝑁𝑀1 and 𝑁𝑚1 are the effective densities of states of majority and minority electrons at the

Fermi energy in both magnetic layers. As a result, the TMR ratio can be calculated using Equations

16

2.2, 2.3 and 2.4, which is expressed in terms of the spin polarization by:

 𝑇𝑀𝑅 =
2𝑃1𝑃2

1−𝑃1𝑃2
= {

𝑅𝑃 =
2

1+𝑃1𝑃2

𝑅𝐴𝑃 =
2

1−𝑃1𝑃2

 (2.5)

where P1 and P2 are spin-polarizations of each layer. For the tunneling barrier design, amorphous

Al2O3 was first utilized in 1994 to achieve a room temperature magnetic tunneling transport [32,

38]. The TMR ratio of such design can reach up to 70% by enhancing the fabrication and material

conditions [35]. However, spintronic applications such as MRAMs still require a minimum of

%150 TMR at the room temperature, regardless of the fact that 70% TMR is a huge improvement

compared to the spin valve GMR. One of the other improvements in MTJ is utilizing a single-

crystal MgO tunnel barrier providing larger TMR, referred to as the giant TMR effect [39, 40].

The recent experiments on the TMR ratio have reached to a 600% at room temperature [41].

As shown in Figure 2.4 (b) and 2.4(c), the magnetic direction of MTJ layers can be out of the film

plane or in the film plane indicated as perpendicular MTJ (PMA) and in-plane MTJ (IMA)

structure, respectively. Nevertheless, PMAs are more preferable due to their improvements over

IMAs including higher thermal stability and lower switching critical current [9].

17

Figure 2.5: Magnetic field switching approach for MTJ [29].

2.1.2 Magnetic Field Switching

The write operation of an MTJ is achieved by switching the FL magnetization orientation. In the

magnetic field switching approach, an external magnetic field which is generated by two

orthogonal current lines, the word line (WL) and bit line (BL), is applied to switch the free layer

magnetization orientation as shown in Figure 2.5. For performing the write operation, 𝐼𝑤 and 𝐼𝑏

currents, are applied to BL and WL, generating the easy-axis 𝐻𝑏, and the hard-axis 𝐻𝑤 switching

fields, respectively. Here, 𝐻𝑤 corresponds to 2𝐾𝑢/𝑀𝑠 where 𝑀𝑠 is the saturation magnetization

and is applied to the easy axis perpendicularly. Next, this field is replaced by a smaller bias field

applied along the easy axis to finish the switching process. By passing the current through BL, we

can accomplish the read operation. One of the advantages of this approach is the separate read and

write paths. Nevertheless, in the write operation, the narrow write margin and half-selectivity

issues are a result of the combination of two perpendicular currents. Additionally, to perform an

accurate write operation in magnetic field switching approach, generating the needed magnetic

fields involves high currents of ~10 mA, which limits the scalability of this approach as a result of

18

Figure 2.6: Spin filtering effect in STT , (a) electrons flowing from the pinned layer to free layer,

switch the nanomagnet to parallel state, and (b) electrons flowing from the free layer to pinned

layer, switch the nanomagnet to anti-parallel state [29].

the electromigration effect. To solve this problem, several solutions have been proposed [42].

Though, the magnetic field switching still endures large area overhead, high power consumption,

and low speed.

2.1.3 Spin Transfer Torque (STT) Switching

In the Spin Transfer Torque (STT) switching approach, a bidirectional spin-polarized current is

required for switching MTJ nanomagnet configuration. The spin-polarized current is generated by

a spin-polarizer. Electrons flowing from the pinned layer to the free layer are spin-polarized by the

pinned layer and obtain a spin angular momentum that is approximately aligned to the

magnetization orientation of the pinned layer. This process is referred to as the filtering effect as

shown in Figure 2.6 Next, the spin-polarized electrons proceed into the free layer, where their

opposite sign torque with equal magnitude must be transferred to the free layer magnetization as a

result of the conservation of angular momentum. When the number of electrons surpasses the

critical current as the threshold value, the spin-transfer torque (STT) employed by the current will

switch the magnetization of the free layer regarding the pinned layer. When the charge current is

19

applied through the opposite direction, the obtained spin-polarization will be opposite the pinned

layer magnetization by the reflection from the free layer, which in turn switches the nano magnet

to anti-parallel state.

In the STT switching approach, the free layer magnetization is theorized by a unit vector named

magnetic moment 𝑚⃗⃗ under the macrospin approximation. The magnetization switching dynamics

are described by a Landau-Lifshitz-Gilbert (LLG) equation [43], as below:

𝜕𝑚⃗⃗⃗

𝜕𝑡
= −𝛾𝜇0𝑚⃗⃗ × 𝐻𝑒𝑓𝑓

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑎 (𝑚⃗⃗ ×
𝑑𝑚⃗⃗⃗

𝑑𝑡
) −

𝛾ℏ𝐽𝑃

2𝑒𝑡𝑜𝑥𝑀𝑠
𝑚⃗⃗ × (𝑚⃗⃗ × 𝑚⃗⃗ 𝑟) (2.6)

where 𝐻𝑒𝑓𝑓
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the effective magnetic field, which is the summation of various magnetic fields such

as the external magnetic field, the anisotropy field, and the demagnetization field. 𝛾 is the

gyromagnetic ratio. 𝜇0 is the permeability in the free space. 𝑎 is the Gilbert damping constant. ℏ

is the reduced Planck constant, 𝑃 is the spin-polarization, 𝑒 is the elementary charge, 𝑡𝑜𝑥 is the FL

thickness, 𝑀𝑠 is the saturation magnetization, 𝑚⃗⃗ is the unit vector along the pinned layer

magnetization, and 𝐽 is the write current density. Figure 2.7 shows the three torques presented in

Equation 2.6. [44, 45]. The field-induced torque is the first torque that initiates the magnetic

moment to process in presence of the effective magnetic field. The second torque is the Gilbert

damping torque which eases the precession. Finally, the third torque is the STT, which is

proportionate to the density of the charge current and because of the polarity of applied current, it

can help or resist the Gilbert damping torque. For example, for the injected current densities larger

20

Figure 2.7: The dynamics of a nanomagnet under the spin transfer torque impact.

than the critical current density, the employed STT can make up for the Gilbert damping torque

and switches the free layer magnetization orientation. As a result of the straightforwardness of

STT implementation, scalability, lower read energy, and higher read speed compared to the

magnetic field switching and thermally-assisted switching approaches, it has developed into the

principal switching approach for the two-terminal Spintronics devices including GMR [36, 46]

and TMR devices [47, 48]. In this method, a single shared path is used for both write and read

operations. This can result in the unintentional write operation during the read operation.

Additionally, as a result of the pre-switching oscillation [23, 49] a substantial incubation delay

imposes high switching energy. Consequently, as an alternative method, the Spin-Hall Effect

(SHE) method has been proposed for 3-terminal spin-based TMR devices, which offers separate

read and write paths, while spending a notably less switching energy [26, 27, 50].

21

Figure 2.8: (a) A positive current in the +x direction generates a spin current in the +z direction.The

applied spin current generates the needed spin torque for adjusting the magnetic direction of the

FM in +y direction, (b) Top view [29].

2.1.4. Spin Hall Effect (SHE) Switching

The research in [51] confirms that the Spin-Hall Effect (SHE) in nanomagnetic devices, can

generate a spin-polarized current used to create torque, instead of passing charge current through

a ferromagnet in spin polarizer approach. The Spin-Hall Effect method is shown in Figure 2.8.

A SHE-MTJ is a 3-terminal device, with isolated paths for write and read operations with lower

switching energy compared to STT-MTJs. It consists of a Heavy Metal (HM) nanowire beneath

an MTJ with two ferromagnetic layers, called the pinned and free layers, separated by a thin oxide

barrier [52]. The MTJ free layer has two different magnetization orientations, called parallel (P)

and antiparallel (AP), that provide two different levels of resistance for this device. The HM can

be made of β-tungsten (β-W) or β-tantalum (β-Ta) [53] with different electrical characteristics.

Due to the higher positive Spin Hall angle achieved with tungsten [53], we modeled our device

with this material. In order to store the data in the SHE-MTJ, the free-layer magnetization should

be manipulated. This is accomplished by injecting a charge current (Ic) to HM in the +x (/ −x)

22

direction as shown in Figure 2.9 (a). Due to spin Hall effect, Ic will cause an accumulation of

oppositely-directed spin vectors on both surfaces of the HM that then generate a spin current (Is)

and further a Spin-Orbit Torque (SOT) in +y (/ −y) direction. The spin current will change the

magnetization configuration of the free layer in the ±z direction according to the direction of the

charge current [54]. The Spin Hall injection efficiency (PSHE) can be expressed as:

𝑃𝑆𝐻𝐸 =
𝐼𝑠

𝐼𝐶
= 𝜃𝑆𝐻

𝐴𝐹𝑀

𝐴𝐻𝑀
(1 − sech (

𝑡𝐻𝑀

𝜆𝑠𝑓
)) (2.7)

where AFM and AHM denote the adjacent free layer area and the cross-sectional area of HM,

respectively. In Equation (2.7), θSH represents the spin Hall angle, as the ratio of generated spin

current density to the charge current density. Also, tHM and λsf denote the thickness of HM

substrate and the spin flip length, respectively [27]. If the right portion of the Equation 2.7 is greater

than 1, then the spin-polarized current is larger than the charge current. As a result of the difference

in scattering ratio of electrons at the heavy metal and ferromagnet interface, the spin-transfer

efficiency in ferromagnet is lower than heavy metal. Thus, the 𝑃𝑆𝐻𝐸 is larger than 1, which shows

high efficiency [8].

Figure 2.9: (a) Structure of a SHE-MTJ, (b) Resistive equivalent read circuit of SHE-MTJ.

23

Figure 2.10: Time-averaged behavior of the SHE-MTJ based p-bit device showing the

magnetization fluctuations.

2.1.5 Probabilistic Spintronic Device (p-bit)

The structure of the p-bit device is the same as Figure 2.9 (a), which consists of a Spin Hall Effect

Magnetic Tunnel Junction (SHE-MTJ) with a circular unstable (low energy barrier) nanomagnet

(Δ≪40kT) [20, 55], whereby the output is amplified by two CMOS inverters. SHE-MTJ-based p-

bit is a 3-terminal device, with separated read (rd) and write (wr) paths [27, 56]. It consists of an

unstable MTJ with two ferromagnetic layers as pinned layer and free layer, separated by a thin

oxide barrier on top of a Heavy Metal (HM) nanowire [52] made of β-tungsten (β-W) or β-tantalum

(β-Ta) similar to the SHE-MTJ device discussed in the previous subsection [53]. The pinned layer

is a stable nanomagnet with a fixed orientation whereas the free layer of the MTJ can be oriented

as parallel (P) and antiparallel (AP), providing two levels of resistance. As shown in Figure 2.10

(a), the resistance level can be manipulated by injecting a charge current (Ic) to the HM in the +x

(/−x) direction [57, 58]. This charge current will initiate the accumulation of oppositely directed

24

spin vectors on each surface of the HM, which produces a spin current (Is) and further a Spin-Orbit

Torque (SOT) in +y (/−y) direction. Corresponding to the direction of the charge current, the spin

current will change the magnetization configuration of the free layer in the ±z direction [54]. By

taking a long-time average of magnetization fluctuations, the spin-current driven low energy

barrier nanomagnet provides the sigmoidal function due to its intrinsic physics. Figure 2.9 (b)

shows an equivalent read circuit of a SHE-MTJ based p-bit. To read the data, a small read voltage

is applied to the MTJ (V+ and V- terminals) to sense its resistance (RMTJ). Then, a resistive voltage

divider is realized through the RMTJ and the reference resistor R0. The reference resistor is set to

the MTJ average conductance (𝑅0
−1 = GP + GAP/2) where GP and GAP are the parallel (P) and

anti-parallel (AP) state conductance. The corresponding voltage is fed to the input of the CMOS

inverters which are adjusted to their middle point of DC operation. Thus, the output voltage (Vout)

will stochastically fluctuate between “0” and “1”, whereas the probability of either value is

regulated by the input charge current [59]. The p-bit device generates a stochastic output under a

behavior analogous to the sigmoid activation function, whose steady-state probability is modulated

by an input current. For example, if the input current is a large positive number, the stochastic

output of this device will be “0” with a high probability. However, if there is no input current, the

output will randomly fluctuate between “0” and “1” with an equal probability of 0.5.

The device features are derived from the experimentally benchmarked models in [60] and the

circuit simulations have been performed using SPICE platform. We are aiming to define the time-

averaged behavior of the output as an analytical approximation. First, we link the flowing charge

current in the spin Hall layer to the spin-current absorbed by the magnet. For simplicity, we assume

short-circuit conditions, namely 100% spin absorption by the FM as expressed in the Equation 2.7.

25

By choosing an appropriate quantity for the 𝐴𝐹𝑀 and 𝐴𝐻𝑀, the generated spin-current can be

greater in magnitude than the “gain” generated by the charge current. The gain factor 𝑃𝑆𝐻𝐸 for the

parameters used herein as listed in Table 2.1, is ∼ 10. Accordingly, a function of input spin-current

polarized in the (±z) is used to estimate the magnetization behavior. Analytically, a distribution

function for a magnet at steady state with a Perpendicular Magnetic Anisotropy (PMA) and spin-

current in the ±z direction, can be written as below:

𝜌(𝑚𝑧) =
1

𝑍
exp (∆𝑚𝑧

2 + 2𝑖𝑠𝑚𝑧) (2.8)

𝑚𝑧 being the magnetization along +𝑧 direction, 𝑍 a constant for normalization, ∆ the nanomagnet

thermal barrier, and 𝑖𝑠 the spin-current normalization quantity, which can be described as 𝑖𝑠 =

𝐼𝑠/(
4𝑞

ℏ𝛼𝑘𝑇
), where 𝑞 is the electron charge, 𝛼 is the magnets’ damping coefficient, and ℏ the reduced

Planck constant. An average magnetization can be achieved using the Eq. (4) as follows: < 𝑚𝑧 >

= ∫ 𝑑𝑚𝑧
+1

−1
𝑚𝑧𝜌(𝑚𝑧)/ ∫ 𝑑𝑚𝑧

+1

−1
𝜌(𝑚𝑧). Since 𝛥 ≪ 𝑘𝑇, the Langevin function < 𝑚𝑧 >= 𝐿(𝑖𝑠) is

realized by < 𝑚𝑧 > where 𝐿(𝑥) =
1

𝑥
− 𝑐𝑜𝑡ℎ

1

𝑥
. For a low energy barrier PMA magnet, this

demonstrates an accurate average magnetization description around a z-directed spin-current [59].

However, in this work, we cannot obtain a simple analytical formula, as the p-bit device

nanomagnet has a strong in-plane anisotropy with a circular shape. Consequently, we adjust the

normalization current by a factor 𝜂, using a fitting parameter in the Langevin function, in a way

that the adjusted normalization constant is converted to (4𝑞/ℏ𝛼𝑘𝑇)(𝜂). With raising the shape

anisotropy (𝐻𝑑 ∼ 4𝜋𝑀𝑠), this factor increases and becomes equal to “1” without a shape

anisotropy. When the charge currents and the magnetization are connected, the CMOS inverter

26

output probability can be approximated by a phenomenological equation in addition to fitting

parameter 𝜒 as follows: 𝑝 =
𝑉𝑂𝑈𝑇

𝑉𝐷𝐷
≈

1

2
[1 − 𝑡𝑎𝑛ℎ(𝜒 < 𝑚𝑧 >)]. This equation can be used to

connect the output probability with the input charge current, by physical parameters. An evaluation

of the Spice model and the aforementioned analytical equivalences is shown in Figure 2.10. This

confirms the agreement of 𝜂 with the magnetization, and 𝜒 with CMOS components [59].

2.2 Explored Neural Networks

This dissertation analyzes three distinct artificial neural networks: Generative Adversarial

Networks (GANs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory networks

(LSTMs) as described in the following subsections.

Table 2.1: p-bit device parameters.

Parameter Value

Saturation Magnetization, Ms 300 emu/cm3

Circular FM Diameter, ϕ 100 nm

Circular FM Thickness, tFM 2 nm

Gilbert Damping Factor, α 0.01

Spin Diffusion Length, λsf 2.1 nm

Spin Hall Angle, θSHM 0.5

SHM Dimension WSHM × LSHM× TSHM 100 × 100 × 3.15 nm3

Spin Polarization, P 0.52

Conductance, G0 150 μS

Spin Hall Resistivity, ρ 200 μΩ-cm

Temperature, T 300 K

27

2.2.1 Generative Adversarial Networks

Compared to conventional CNN topologies, realization of Deep convolutional GAN (DCGAN)

[61] implementations have several constraints: a) the strided convolutions and fractional-strided

convolutions on D and G, respectively, are utilized instead of the pooling layers; b) Although in

the last layer of both D and G models, Sigmoid and tanh activations are highly used, in the other

layers of G and D models, ReLU and LeakyReLU activations are utilized, respectively; and c) batch

normalization is leveraged on both D and G models to stabilize the training process.

DCGANs are composed of two learning subnetworks, a generator (G) as a deconvolutional neural

network and a discriminator (D) as a CNN. Usually, these are developed as Deep Neural Networks

(DNNs), which are trained simultaneously. Despite traditional unsupervised learning techniques,

in GAN, feature representations can be learned from raw data, which results in higher accuracy.

The generator learning model can be optimized to produce deceptive samples to fool the

discriminator, whereas the discriminator learning model is trained in a way to distinguish the real

samples from the artificial ones. The entire process is similar to a 2-player minimax game, which

is expressed by:

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥 ~𝑃𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))], (2.9)

where 𝑃𝑑𝑎𝑡𝑎(𝑥) is the distribution of data and z is the noise vector. By leveraging minibatch of

data samples from D and fake images from G, we minimize 𝑉(𝐷, 𝐺) regarding G by assuming

fixed D and maximize it regarding elements of D by assuming fixed G. Due to the nature of zero-

sum game, each of D and G models try to improve their performance, finding a Nash equilibrium

point [62], in a non-cooperative manner, which in turn causes several issues like no guarantee for

28

convergence. Some of the most recent and promising advancements in GAN training algorithms

are Wasserstein GAN (WGAN) [63], WGAN with weight clipping (WGANCP) [64], and WGAN

with gradient penalty (WGAN-GP) [64] leveraging modified loss functions. WGAN algorithm

uses Wasserstein distance as a quantitative scheme to measure the distance between two

probability distributions. Further improvements can be achieved by limiting the trained weights of

D in a certain range in WGAN-CP and utilizing gradient penalty in WGAN-GP training

algorithms.

Although GAN, particularly DCGAN, can be considered as a dominant algorithm for unsupervised

learning technique, which is useful for self-learning IoT nodes [65], its

deconvolution/convolutional layers occupy the largest portion of running time and consume

significant computational resources, which is crucial for IoT nodes. Therefore, herein we focus on

developing an optimized in-memory accelerator for both types of layers via algorithm and

hardware codesign approach.

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have demonstrated notable achievements in machine learning

applications involving classification, speech recognition, machine translation, and static image

processing due to their ability to accumulate the effects of the input data over time [66]. As a group

of Artificial Neural Networks (ANNs) focusing on sequential data, RNNs are based on a recurrent

path of the information flow as shown in Figure 2.11 However, unlike feedforward ANNs, the

output of RNNs depend both on current input and the previous computation results. Thus, the

feedback, as a crucial and unique component, provides the memory to capture the computed

information in RNNs [66].

29

In RNNs, as shown in Figure 2.11, a directed graph is shaped along temporal sequences with a

connection between its nodes. The input vectors (𝑖(𝑡)) are fed into the network one at a time during

forward propagation, regulated towards the neurons in the hidden layer. The states of the hidden

neurons are updated upon arrival of the input vectors and corresponding synapse weights. The

updated neuron state is retained for use upon arrival of subsequent input patterns. With arrival of

a new input vector at the proceeding time step, the neurons in the hidden layer compute a new state

vector based on the new input vector and the retained state vector [67]. Assuming that the W matrix

in Figure 2.11 represents the recurring feedback synapses matrix in the hidden layer, Equation

(2.10) and Equation (2.11) can give a mathematical representation of RNN updating the neuron

state over time:

ℎ(𝑡) = 𝑓(𝑈. 𝑖(𝑡) + 𝑊. ℎ(𝑡 − 1) + 𝑏ℎ) (2.10)

𝑦(𝑡) = 𝑉. ℎ(𝑡) (2.11)

Figure 2.11: Folded and unfolded RNN structures.

where ℎ(𝑡) represents the hidden neuron state and 𝑦(𝑡) denotes the output neurons state at time

step 𝑡. 𝑓 is the activation function in the hidden layer. 𝑈 and 𝑉 both denote the feedforward synapse

30

Figure 2.12: (a) Basic RNN structure, (b) LSTM.

matrices, where 𝑈 holds the synapses from the input layer to the hidden layer and 𝑉 represents the

synapses from the hidden layer to the output layer. Finally, 𝑏ℎ denotes the bias in the neurons of

the hidden layer. The synaptic weights and the bias vectors are initialized before training based on

the network implementation [67].

2.2.3 Long Short-Term Memory (LSTM) Networks

LSTM is a specific type of RNN that is designed to overcome some of the drawbacks of the RNNs.

Figure 2.12 (a) indicates the basic RNN structure. RNN output depends on both the current sample

(𝑖𝑡) and the previously calculated network state (𝑤𝑡) as the network input. Unlike ANN, RNN has

a feedback loop which gives RNN the capability to store the previous states and make future

decision based on the previous values. The computational equations of a basic RNN cell are given

below:

𝑤𝑡 = 𝑡𝑎𝑛ℎ (𝑖𝑡𝑈 + 𝑤𝑡−1𝑊 + 𝑏𝑖𝑎𝑠) (2.12)

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑡𝑉) (2.13)

31

where 𝑖𝑡 , 𝑤𝑡 , and 𝑦𝑡 are the current input, hidden state, and output for the current input,

respectively; V, W, and U contain trainable parameter matrices. With the feedback loop RNN is

expected to handle long-term dependencies but this is not true when it comes for practical

application. RNN can’t handle long-term dependencies in practice due to the vanishing gradient

problem [68].

LSTM is a special kind of RNN which tries to solve the problem of vanishing gradients that we

encounter during the backpropagation technique of neural networks [69]. Figure 2.12 (b) indicates

an LSTM cell which contains three gates: input gate 𝑥𝑡, forget gate 𝑓𝑡 , and output gate 𝑜𝑡 . The

forget gate decides which information from the previous cell state to be preserved and which must

be forgotten. This decision is taken using a sigmoid layer which gives output between 0 and 1 [70].

The input gate decides which of the new cell contents are to be written to the cell state. It has two

parts- the sigmoid layer decides which values of input (concatenation of new input values and

output values from previous states) to update and the tanh layer generates a vector of new candidate

values. The output gate decides which content of the cell to output based on given inputs and

previous state values. The output vector is obtained by multiplying a new cell state which is

normalized to values between -1 to 1 using tanh activation function and output of sigmoid layer

that decides which part of cell state and given to output. The dimensions of all the gates is same

as the dimensions of hidden state. The computational equations of LSTM are given below:

𝑥 = 𝛔(𝑖𝑡𝑈
𝑥 + 𝑤𝑡−1𝑊

𝑥 + 𝑏𝑥) (2.14)

𝑓 = 𝛔(𝑖𝑡𝑈
𝑓 + 𝑤𝑡−1𝑊

𝑓 + 𝑏𝑓) (2.15)

𝑜 = 𝛔(𝑖𝑡𝑈
𝑜 + 𝑤𝑡−1𝑊

𝑜 + 𝑏𝑜) (2.16)

32

𝑔 = 𝑡𝑎𝑛ℎ (𝑖𝑡𝑈
𝑔 + 𝑤𝑡−1𝑊

𝑔 + 𝑏𝑔) (2.17)

𝑐𝑡 = 𝑐𝑡−1 ʘ 𝑓 + 𝑔 ʘ 𝑥 (2.18)

𝑤𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) ʘ 𝑜. (2.19)

Three main operation types can be observed from the above equations: nonlinear functions

(sigmoid 𝛔 and hyperbolic tangent 𝑡𝑎𝑛ℎ), matrix-vector multiplication (e.g., 𝑤𝑡−1𝑊
𝑥 and 𝑖𝑡𝑈

𝑥),

and element-wise multiplication (e.g., 𝑔 ʘ 𝑥) [71].

LSTM Activation Functions: The conventional activation functions used in an LSTM are

sigmoid or logistic-sigmoid and hyperbolic tangent in short 𝑡𝑎𝑛ℎ activation functions. A sigmoid

activation function alters any input value to value between 0 and 1. Similarly a 𝑡𝑎𝑛ℎ activation

function alters any input value to value between -1 and 1 [72]. This will help to allow or not allow

the flow of information through the LSTM gates. The equations of these functions are given below:

𝜎 (𝑥) = 1/(1 + 𝑒𝑥𝑝(−𝑥)) (2.20)

tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥) (2.21)

Where, x is the input, 𝜎 (𝑥) is the sigmoid function, and tanh(𝑥) is the hyperbolic tangent function.

33

CHAPTER 3 : APPROXIMATE GENERATIVE ADVERSERIAL

NETWORK (APGAN)

3.1. Fundamentals of Generative Adversarial Networks

Recently, deep Convolutional Neural Networks (CNNs) [73] have shown impressive performance

for computer vision, e.g., image recognition tasks, achieving close to human-level perception rates.

These neural network models are usually trained using a supervised approach, which limits

scalability due to the requirement for large-scale labeled datasets. The processing demands of high-

depth CNNs spanning hundreds of layers face serious challenges for their tractability in terms of

memory and computation resources and because of so-called “CNN power and memory wall”

phenomena, conventional processing platforms such as CPU cannot perform this training step.

This has been motivating the development of alternative approaches in both SW/HW domains to

improve conventional CNN efficiency.

In algorithm-based approaches, use of quantizing parameters [74], and network binarization [75]

have been explored extensively to eliminate the need for intensive Multiplication-And-

Accumulate (MAC) operations. Recently, utilizing weights with low bit-width and activations

reduces both model size and computing complexity [75]. For instance, performing bit-wise

convolution between the inputs and low bit-width weights has been demonstrated in [75] by

converting conventional MAC operations into their corresponding AND bit count operations.

Meanwhile to improve computing efficiency of CNNs from the hardware point of view extensive

studies for developing deep learning accelerators using GPUs and FPGAs have been researched.

However, within conventional isolated computing units and memory elements interconnected via

34

buses, there are serious challenges, such as limited memory bandwidth channels, long memory

access latency, significant congestion at I/O chokepoints, and high leakage power consumption

[76, 77].

Processing-in-Memory (PIM) paradigms built on top of non-volatile devices, such as Resistive

Random Access Memory (ReRAM) [78, 79], Magnetic RAM (MRAM) [80-85], and Phase

Change Memory (PCM) [86] have been introduced to address the aforementioned concerns, such

as memory bottlenecks and high leakage power dissipation that has become increasingly

prominent with technology scaling. Due to the interesting features of Non-Volatile Memory

(NVM) technology such as near-zero standby power, high integration density, compatibility with

CMOS fabrication processes, and radiation-hardness, they offer some promising attributes for in-

memory processing implementations including the realization of logic functions along with an

inherent state-holding capability [87-89].

Figure 3.1: GAN structure. D downsamples the input data, while G is given a uniform noise

distribution to generate fake samples (1) In (2), fine-tuning of training is performed.

35

Due to the abovementioned challenges, semi-supervised and unsupervised learning models, such

as the Generative Adversarial Network (GAN) algorithm [90], especially Deep convolutional

GANs (DCGANs) [61], are of increasing interest. The DCGAN architecture is composed of two

separate models. A discriminator model (D) that estimates the probability of a given sample being

legitimate or counterfeit. It is trained as a detective to discern between fake samples and real ones.

Whereas, the other model, known as the generator (G), samples a uniform random noise input and

also captures the real data distribution to generate images as real as possible to deceive the

discriminator, as shown in Figure 3.1. Basically, this realizes a zero-sum game between the two

models. Based on the GAN structure, two training processes, i.e., consisting of four forward and

four backward passes are required, which are more sophisticated than CNN training with one

forward pass and one backward pass. Therefore, implementing an efficient accelerator for GAN

using the existing designs for energy and area-constrained IoT nodes, is vital but challenging.

In this section, to make GAN suitable for resource-limited edge devices, the advancements from

both algorithm and hardware architecture perspectives to efficiently accelerate GAN training are

deployed. The existing GAN algorithm is modified by replacing the multiplications in convolution

layers in the generator (G) model and in the discriminator (D) model, with less complex and more

efficient subtraction and addition.

3.2. Approximate GAN (ApGAN) Architecture

Figure 3.2 depicts the general architecture for our deep convolutional-based Approximate GAN

(ApGAN), which consists of four deconvolution and four convolution layers for generator (G) and

discriminator (D), respectively. In this section, first, the training procedure of ApGAN is analyzed

36

with respect to the partially-quantized layers. Afterwards, we introduce the method of partial

approximate computing to further improvement at the cost of lower accuracy.

3.3 ApGAN Training

Since discriminator units are developed similar to conventional CNNs, all the proposed

compression techniques such as quantization and pruning can be applied in the same way.

However, due to the deconvolution process in G, local to global mapping instead of the global to

local mapping process in D, leveraging these techniques have negative effects on the developed

compression methods. On the other hand, as mentioned previously, GAN consumes massive

computational power for the training phase, in which two distinct D and G models should be

trained separately but simultaneously.

Therefore, to enhance the efficiency of training and facilitate hardware mapping, a novel training

approach including partially-quantized layers, i.e., weight binarization, and modification of the

loss function presented in [91], is introduced. Herein, both D and G networks are trained using

Figure 3.2: Approximate GAN system and its training loop from (T1) to (T8).

37

binarized weights (-1, +1), which results in the elimination of the computationally expensive

multiplication operations. ApGAN training includes a) forward computation, computation phase,

and b) backpropagation, update phase. After producing a series of fake samples by generator (T1),

both real and fake samples are imported into the D network (T2). Next, regarding the output layer

of D, the error is calculated based on the gradient of the loss function (T3). Then (T4) starts by

feeding the error back into D. After passing the error to each layer of D, the weight of D is updated.

Updating the G network starts by importing artificial sample (T5) into D (T6). The loss for training

G is then computed (T7) and back-propagated to G (T8) to update its weights.

The eight-step training process can be summarized into three main phases, which are operating

sequentially in an iterative manner: (I) weight binarization and statistical weight scaling, (II) binary

weight-based inference to compute the loss function and (III) back propagation to update full

precision weights. In (I), current full precision weights are binarized by only taking the sign

function, expressed in Equation (3.1) and then the corresponding scaling factor will be computed

based on the current statistical distribution of full precision weight.

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑏 = 𝑠𝑔𝑛(𝑦) = {
+1, 𝑖𝑓 𝑦 ≥ 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.1)

In this case, the sign function is non-convex, which results in the gradient becoming zero. Thus, a

standard backpropagation approach will be impractical due to the vanishing gradient problem.

Several studies have performed to make the sign function smooth by developing continuation

methods such as softsign [92] and appsign [93], in which the original complex problem is split

into several problems that can be optimized easier by reducing the smoothing rate steadily. Herein,

due to similar observations between appsign(.) and tanh(.) functions also ease of implementation

38

of tanh activation function in hardware perspective, Equation (3.2) is considered in the forward

path.

𝑎𝑝𝑝𝑠𝑖𝑔𝑛(𝑦) = {

+1, 𝑖𝑓 𝑦 ≥ 0
𝑦, 𝑖𝑓 1 ≥ 𝑦 ≥ −1
−1, 𝑖𝑓 𝑦 ≤ −1

𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 𝑠𝑖𝑔𝑛(𝑦) = lim
𝛽→∞

𝑎𝑝𝑝𝑠𝑖𝑔𝑛 (𝛽𝑦) ≈ lim
𝛽→∞

tanh (𝛽𝑦) (3.2)

In order to achieve a good binary representation, we use the modified Binarized Representation

Entropy (BRE) regularization [91] to boost the variety of binary columns in the low-dimensional

layer [92]. The BRE is calculated over a mini-batch of 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} including two terms,

marginal entropy (ME), and modified activation correlation [91].

 𝑙𝑀𝐸 =
1

𝑑
∑ (

1

𝐾
∑ (𝑠𝑘, 𝑗)

𝐾
𝑘=1)

2
𝑑
𝑗=1

 𝑙𝑀𝐴𝐶 = ∑
𝛼𝑘,𝑗

∑ 𝛼𝑘,𝑗
𝑁
𝑗,𝑘=1,𝑗≠𝑘

.
|𝑆𝑓,𝑗

𝑇 .𝑆𝑓,𝑘|

𝑑

𝑁
𝑗,𝑘=1,𝑗≠𝑘 (3.3)

where 𝑠𝑘 is the activation vector of 𝑥 ∈ 𝑋, while the large parenthesis denotes the average of 𝑗th

element of the 𝑠𝑘. Letter 𝛼𝑘,𝑗 are weights regarding 𝑆𝑓,𝑗
𝑇 . 𝑆𝑓,𝑘 pairs, and the sum inthe denominator

is defined as a normalization constant. Therefore in (II), the input mini-batch takes the binarized

model for inference and the loss function of the discriminator will be calculated, which can be

expressed as follow:

𝐿 = 𝜆1. 𝑙𝐷 + 𝜆2. 𝑙𝑀𝐸 + 𝜆3. 𝑙𝑀𝐴𝐶 (3.4)

39

Figure 3.3: Number of layers and binarization error (be) w.r.t degree of redundancy (ψ).

where, 𝑙𝐷 as adversarial loss is computed by Equation (2.9) and 𝜆𝑠(𝜆1 − 𝜆3) are regularization

constants. Whereas training D is performed by Equation (3.4), the G model is trained by 𝑙𝐺 =

 ‖𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
𝑓(𝑥) − 𝐸𝑥~𝑝𝑧(𝑧)𝑓(𝐺(𝑧))‖ 2

2
, where the intermediate layer of D, penultimate layer,

defines 𝑓(𝑥). In (III), the weights will be updated during back-propagation and stochastic gradient

descent is utilized to minimize the loss. The next iteration starts to recompute the weight scaling

factor and binarize weights as described in step (I).

To realize the possible layers to be quantized, in both G and D networks, degree of redundancy

parameter [94], (𝜓) ≈ (𝑐𝑖 − ℎ𝑖𝑤𝑖), is utilized. This term is definedand computed based on the

input matrix dimension, where 𝑐𝑖 is the number of channels, ℎ𝑖 and 𝑤𝑖 are the number of height

and width, respectively. It has been proven that the deconvolution layer with the negative value of

𝜓, which indicates that the dimension of theinput space is lower than the dimension of the

40

Figure 3.4: (a) ApGAN’s binary convolution, and (b) partial approximate computing on three

LSBs.

outputspace, is more susceptible to binarization errors. The obtained results regarding ApGAN, as

shown in Figure 3.3, depict deeper layers, i.e., layer 1 (4) in D (G), generate the lowest values for

degree of redundancy, means biggest negative number, which causes the maximum binarization

errors. As a result, the shallower layers, layers with a higher degree of redundancy, will be

binarized. To avoid further accuracy degradation in our ApGAN, all the deconvolution layers in

G except the last one and all the convolution layers in D except the first and last layers (these layers

are kept in floating point, un-binarized, format) are quantized.

3.4 Partial Approximate Computing Unit

Approximate computing paradigms can improve metrics such as energy, delay, and area at the cost

of lower accuracy [95]. However, the technique needs to be applied judiciously to avoid

41

unacceptable error in output behaviors. Nowadays, approximate computing paradigms have been

studied extensively to improve the performance efficiency of systems such as energy and area

reduction at the cost of lower accuracy. Figure 3.4 (a) depicts the simplified computation of

ApGAN’s binarized convolutional layers. Initially, 𝑐 channels (herein 𝑐 = 4) in the size of

𝑘ℎ × 𝑘𝑤 (herein 3 × 3 has been used) are selected from input batch and accordingly generates a

combined batch with respect to the corresponding {-1, +1} kernel batch. The combined batch is

then mapped to the designated computational sub-arrays of ApGAN accelerator (detailed in

chapter 3.6). After this step, the main computation is to perform full-precision addition/subtraction

between 32-bit output feature maps. Since, implementation of the whole design using approximate

adders results in large errors in outputs, herein, a partial approximate computing unit consisting of

a Precise Adder (PA) and an Approximate Adder (ApA) is developed. As shown in Figure 3.4 (b),

the PA and ApA are used for the most significant bits (MSBs) and the least significant bits (LSBs),

respectively, in a manner to maximize the accuracy and minimize energy consumption. In order

to find the optimal number of LSBs for ApA, regarding accuracy and energy trade-off, PyTorch

implementation of ApGAN inspired by BGAN and BRE regularization [91] method combined

with depthwise separable convolution is developed and evaluated.

3.5 ApGAN Accelerator

3.5.1 Architecture

In order to address data transfer and computation limitations of various GAN architectures, we

develop an in-memory accelerator for approximate GAN, based on memristive computational

42

Figure 3.5: (a) The ApGAN accelerator, (b) memristive computational subarray architecture, (c)

configurable memory sense amplifier, (d) 3-input majority functions realization using resistive

references, and (e) MAJ3’s transient response for four different inputs.

sub-array. In comparison to well-trained GANs using floating point operations on CPUs and

GPUs, ApGAN has the least computational complexity on the underlying hardware, due to the

binarization of weights in the forward path. The proposed accelerator can execute the entire GAN

training step discussed in the previous sections and the forward path of training in both

discriminator and generator units is focused upon herein. The architecture of ApGAN accelerator

is shown in Figure 3.5 (a). It includes Image and Kernel sub-arrays, distributed across the memory

banks, which are storing the original values of input feature-maps and weights, respectively. It also

43

contains the memristive computational sub-arrays and an External Processing Unit (EPU) with

five computational components (i.e., Binarizer, Activation Function, Batch Normalization, Loss

Functions 1and 2). Mathematically, a 𝐷𝐶𝑜𝑛𝑣 can be implemented with a direct 𝐶𝑜𝑛𝑣 [78]. This

step is achieved by adding zeros, using zero padding between inputs in the feature maps, and then

computing the convolution phase between the kernels and extended input feature maps. Since, in

the forward path the binarized weights are utilized, all the 𝐷𝐶𝑜𝑛𝑣 and 𝐶𝑜𝑛𝑣 operations are

converted to subtraction/addition (𝑠𝑢𝑏/𝑎𝑑𝑑). Here, we give an overview of ApGAN accelerator’s

functionality. Initially, for each ApGAN layer, 𝑐 channels in the size 𝑘ℎ × 𝑘𝑤 are selected from

input batch and accordingly produce a combined batch to which is the corresponding binary {-1,

+1} kernel processing (1) performed by the EPU’s binarizer. This step is readily accomplished by

changing the sign-bit of input data with regards to the kernel data. After this step, the channels of

a combined batch are transposed and mapped to the designated computational sub-arrays of

ApGAN (2). The presented computational array architecture can support massively-parallel and

flexible bit-width 𝑎𝑑𝑑/𝑠𝑢𝑏 operations required in forward path of ApGAN’s training as

elaborated in the next part. After parallel processing over combined batches, EPU’s shared

components are employed to process (3) the batches (i.e., calculating the losses, etc.) and

eventually generate output feature-maps (4) required for next layer.

3.5.2 Resistive Computational Sub-Array

The memristive sub-array architecture is shown in Figure 3.5 (b). This architecture includes one

modified Row Decoder (RD), Column Decoder (CD), and Sense Circuitry (SC). SC includes one

configurable sense amplifier per bit-line to maximize the throughput (Figure 3.5 (c)) and can be

adjusted by 𝐶𝑡𝑟𝑙 unit to morph between write operation and 3 possible read-based in-memory

44

operations. Write is accomplished by activating the corresponding Word-Line (WL) using RD and

then applying the differential voltage to the corresponding Bit-Line (BL) and Source-Line (SL) by

voltage driver leading to a change in memristor resistivity to either High-RH (/Low-RL). Read

operation is performed by activating the corresponding WL. The corresponding BL activated

through CD is connected to the SC. The SC’s sense amplifier generates a read current passing

through the resistive device to the grounded SL to generate a sense voltage (Vsen), which is then

compared with memory reference voltage activated by 𝑀𝑒 signal (Vsen,Low < VMe < Vsen,High).

Accordingly, the sense amplifier outputs Low-‘0’ (/High-‘1’) voltage if the path resistance is lower

(/higher) than RMe, memory reference resistance. We propose to extend the existing SC unit only

by adding two low-overhead reference resistances per sense amplifier to enable required in-

memory computing within ApGAN’s sub-arrays. The proposed configurable memory sense

amplifier (Figure 3.5 (c)) now consists of three reference-resistance branches that can be selected

by control bits (Me, M3, M5) by the sub-array’s 𝐶𝑡𝑟𝑙 to carry out one-threshold memory, 3-input

(MAJ3), and 5-input (MAJ5) majority functions and their complement in a single memory cycle,

respectively. To perform such in-memory computation, every three (/five) resistive cells located

in the same bit-line could be activated by RD and sensed to implement MAJ3/MAJ5. To realize

MAJ3 operation, as shown in Figure 3.5 (d), RM3 is set between RL//RL//RH (‘0’,‘0’,‘1’) and

RL//RH//RH (‘0’,‘1’,‘1’). For MAJ5, such reference is set between RL//RL//RL//RH//RH

(‘0’,‘0’,‘0’,‘1’,‘1’) and RL//RL//RH//RH//RH (‘0’,‘0’,‘1’, ‘1’,‘1’). Now, parallel resistances of

selected three(/five) cells will be compared with the corresponding reference resistances to

produce desired output.

45

3.5.3 Configurable In-Memory Addition Scheme

As the main operation of ApGAN, 𝑎𝑑𝑑/𝑠𝑢𝑏 is widely used toprocess most iterative layers which

consume the vast majority of the run-time in the network. Therefore, we present a parallel in-

memory computation and mapping method for 𝑎𝑑𝑑/𝑠𝑢𝑏 is based on ApGAN’s resistive

computational subarrays to accelerate multi-bit operations. A close observation on Full-Adder

(FA) truth table clarifies that an approximate FA (25% -ER on Sum) could be implemented through

making approximate sum like 𝑆𝑢𝑚𝑎𝑝𝑝 = 𝐶𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ . Based on this, a streamlined and cost-effective

approximate in-memory FA circuit can be designed by storing three input operands (𝑅𝑖, 𝑅𝑗 , 𝑅𝑘)as

resistances in the same memory bit-line and then using the MAJ3 scheme (Figure 3.5 (d)). The

𝐶𝑜𝑢𝑡 and 𝑆𝑢𝑚𝑎𝑝𝑝 of such adder are generated through MAJ3(𝑅𝑖, 𝑅𝑗 , 𝑅𝑘) and 𝑀𝐴𝐽3(𝑅𝑖, 𝑅𝐽, 𝑅𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅),

respectively, in a single memory cycle. Moreover, the accurate sum (𝑆𝑢𝑚𝐴𝑐𝑐) can be carried out

through MAJ5(𝑅𝑖 , 𝑅𝑗 , 𝑅𝑘 , 𝐶𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ , 𝐶𝑜𝑢𝑡

̅̅ ̅̅ ̅̅) with only writing back the 𝐶𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ into memory and then

applying MAJ5 scheme. In addition to transient response for MAJ3, Figure 3.5 (e) illustrates all

possible functional modes.

3.5.4 Instructions

While ApGAN is designed to be an independent energy efficient and high-performance

accelerator, we need to expose it to programmers and system-level libraries to use it. From a

programmer perspective, ApGAN is a third-party accelerator that can be connected directly to the

memory bus or through PCI-Express lanes rather than a memory unit, thus it is integrated similar

to that of GPUs. Therefore, a virtual machine and ISA for general-purpose parallel thread

execution need to be defined similar to PTX [96] for NVIDIA. In this way, the programs will be

46

translated to the ApGAN hardware instruction set at install time. ApGAN basically supports three

main instructions of in-memory copy (consecutive read and write), MAJ3 and MAJ5. The in-

memory copy takes two operands corresponding to destination and source row addresses. MAJ3

and MAJ5 takes the address of input operands and write back the result on a destination row. Such

instructions is directly copied/written to a predefined memory-mapped address ranges, for

example, in the memory type range registers (MTRRs), or by programming to Memory-Mapped

I/O regions that are allocated through a simple device driver to do initialization/cleanup for

required software memory structures. We allotted the subsection 3.6.4 to the aforementioned

explanation as highlighted in the manuscript.

3.5.5 Hardware Mapping

Figure 3.6 elaborates the required data organization and computation steps of ApGAN with a

straightforward and intuitive example only considering the 𝑎𝑑𝑑 operation. Clearly, 𝑠𝑢𝑏 can be

implemented based on add. Considering 𝑛-activated sub-arrays with the size of 𝑥 × 𝑦, each sub-

array can handle the parallel 𝑎𝑑𝑑/𝑠𝑢𝑏 of up to 𝑥 elements of 𝑚-bit (3𝑚 + 4 ≤ 𝑦) and so ApGAN

could process 𝑛 × 𝑥 elements simultaneously within computational sub-arrays to maximize the

throughput. After the mapping step (2) shown in Figure 3.5 (a), the parallel in-memory adder of

ApGAN accelerator operates to produce the output feature maps. The memory sub-array

organization for such parallel computation is delineated in Figure 3.6 Four reserved rows for Carry

47

Figure 3.6: Mapping and parallel in-memory addition within the resistive computational sub-array

of ApGAN.

results initialized by zero and 32 reserved rows are considered for Sum results. Every pair of

corresponding elements to be added together have to be aligned in the same bit-line. Herein,

channel 1 (Ch1) and Ch2 should be aligned in the same sub-array. Ch1 elements occupy the first

32 rows of the sub-array followed by Ch2 in the next 32 rows.

The addition algorithm starts bit-by-bit from the LSBs of the two words and continues towards

MSBs. We consider approximate computation for LSBs and accurate computation for MSBs based

48

on conclusion drawn from algorithm level evaluations in chapter 3.5. Figure 3.6 L.H.S. shows

App. LSB computation. There are 2 cycles for every bit-position to perform such computation. In

step one (1 in Figure3.6), two WLs (accessing to LSBs of elements) and one reserved carry row

are enabled to generate 𝐶𝑜𝑢𝑡 and 𝑆𝑢𝑚𝑎𝑝𝑝 in parallel for whole memory sub-array with 𝐶𝑡𝑟𝑙’s M3

command. During step (2), two WLs are activated to save back the results to the designated

locations. This carry-out bit overwrites the data in the carry latch and becomes the carry-in of the

next cycle. This process is concluded after 2 × 𝑚 cycles, where 𝑚 is a number of bits in its

elements. Figure 3.6 R.H.S. shows an Acc. MSB computation as a 4-cycle operation. In step (1),

two WLs (accessing to LSBs of elements) and one reserved carry row are enabled to generate 𝐶𝑜𝑢𝑡

in parallel. During step (2), three WLs are activated to store back the results of 𝐶𝑜𝑢𝑡 and 𝐶𝑜𝑢𝑡
̅̅ ̅̅ ̅̅ to

the designated locations. Now, five WLs are selected (step (3)) to generate the 𝑆𝑢𝑚𝑎𝑐𝑐 with 𝐶𝑡𝑟𝑙’s

M5 command and write it back (step (4)) to the sub-array. The Acc. MCB computation is

concluded after 4 × 𝑚 cycles, where 𝑚 is a number of bits in its elements.

3.5.6 Parallelism

Here, we design a Fully-Pipelined Computation mechanism named FPC on top of the presented

Spatial Parallelism (SP) method in [78] to boost ApGAN performance. The input data are usually

processed in 8/32/64 batch size-𝑏 during the training phase. For the sake of simplicity, Figure 3.7

depicts FPC method with a batch size of 2. Obviously, regardless of pipelining, GAN training

takes 𝑏 ×(D1+D2+G) cycles. Typically, if all inputs in the prior batch are processed, a new batch

can come into the pipeline. The key idea behind FPC is to duplicate the data for intermediate layers

such that pipelining can be readily achieved in ApGAN. Figure 3.7 shows such pipeline for 𝑏1 and

𝑏2. Consider DL as the discriminator’s layers, D1 needs DL+1+DL+(b-1) cycles, where b-1 cycles

49

are needed for draining a batch from a pipeline. The (SP) method [78] proves that for each input

batch, as there is no data-dependency between the training phases of discriminator, they can

Figure 3.7: Fully-paralleled training method for ApGAN.

perform simultaneously. We exploit the SP method in FPC, as shown Figure 3.7; D1 and D2

training phases occupy different computational sub-arrays and both

𝐶𝑜𝑛𝑣 and 𝐷𝐶𝑜𝑛𝑣 layers can be run at a same time. Consider GL as the generator’s layers, D2

takes GL+DL+1+DL+1+(b-1) latency for updating the D. Besides, FPC takes advantage of this

observation that after D2’s loss function computation and back-propagation to GD4 layer, the

training of generator for different batches can be started while the corresponding GD3 is being

processed in D2. This phase takes 2DL+2GL+2+(b-1).

3.6 Performance Evaluation

3.6.1 Experimental Setup and Results

In order to perform a fair comparison between our design and the well-known GAN models,

DCGAN, WGAN-CP, and WGAN-GP, the same architecture including four convolution and

deconvolution layers for D and G, respectively, is leveraged.

50

Datasets: We conduct experiments of ApGAN on several datasets to evaluate the performance of

the proposed algorithm, including MNIST [97], Fashion-MNIST [98], CIFAR-10 [99], STL-10

[100], and celeb-A [101]. MNIST is leveraged as a gray-scale dataset which contains 70,000

28 × 28 images of handwritten digits from 0 to 9, 60,000 images for training and 10,000 images

for testing sets. Similar to MNIST, Fashion-MNIST consists of 28 × 28 gray-scale images but it

includes 10,000 images for each of training and testing sets to form ten fashion categories. We use

CIFAR-10 for RGB images of size 32 × 32. It has 60,000 images evenly distributed in ten distinct

classes, in which 50,000 and 10,000 examples are used for training and testing, respectively. In

addition to CIFAR-10, STL-10 is used, which is similar to CIFAR-10 dataset except that it has

100,000 unlabeled images for unsupervised learning and only 500 labeled images for training.

Finally, we also exploit celeb-A to evaluate performance quantitatively. It includes 202,559 images

of celebrity faces labeled with 40 different face attributes and because each image consists of only

one face, the quality of the generated images is readily evaluated.

Evaluation Metrics: According to [102], which includes extensive studies for highly-used metrics

i.e., log-likelihood to evaluate the performance of NN models, authors showed there is not

necessarily a direct relationship between the good performance of GANs and the metric(s).

Therefore herein, we use Inception Score (IS) [103] as an evaluation metric in our experiments,

which is leveraged to measure information on the quality and variation of the generated images by

using a pre-trained inception V3 [104] network. The IS’s of generators is calculated by

𝐼𝑆𝐺 = exp (𝐸𝑥~𝑃𝐺
𝐷𝐾𝐿(𝑝(𝑦|𝑥)‖𝑝(𝑦))) (3.5)

51

Figure 3.8: Energy consumption versus IS regarding number of approximated bits.

where 𝑥 is an image, 𝑦 is the output label which will be predicted, and 𝐷𝐾𝐿(𝑝|𝑞) is the KL

divergence between two distributions, 𝑝 and 𝑞. A high 𝐼𝑆2 illustrates diversity and clarity among

generated images and it is achieved if 𝑝(𝑦|𝑥) low entropy, means that the generated image includes

clear objects, and 𝑝(𝑦) is high entropy, which indicates a high diversity of images from all

categories.

Results and Analysis. Herein, several sets of experiments on both CIFAR-10 and STL-10 using

DCGAN, WGAN-CP, and WGAN-GP are conducted. First, GAN networks are trained using 32-

bit floating point number weights as the baseline. Next, several variant GANs are trained from

scratch. Since the GAN training phase usually suffers from training instability and convergence

problems, the change of IS is monitored after each epoch, which helps us to observe the stability

of the proposed method compared to the full precision models.

52

Table 3.1: IS Values on CIFAR-10 and STL10 Datasets.

Model CIFAR-10 STL-10

 32-bit 5.46±0.2 2.93±0.2

 DoReFa-Net [74] 1.2±0.003 1.39±0.007

DCGAN TWN [105] 1.09±0.003 1.45±0.008

 TGAN [109] 4.52±0.1 2.91±0.3

 ApGAN 5.01±0.08 2.46±0.07

 32-bit 4.69±0.15 3.13±0.1

 DoReFa-Net [74] 3.84±0.09 2.37±0.05

WGAN-CP TWN [105] 4.26±0.07 2.78±0.06

 TGAN [109] 3.76±0.07 2.31±0.09

 ApGAN 4.46±0.15 2.39±0.1

 32-bit 5.51±0.008 3.04±0.09

 DoReFa-Net [74] 4.70±0.05 2.31±0.012

WGAN-GP TWN [105] 4.45±0.05 2.68±0.015

 TGAN [109] 4.98±0.01 2.81±0.05

 ApGAN 5.08±0.05 2.61±0.09

Figure 3.8 depicts the IS results for ApGAN on CIFAR-10 with respect to the number of

approximated LSBs, and energy consumption of the convolution layers. The optimal condition

occurs when 2 to 4 LSBs are approximated, which leads to a relatively high reduction in energy

whereas IS is slightly decreased. Table 3.1 summarizes ISs of DCGAN, WGAN-CP, and WGAN-

GP on CIFAR-10 and STL-10 datasets [105]. In addition to the 32-bit full-precision as the baseline,

ApGAN and three other GANs including ternarized and binarized-weight training are examined.

Based on the obtained results, the full precision WGAN-GP and WGAN-CP show the best ISs for

CIFAR-10 (5.51) and STL-10 (3.13) datasets, respectively. Although the IS of our proposed

ApGAN degrades roughly by 0.37 (in both examined datasets) compared to the best results, it

shows better scores than 32-bitWGAN-CP and almost all of the proposed fully-quantized training

approaches. Moreover, the training convergence behaviors for all the examined GANs are shown

53

in Figure 3.9. Although the baseline full-precision training has a faster convergence, our ApGAN

achieves comparable IS results for CIFAR-10 and STL-10.

In addition to the quantitative comparison, Figure 3.10 depicts the generated images by ApGAN

architectures for five different datasets as qualitative evidence. The generated images which look

similar to the full-precision DCGAN’s results verify the performance and functionality of ApGAN.

Figure 3.11 depicts loss values for both discriminator (D) and generator(G) networks in full

precision, fully-binarized and ApGAN in Celeb-A dataset. The y and x axes indicate the loss values

and the number of epochs, respectively. As depicted in the fully-binarized network shown in

Figure 3.11 (b), after a few epochs for initializing and competition steps, the convergence process

and consequently improvement in the generated images stop.

Figure 3.9: Inception score on CIFAR-10 and STL-10 datasets leveraging full precision and

ApGAN for different GANs.

54

Figure 3.10: Generated images for various datasets by ApGAN.

Nonetheless, for ApGAN, after initial state, competition starts quickly to improves the quality of

the generated images and due to the semi-balanced binarized structures for D and G, the

competition continues for a sufficient number of epochs. The ApGAN actually converges in an

almost similar manner as the original 32-bit full-precision training.

3.6.2 Hardware Setup and Results

In this section, we estimate ApGAN’s energy-efficiency and performance and compare it with

other feasible GAN accelerators (based on ASIC, SOT-MRAM, ReRAM, and GPU) based on

three GAN architectures (DCGAN, WGAN-CP, and WGAN-GP). It is clear that the larger chip

area is, then the higher performance for ApGAN and other accelerators are achieved due to having

additional sub-arrays or computational units, albeit the memory die size impacts the area cost. To

have a fair comparison in this work, we report the area-normalized results (performance/energy

per area), henceforth.

55

Figure 3.11: Value of losses in (a) 32-bit (full precision) DCGAN, (b) fully-binarized DCGAN,

and (c) proposed ApGAN.

Experiment Setup: To assess the performance of the proposed accelerator at the circuit-level, we

use the SPICE model for memristors with the Ag-Si memristor device parameters from [106]. We

then combine the SPICE models of CMOS transistors and memristors under NCSU 45nm CMOS

PDK [107].To perform the system-level evaluations, we modified the memory evaluation tool

NVSim [108] to co-simulate with our developed in-house C++ code based on circuit-level results.

We configure the memory organization of the sub-arrays with 512 rows and 256 columns per

memory matrix (mat) considering an H-tree routing method, 2 × 2 mats per bank, 8 × 8 banks per

group; in total 16 groups leading to a 512 Mb total capacity. For comparison, a ReRAM-based in-

memory accelerator based on [78] was developed with 256 fully functional sub-arrays with the

size of 256 × 256 and eight-bit configurable SAs. To perform the evaluations, NVSim was

extensively modified to estimate the system energy and performance adopting its default ReRAM

cell file (.cell). We developed a SOT-MRAM-based accelerator based on PIM-TGAN [109]. For

the circuit level simulation, a Verilog-A model of 2T1R SOT-MRAM device is developed to co-

simulate with the interface CMOS circuits in SPICE. Finally, an architectural-level simulator was

56

built on top of NVSim. To compare the result with ASIC accelerators, we developed a YodaNN-

like [110] design with two 8 × 8 tiles configuration. Then, the designs were synthesized using

Design Compiler [111] with 45nm technology. The SRAM and eDRAM performances were

calculated using CACTI [112]. We created a comprehensive Verilog model for EPU to interact

with our SPICE circuit code to perform the evaluation. Activation functions were developed based

on lookup-table-based transformations [113] with case-statement codes. Batch normalization unit

generally performs an affine function (𝑦 = 𝑘𝑥 + ℎ) [114], where 𝑦 and 𝑥 represent the

corresponding output and input feature map pixels, respectively. During inference mode, all the

other parameters (𝑘, ℎ) are pre-computed and stored in ApGAN sub-arrays, therefore, Batch

normalization unit can readily fetch each pixel of input feature map, fed forward to the batch-norm

Figure 3.12: Energy-efficiency evaluation of various platforms normalized to the area (Y-axis: log

scale).

57

Figure 3.13: Performance evaluation of various platforms normalized to the area (Y-axis: log

scale).

layer, and write back the corresponding normalized pixel employing an internal, multiplexed

CMOS adder and multiplier to perform this computation efficiently.

Energy Efficiency: Figure 3.12 shows ApGAN’s energy efficiency (frames per joule) results

implemented by FPC method for three possible approximation degree (i.e., 2-, 3-, and 4-bit)

compared with other designs, running a similar task under two batch size configuration, i.e., 8 and

32. Here, as the batch size gets larger, higher energy-efficiency is obtained. We can see that

ApGAN-4b has the highest energy efficiency normalized to the area, related to other methods, as

a result of its 4-bit approximated, parallel, energy-efficient operations. ApGAN-3b shows ~2.5 ×,

13.1 ×, and 28.6 × higher energy-efficiency than that of the leading ASIC, ReRAM, and GPU-

based solutions. This energy reduction arises from three sources: 1) standard 𝐶𝑜𝑛𝑣 and 𝐷𝑒𝐶𝑜𝑛𝑣

operations in the forward path are replaced with energy-efficient 𝑎𝑑𝑑/𝑠𝑢𝑏 operations due to

binarization, 2) ApGAN’s interlayer parallelism which massively reduces the latency of operations

58

Figure 3.14: : (a) Three main hardware cost sources in ApGAN’s sub-array. Note: access

transistors and CD are not shown for simplicity, and (b) area overhead breakdown of ApGAN.

and 3) bulk and energy-efficient approximated in-memory operations of ApGAN. Compared to

the recent processing-in-MRAM platform in [109], ApGAN reduces energy consumption by

~2.3 ×.

Throughput: Figure 3.13 compares the ApGAN throughput (frames per second) results for three

possible approximation degree (i.e., 2-, 3-, and 4-bit), normalized with the area, for different

accelerators. Based on the results, ApGAN-3b is 35 × and 5.8 × faster on average than GPU

andASIC-64 methods. This efficiency can be related to parallel and ultra-fast in-memory

operations of ApGAN compared to multi-cycle ASIC and GPU operations as well as the potential

mismatch between data movement and computation in ASIC and GPU methods. Additionally,

ApGAN is 1.9 × faster than ReRAM method. It is worth pointing out that ReRAM accelerators

suffer matrix splitting owning to intrinsically-limited bit levels of ReRAM device, thus more sub-

arrays need to be occupied. This can further limit parallelism methods. Additionally, a ReRAM

59

crossbar imposes a large peripheral circuit overhead due to existing DAC/ADC and buffers

occupying roughly 85 percent of area [76, 115]. We also observe that ApGAN achieves ~40

percent better performance compared to that of PIM-TGAN platform [109].

Area Overhead: To assess the area overhead of ApGAN on top of commodity RRAM chip, three

main hardware cost sources must be taken into consideration as shown in Figure 3.14 (a). First,

add-on transistors to SAs; in our design, each SA requires 2 additional transistors connected to

each BL (Figure 3.5 (c)) to enable in-memory computing; Second, the modified MRD overhead;

we modify each WL driver by adding two more transistors in the typical buffer chain based on the

method used in [116]. Third, the 𝑐𝑡𝑟𝑙’s overhead to control enable bits; 𝑐𝑡𝑟𝑙 generates the

activation bits with MUX units with 6 transistors. To sum it up, ApGAN roughly imposes 3

additional rows per sub-array, which can be interpreted as ~2 percent of memory chip area. The

detailed breakdown of area overhead is shown in Figure 3.14 (b).

Figure 3.15: Memory bottleneck ratio for different platforms

60

Resource Utilization: We estimated the time fraction at which the computation has to wait for data

and on-/off chip data transfer limits the performance referred to as memory bottleneck ratio for

different platforms, as depicted in Figure 3.15. This evaluation is done through the peak

performance and experimentally extracted results for each platform considering a number of

memory access. We observe that processing-in-memory solutions i.e., ApGAN, PIMTGAN, and

ReRAM spend less than 30 percent time for data transfer and memory access. But ASIC and GPU

spend over 50 and 90 percent time, respectively, waiting for the loading data from the memory. In

this way, we can define a resource utilization ratio for different platforms. We observe that

ApGAN-4b achieves the highest ratio by efficiently utilizing up to 88 percent of its computation

resources. This number is limited to 5 percent for GPUs performing the similar task.

3.7. Conclusion

In this chapter, we presented a novel hardware-optimized GAN training algorithm using binary

weights for three and two layers of generator and discriminator networks, respectively. Moreover,

we developed a reconfigurable addition approach in which both approximate and accurate add

operations are performed. In order to further accelerate the ApGAN training process, a new PIM

accelerator based on memristor was implemented. Finally, in addition to focus on the

computational performance of ApGAN exploiting its intrinsic in-memory parallelism to increase

the throughput of the system, we developed FPC optimization as a spatial parallelism method. The

performance of the ApGAN in both quantitative and qualitative approaches have been evaluated

on different data-sets including Fashion-MNIST, CIFAR-10, STL-10, and celeb-A. The generated

images by ApGAN look similar to the full-precision DCGAN’s result. Moreover, the obtained

61

simulation results showed that our PIM-ApGAN can achieve ~2.5 × better energy-efficiency and

5.1 × speedup compared to CMOS-ASIC accelerator, whereas IS is degraded by 11 percent.

Hence, due to the small IS degradation and a significant reduction in the hardware aspect, the

ApGAN can be a promising weight training scheme for resource-limited IoT devices. Since in an

environment, tens to hundreds of IoT nodes are distributed, similar approaches which are used in

random forest methods, majority voters and mean prediction methods, can be leveraged.

62

CHAPTER 4 : STM-LTM ARCHITECTURE

4.1. Fundamentals of Biologically-Inspired Computing

Neuromorphic computing offers potential advantages to various applications including high

performance, robust learning capabilities, and a more efficient intrinsically-executed approach to

processing. Such a computing paradigm is not limited to the separation of memory and processing,

and has a high level of parallelism unlike conventional von Neumann architectures [117]. With the

significant growth in neuromorphic computing research, various biologically inspired

architectures and synaptic learning rules, such as Spike Time Dependent Plasticity (STDP), have

been proposed [118]. However, there are still important but underexplored concepts motivated

from biology, which can be emulated to improve neuromorphic designs in terms of performance

and reliability. One vital example is the realization of biologically-inspired mechanisms of

memory. Biological memory systems are extremely complex entities, constantly responding to a

vast amount of dynamic multi-modal information. Collection and integration of temporal

Figure 4.1: The Schematic of biological multistore memory model.

63

information is one of the fundamental parts of this system, which consists of two main storage

mechanisms: Short-Term memory (STM) and Long-Term Memory (LTM) [119].

Figure 4.1 shows a simplified representation of a biological memory, which consists of three

different memory models. The sensory memory retains immediate information from the

environment and is considered as the first stage of the memory, lasting only for a few milliseconds.

This mechanism helps the brain to regulate the flow to avoid a flood of information. However, this

information can be transferred to STM through detection and enforcement of temporal focus, once

a selected stimulus has been cognitively perceived [120]. The STM can span on the order of

seconds to minutes, during the interval when biological brains initiate memory formation via their

molecular and cellular machinery. However, retention of information in STM can only be

sustained by repeated stimulus. Repeated stimulation of synaptic structures increases the

probability of STM to LTM transformation, a process termed consolidation [121]. Under requisite

conditions, STM is transitioned to LTM, depending on the strength of molecular reactions and

encoding. Thus, the LTM can last from months to years or become permanent, despite the

attenuation which would occur otherwise without continuous stimulation [121].

From a hardware implementation perspective, emerging electronic devices can offer a viable way

to mimic several plasticity measurements observed in biological synapses as opposed to

conventional complementary metal-oxide semiconductor (CMOS) circuits [122]. Memristors with

resistive coupling have been widely exploited to implement synapses in addition to the integrate-

and-fire capability of a McCulloch–Pitts model neuron [123]. However, since the accessible signal

gain and endurance in such fully-memristive networks are limited, other resistive paradigms such

as spintronic devices have been taken into consideration [124]. There are a variety of hybrid

64

arrangements of device technologies that can exploit alternative mechanisms, such as capacitive

synapses used in place of resistive coupling, which feature an ultra-small static power dissipation

[125-129]. In [127], a capacitive neural network has been proposed that utilizes a charge-based

capacitor crossbar to perform multiply-and-accumulate (MAC) operation. Such designs realize the

weighted summation of inputs through capacitive coupling and voltage division and generates the

output in a read-like operation. Nevertheless, most of the research to realize synapse plasticity

change in response to neuron spiking trains has been so far limited to long-term plasticity [59, 76,

130], while the volatility of biological memory has been overlooked.

In [131] and [132] the authors show the functional resemblance of two different emerging devices

to the short-term to long-term memory transition. In [132] the authors demonstrate that stimulating

a memristor device with repeated voltage pulses can result in an effect analogous to memory

transition in biological systems. A similar approach has been taken in [131] with a Magnetic

Tunnel Junction (MTJ), where a sufficient input stimulus can change its magnetization. Both of

these works have focused on implementing the memory transition process with a single emerging

device module. Although a homogenous device technology approaches aim at the same behavior

as biological memory, it does not allow data undergoing consolidation to be used in computation

until such a transition has completed. Consequently, a mechanism is sought which not only

exhibits this behavior of biological memory but can also utilize the introduced data efficiently.

This can be achieved by designing separate modules for STM and LTM in the memory

architecture. As in [133], the researchers proposed such a design implemented by two separate

spin Hall effect-driven Magnetic Tunnel Junctions (SHE-MTJs), in which the STM synapse

potentiates the inputs with a greater probability and forgets at a higher rate than the LTM synapse.

65

However, the biological STM-to-LTM transition process was not addressed in detail nor optimized

for efficient processing.

In this work, we propose an energy-efficient and biologically-inspired long-term and short-term

memory architecture, to mimic both biological STM and LTM synaptic connections and timing

dependencies of the stimuli, via volatile and non-volatile hybrid spin-CMOS devices with respect

to the synaptic memory reinforcement.

4.2. Biologically Inspired STM-LTM Architecture

 The proposed biologically-inspired binary STM-LTM memory architecture, shown in Figure 4.2,

consists of a 2-D array of memory components leveraging a pair of Volatile Memory (VM) and

Non-volatile Memory (NVM) as the memory bit-cell to realize STM and LTM, respectively. The

VM utilizes a capacitor, controlled by an access transistor, in a fashion analogous to a DRAM

structure. The NVM is designed with a SHE-MTJ [53]. Each memory bit cell is connected to a

Bit-Line (BL), Word-Line (WL), and Source-Line (SL) managed by the control unit’s voltage

driver. The BL and WL are shared amongst the cells within the same row and the SL is shared

between cells within the same column, as shown in Figure 4.2, to allow the architecture operate in

three distinct modes as explained in subsection 4.2.2.

66

Figure 4.2: The proposed STM-LTM memory architecture with VM and NVM components.

4.2.1. Memory Units

Capacitor as STM: Conventional DRAM is the most abundant, low-cost and simple type of

memory offering relatively high speed and density, consisting of one access transistor and one

capacitor as the storage element. Recently, several works have explored the potentials of such

capacitor-based memories in neural network applications [127, 134]. Training neural networks to

high degrees of accuracy requires consecutive, small changes in weights, which NVMs are not

ideal for them due to limited speed and endurance. Thus, DRAM offers a suitable mechanism for

online (in situ) training due to its relatively high speed and symmetrical read/write with infinite

endurance, which is a critical aspect for networks that necessitate constant training in an extended

period such as IoT edge devices [128, 135].

In digital capacitor-based accelerators [3, 134], every memory bit-line can perform bitwise digital

Boolean logic operations, where each capacitor stores a binary synaptic weight and so a low-bit-

width and parallel computation has been realized. These accelerators typically do not require large

67

peripheral circuits such as ADC, DAC, and router contrary to resistive NVM accelerators [76].

Recently, the analog capacitive cross-bar networks have been demonstrated greatly-reduced static

power dissipation to near-zero levels compared with the weighted sum of currents in a resistively

coupled network [128, 135]. However, for such networks, the volatility of the capacitor can be a

huge disadvantage as it will require the training to start over upon losing power. Thus, leakage and

the resulting volatility will increase energy consumption while processing delay can be less than

or equal to the total training time.

Here, we aim to implement a capacitive crossbar enhanced with a non-volatile memory in a new

fashion based on the STM-LTM features inspired from biology. Each memory bit-cell’s capacitor

represents a binary synaptic weight (‘1’ or ‘0’) stored as the “charged” or “discharged” capacitor

states. The STM’s access transistor (T1 in Figure 4.3 (c)) is controlled by WL enabling selective

write/read operation on the cells located within one row.

Figure 4.3: (a) Structure of a SHE-MTJ as NVM, (b) Resistive equivalent read circuit of SHE-

MTJ, (c) VM structure programming path.

68

Storing the network weights in the STM (through a write operation) and strengthening the memory

(through STM-to- LTM transfer) are two crucial tasks that need to be carried out. For both

operations, the capacitor is initially in the Precharged State (P.S.), i.e. the BL voltage is preset to

~
𝑉𝐷𝐷

2
 by the voltage driver. To save a weight on a capacitor as tabulated in Table 4.1, the memory

decoder first activates the corresponding WL and the BL is set to high (VDD) or low voltage

(GND). This will provide enough bias voltage to change the capacitor data in a DRAM fashion.

The synaptic weight representing STM will be then used to perform the computation or STM-to-

LTM transfer.

SHE-MTJ as LTM: The NVM element in the STM-LTM memory architecture is the spintronic

SHE-MTJ device described in 2.1.4. that uses a stable nanomagnet (Δ>>40kT), with two CMOS

inverters to amplify the output, as shown in Figure 4.3 (a). Figure 4.3 (b) shows an equivalent read

circuit of a SHE-MTJ. To read out the data from the SHE-MTJ, a read voltage is applied to sense

the resistance of the device through realizing a resistive voltage divider. We have considered 3

access transistors to control the functionality of the SHE-MTJ with respect to our volatile element

as shown in Figure 4.2. The T3 and T4 transistors are devised to activate the read path and T2 is

to control NVM and VM data transfer.

Table 4.1. The operation modes of the STM-LTM architecture

Operation BL WL SL wr rd

STM Write (1 or 0) VDD or 0 VDD 0 0 0

Computation Vneuron VDD Isum 0 0

STM to LTM VDD /2 VDD 0 VDD 0

LTM to STM VDD /2 VDD 0 0 VDD

69

4.2.2. Circuit Architecture

1) Computing mode using crossbar operation: In this mode, by activating multiple WLs

simultaneously (T1 is ON in Figure 4.2) and applying input voltages on BLs, VMs can modulate

the input and realize the weighted summation of inputs using a capacitive voltage divider circuit

and send it to the output neuron via SL, while NVM is deactivated (T2-T4 are OFF in Figure 4.2).

The control signals required for this operation are tabulated in Table 4.1. The realization of an n×m

capacitive network inspired by [127, 128] is shown in Figure 4.4. The memory decoder outputs

are enhanced by the inverter chain (blue shaded area) to activate multiple WLs simultaneously.

The controller governs the timing of the signal going through the crossbar by controlling the

memory address and assigning suitable input voltages through the voltage driver. The input signals

Figure 4.4: Realization of the capacitive network [128] within the proposed LTM-STM memory

architecture.

70

are encoded as voltage pulse and simultaneously charge the array in each capacitive node. In order

to perform MAC operation, by applying the Vin as input signal to each row, the charges in

capacitors will be redistributed and averaged by a reference capacitance and finally the output

voltage can be written as 𝑉𝑜𝑢𝑡 =
∑ 𝐶𝑖,𝑗𝑉𝑖𝑛,𝑖

𝑖𝑛𝑝𝑢𝑡
𝑖=1

𝐶𝑟𝑒𝑓
 through voltage division between the cells located

in the same column [108].

Figure 4.5: (a) STM to LTM transfer and (b) LTM to STM transfer modes.

2) STM to LTM transfer: One of the most significant aspects of memory in biological systems is

STM into LTM consolidation after repeated use. To realize this, controller readily keeps the count

of input voltages applied to a specific BL, which is implemented using a counting unit within the

controller. Accordingly, the controller determines the reinforcement ratio of the synapses. As

shown in Figure 4.5 (a), for STM to LTM transfer, at initial state, the BL voltage is precharged to

~
𝑉𝐷𝐷

2
, while SL is grounded. Now, activating the WL (T1: ON), the selected cell (storing VDD or

71

0) shares its charge with the BL leading to a small deviation in the initial voltage of BL (
𝑉𝐷𝐷

2
±δ).

Then, by activating the T2 transistor by wr signal, the SHE-MTJ’s write circuit amplifies the δ of

the BL voltage toward bipolar write voltage (Vwr or -Vwr) through voltage amplification. It is

worth pointing out that wr signal is shared among the cells located in the same row and controlled

by voltage driver to guarantee the simultaneous STM-to-LTM transfer for synapses connected to

one particular neuron. Here the flow of write charge current through the Spin Hall Magnet switches

the magnetization through SOT mechanism. If the capacitor is charged-‘1’ (/discharged-‘0’), the

SHE-MTJ write terminal is set to -Vwr (/Vwr) write voltage. This allows adequate charge current

to flow from the write circuit output to the ground (/ground to the inverter output), changing the

MTJ state to High-RAP (/Low-RP).

 3) LTM to STM transfer: To retrieve the data stored in SHE-MTJ for crossbar computation, an

LTM-to-STM mode is considered in the architecture. As shown in Figure 4.5 (b), for this transfer,

the BL voltage is first set to
𝑉𝐷𝐷

2
, while SL is grounded. Now, activating the WL (T1: ON), the

resistance states i.e. High-RAP (/Low-RP) can be readout by a sensing circuit. The controller

activates T3 and T4 transistors and a small read voltage is applied on the SHE-MTJ realizing a

voltage divider between its resistance state and a fixed reference resistor. The amplified readout

data can accordingly charge (/discharge) the bit-cell capacitor with regard to the control signals in

Table 4.1.

72

4.3. STM-LTM Transition

The proposed STM-LTM architecture is optimized to perform two specific tasks. First, the STM-

to-LTM transition is realized with timing constrained by the hardware parameters; existing

capacitive networks refresh all cells at a rate determined by the leakiest cell in the device, which

is typically around 64ms. Second, LTM-to-STM transition is achieved for computing purposes.

To efficiently mimic the biological memory, the sub-array controller should actively keep the

count of stimuli (inputs-Ink) received at every BL. Therefore, we define an STM-to-LTM threshold

(Nth) that can be readily adjusted for energy and performance tradeoffs. Algorithm 1 indicates the

required procedure to accomplish STM-to-LTM transition and LTM-to-STM retrieval based on a

defined time interval for the STM-LTM sub-array controller. The algorithm starts iterating on all

the sub-array rows storing binary weights (Wk). As long as the capacitive network has not reached

a Refresh Interval (RI), the controller counts the input data (Ink) applied to each row and then this

data is used to analyze the number of stimuli (Nst) with regards to a specified Pulse Interval (PI).

For example, Figure 4.6 shows a sample PI (min) of 20ns for STM-LTM controller and number

of stimuli recorded by it (Nst=3) [136]. When Nst reaches the preset Nth, the STM-to-LTM transition

is accomplished for each synaptic weight according to the mechanism explained in Section 4.2.2.

Therefore, the data will be stored in LTM only when both conditions are met, first the pulse interval

of the input is equal or less than the specified minimum pulse interval (PI (min)), meaning we are

analyzing the data in a specific timeframe and second, the number of stimuli is equal or greater

than the specified threshold. On frequent stimulations, the STM-to-LTM transfer can be

73

successfully accomplished according to rehearsal (reinforcement) shown in Figure 4.1.

Additionally, memory decay (forget) is realized by capacitor charge leakage over time.

Figure 4.6: A sample pulse interval (PI (min)) of 20ns and number of stimuli recorded by STM-

LTM memory controller. When Nst reaches the preset Nth, STM-to-LTM transition is

accomplished.

Figure 4.7: The transient simulation results of moving data from STM to LTM. Glossary: P.S.,

C.S., and S.A. stand for Precharged State, Charge Sharing state and Sense Amplification state.

74

In the last step, upon arrival of the capacitor refresh interval, the data in LTM will be used to

retrieve the capacitor’s data according to the mechanism explained in Section 4.2.2. This data will

be later used for crossbar computation.

4.4. Simulation Results

4.4.1. Evaluation Setup

We developed a bottom-up simulation framework to evaluate the STM-LTM architecture and

estimate its energy and performance tradeoffs. We use STM cell parameters from the Rambus

power model [137] with access transistor W/L = 90nm/55nm and capacitance 22fF to evaluate the

functionality and performance of our design. We modeled the leakage in SPICE considering a

capacitor in parallel with a relatively large-value resistor (Rleakage) and an equivalent resistance in

series (RESR). The SHE-MTJ electrical model was developed in Verilog-A, which incorporates

the Landau-Lifshitz-Gilbert (LLG) equation to model the free layer magnetization dynamics and

Table 4.2. SHE-MTJ simulation Parameters

Parameter Value

MTJ Dimension WMTJ × LMTJ × TMTJ 40 × 120 × 1.5 nm3

SHM Dimension WSHM × LSHM× TSHM 120 × 80 × 2.8 nm3

Demagnetization Factor Dx, Dy, Dz 0.066, 0.911, 0.022

Gilbert Damping Factor, α 0.007

Spin Flip Length, λsf 1.4 nm

Saturation Magnetization, Ms 850 kA/m

Gyromagnetic Ratio, γ 1.76 × 1011 Am2/Js

Spin Hall Angle, θSHM 0.3

Oxide Thickness, tox 1.3 nm

Energy Barrier, Ea 42 kT

RA Product, RAp / TMR 22.33 Ω · μm2 / 187.2%

Resistivity, ρβ-w 200 μΩ · cm

Supply Voltage 1 V

CMOS Technology 45 nm

75

Figure 4.8: The transition probability versus STM to LTM threshold under different pulse

intervals.

Non-Equilibrium Green's Function (NEGF) to calculate the resistance range (RP, RAP) with the

device simulation parameters tabulated in Table 4.2. To analyze the VM and NVM modules

functionality, we co-designed them in SPICE. Thus, we obtain an analytical approximation to the

time-averaged behavior of the full circuit characteristics in 45nm technology node. The controller

unit is also simulated by Synopsis Design Compiler [107] with the same technology node. We then

modified the NVSIM [138] evaluation tool to report the performance parameters in array-level.

4.4.2. Results

1) Circuit Design: Figure 4.7 shows the transient simulation results of moving data (‘0’ and ‘1’)

from STM to LTM. The BL is initially precharged to ~
𝑉𝐷𝐷

2
 prior to turning on the WL. In order to

transfer the data into the SHE-MTJ, the controller turns on the corresponding WL and the wr

signals, leading to charge sharing between the BL and STM’s capacitor. The deviation on the BL

voltage (
𝑉𝐷𝐷

2
±δ) will be then amplified using the write circuit with bipolar write voltage during

76

Sense Amplification state (S.A.) as shown in Figure 4.7, to provide the corresponding write voltage

for the SHE-MTJ. Su ch voltage allows sufficient charge current to flow in the SHE-MTJ's write

terminals and changes free layer magnetization in z-axis from +1 to -1 or vice versa, after ~30ns

with our memory configuration. Therefore, the VM data is successfully transferred to NVM.

We analyze the STM-to-LTM transition algorithm performance in Section 4.3 with the real

random inputs from a probabilistic spin logic neuron referred to as a p-bit device [136]. Such

activation function is connected to memory BLs. We investigate the transient probability from

STM to LTM with different parameters. We first increase the Nth from 10 to 90 under a constant

PI (=40ns) plotted in Figure 4.8. We observe that by increasing the Nth the probability of

transferring data from STM to LTM reduces. For example, when Nth=10, the transition probability

is ~75%. However, Nth=60 reduces transition probability to ~17% when a larger threshold is

desired. Thus, the threshold can be accurately set with regards to the application requirements. We

then explore the impact of different PIs on STM-to-LTM transition by increasing the expected

time from 40ns to 90ns. It can be observed that in a certain Nth, by increasing the PI, the transition

probability will increase.

2) Energy vs. Array Size: In order to compute the energy consumption of the design, we use four

different fixed-size capacitive networks (32×32, 64×64, 128×128, and 256×256) leveraging 32,

64, 128 and 256 p-bit output neurons, respectively, to explore the energy consumption of the STM-

LTM platform and yield a fair estimate. We analyze the MNIST data-set of handwritten digits with

a two-layer perceptron with a net configuration (784×128 as layer 1 and 128×10 as layer 2)

77

 Figure 4.9: The breakdown of energy consumption for different array sizes with the impact of

thermal noise.

developed in MATLAB. To assess raw performance, we haven’t used any optimization algorithm

to map the data into the sub-arrays, so the estimation is solely based on the number of used

capacitive crossbars whose performance is given through a bottom-up analysis using our

simulation platform. We calculated the average programming energy of the network by dividing

the energy of network by total time period per epoch for all training images. The average

programming energy of 65pJ is achieved per synapse for a 32×32 crossbar. Thus, the power

dissipation of 39pW per synapse is incurred by the network for 1500 images over a time period of

1.1msec per epoch. Figure 4.9 depicts the programming energy as well as STM-to-LTM transfer

energy (including controller counting unit) for different array sizes under three various Nth. Our

first observation is that by increasing the array size under a fixed Nth, a larger programming energy

is required and the STM-to-LTM energy increases almost linearly. The second observation is that

by increasing Nth, the STM-to-LTM energy increases due to redundant counting operations. For

example, by changing Nth from 10 to 15 in 32×32 array, the STM-to-LTM energy increases by

78

~1.8x. With Figure 4.8 and Figure 4.9, the designer can observe the trade-offs between array size,

energy, STM-to-LTM transition probability, etc. to adjust system parameters.

3) Process Variation: We modeled the thermal effects on STM-to-LTM transfer by a randomly

fluctuating field, Hnoise on LTM module, with x, y, and z components from a Gaussian distribution

with standard deviation √2α𝐾𝐵T/γMsVΔt [139] and zero mean. Here, α denotes Gilbert damping

factor, KB represents Boltzmann’s constant, V denotes the volume of free layer, Ms denotes the

saturation magnetization, γ is the gyromagnetic ratio, and Δt represents the time step for solving

LLG equation [139, 140]. We carried out the Monte-Carlo simulations with 1,000 iterations

introducing a Gaussian spread (σ = 5%) in the SHE-MTJ device parameters Ms and α and thermal

effects (300K) in the standard deviation. Under the effect of thermal noise, the switching behavior

of the SHE-MTJ changes for different samples. Such change has no adverse impact on the

Figure 4.10: (a) Monte-Carlo simulation of sense voltage of SHE-MTJ with (a) tox =1.3nm (b) tox

=1.8nm, (c) Voltage margin of SHE-MTJ vs. thickness of MTJ oxide in two case studies.

79

transition probability of STM-LTM. Based on our observation, the thermal noise increases the

energy budget for STM-to-LTM transfer. This energy consumption overhead after applying

thermal noise and device variations is shown in Figure 4.9. This comes from the increase in the

number of unsuccessful STM-to-LTM transfer.

To assess the variation tolerance of the LTM for different parameters specifically oxide thickness

(tox), we run the Monte-Carlo simulation with 1,000 iterations with 2% Gaussian variation on the

Resistance-Area product (RAP) and 5% process variation on the Tunneling-Magnetoresistance

Ratio (TMR) and profile the voltage margin between two different resistance level (RAP and RP),

as shown in Figure 4.10 (a). We then increased tox, from the original 1.3nm to 1.8nm to show how

tox variation impacts the sense margin (Figure 4.10 (b)). We observe the same trend experimentally

demonstrated in [40], where the increase in the tox leads to a higher voltage margin that will

considerably enhance the reliability of LTM operation. To further explore the impact of tox

variation, we plotted the voltage margin of SHE-MTJ vs. thickness of MTJ oxide from 1nm to

Figure 4.11: The breakdown of (a) Synapse programming energy and (b) STM-to-LTM energy

reported in Table 4.3.

80

1.8nm in two case studies (CSs). The CS1 is under RAP (2%)-TMR (5%) and CS2 is under RAP

(5%)-TMR (5%) variation.

Table 4.3. Comparison between STM-LTM architectures

Sengupta et

al. [131]

Srinivasan et

al. [133]

Chang et al.

[132]
Herein

STM-LTM synapse

technology
MTJ

SHE-

MTJ/CMOS
Memristor

SHE-

MTJ/CMOS

Memory

implementation
No Yes No Yes

Separate LTM/STM

modules
No Yes No Yes

Compute with STM No Yes No Yes

Refresh required No No No Yes

Synapse programming

energy (pJ)
110 23.7 92.4 65

STM-to-LTM Delay

(ns)

~30 on

constant

stimulation

N/A**

~80 on

constant

stimulation

~30

STM-to-LTM energy

(pJ)
165* N/A** 122.7 ~30.2

LTM endurance 1010 − 1015 1010 − 1015 105 − 1010 1010 − 1015

* With the 5 input stimulus magnitude of 100μA with 3ns duration

** The STM-to-LTM transfer mechanism is not realized, so the performance cannot be

reported.

81

4.4.3 Energy/Delay Comparison

Table 4.3 compares the STM-LTM platform herein with existing designs in terms of technology,

applicability and potentials of a single synapse unit. The listed designs use different methods to

implement the STM-LTM transition so different comparison metrics are appropriate. While the

MTJ-based [131] and memristor-based [132] synaptic designs demonstrate a single MTJ and

memristor mimicking long-term potentiation according to the magnitude, duration, and frequency

of input stimulus, the crucial STM state is only a transient state to get to LTM state and not

practically useful. The aforementioned designs do not present any circuit implementation to

support utilization of STM during computation. Srinivasan et al. [133] presents a fully-functional

binary synaptic element that uses two separate SHE-MTJ driven by a relatively different read

voltage to improve the synaptic learning efficiency. Separate modules for LTM and STM provides

the design with faster and more reliable functionality. To the best of our knowledge, the SHE-MTJ

design in [133] is the only design that proposes a practical STM. However, the biological STM-

to-LTM transition process was not addressed in detail nor optimized for efficient processing. Our

STM-LTM platform brings a solution to make the STM state even more like biological memory

by being practically available in the computation phase. Table 4.3 compares different designs in

terms of a single synapse programming energy and STM-to-LTM energy. We designed a proper

write/read circuitry for MTJ- and memristor-based designs to make them comparable. All designs

are implemented with 45 nm technology as well. Based on our evaluation, our design herein

consumes ~30.2pJ energy for STM-to-LTM (VM-to-NVM) transfer and ~65pJ for programming

(of VM) purposes. The proposed design improves the synapse programming energy consumption

by ~29.6% and ~41% compared with memristor and MTJ designs, respectively. The SHE-MTJ

82

design in [133] achieves the least synapse programming energy consumption (23.7pJ) between all

designs. It should be noted that the STM state in our design still incurs capacitive network refresh

power. The design herein improves the STM-to-LTM energy over memristor and MTJ by 75.3%

and 81.6%, respectively. From STM-to-LTM transition delay perspective, our design requires

~30ns as depicted in Figure 4.7, while memristor and MTJ designs require 80ns and 30ns,

respectively, on constant stimulation.

Figure 4.11 shows the breakdown of energy consumption for both programming and STM-to-LTM

operations, where the colored legend indicates the contribution of each hardware component to the

total programming energy. The synapse programming energy can be mainly translated to write

energy for different platforms, as shown in Figure 4.11 (a). The SHE-MTJ intrinsically requires

lower write energy compared to the MTJs and Memristors [27]. From STM-to-LTM transition

perspective (Figure 4.11 (b)), our design utilizes distinct modules, while the memristor and MTJ-

based designs work with consecutive stimulations in the same component leading to a lower STM-

to-LTM energy. The two primary influences that impact energy consumption of the proposed

STM-LTM design are reading the capacitor’s voltage and writing that to the SHE-MTJ.

4.5. Conclusion

Intrinsic computing capabilities provided by hybrid device technology designs offer novel

approaches for realizing biologically-inspired features such as consolidation mechanisms present

in STM-LTM. The design proposed herein utilizes distinct modules for STM and LTM to realize

a synapse contrary to previous designs. This follows biological principles wherein transfer of

information to LTM is facilitated through repeated access while providing faster and more reliable

83

functionality. We then presented a hardware-enabled STM-LTM transition algorithm for the

platform considering the real hardware parameters. Our simulations showed the proposed design

has the potential of reaching pico-Joule energy level for STM-to-LTM transfer and STM

programming.

84

CHAPTER 5 : ENERGY-EFFICIENT RECURRENT NEURAL

NETWORKS

Despite several algorithm-level advances for RNNs, such as Gated Recurrent Unit (GRU) [66] and

Long Short-Term Memory (LSTM) [69], there is still a need for an energy-efficient hardware

accelerator for such networks. The RNN hardware implementations on FPGA [141], ASIC [142],

and GPU [143] have been investigated in prior works. Generally, regardless of the remarkable

advances to improve the performance, ANNs based on von-Neumann architecture still face the

well-known memory-wall challenge, which results from the limited memory bandwidth, high

energy consumption for data movement between memory and processing units, and long memory

access latency [144]. To achieve an efficient ANN hardware implementation, Computing-in-

Memory (CiM) architectures and mechanisms provide a practical non-von-Neumann

infrastructure to increase the parallelism and mitigate the data movement issue, circumventing the

memory-wall challenge [145-147]. Various CiM platforms have advanced the computing speed

and energy-efficiency significantly and demonstrated extensive data-level parallelism [148].

However, hardware implementation of such designs on top of mature volatile memories (i.e.

SRAM/DRAM) requires large complex circuits consuming significant switching energy to execute

Multiplication and Accumulation (MAC) and activation functions as the fundamental operations

of neural networks [148], [8].

Alternatively, emerging Non-Volatile Memory (NVM) devices such as Spin-Transfer Torque

Magnetic Random-Access Memories (STT-MRAMs) [149], Resistive Random-Access Memory

(ReRAM) [150], and Phase Change Memory (PCM) [86] have been explored to implement MAC

85

operation through the intrinsic weighted summation property of CiM cross-bar architecture. Up

to now, ReRAM crossbar accelerators have attracted considerable attention due to their high

Ron/Roff ratio (~106), ultra-low power consumption, and high scalability and switching speed [150,

151] to realize several feedforward neural networks such as Multi-layer Perceptron (MLP),

Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs) [18], etc.

However, there are only a few works focused on ReRAM based RNNs, mainly due to two

challenges. First, realizing a feedback component as an essential part of RNNs requires inevitable

write-back operation, which is an inefficient, high latency (>20ns [151]) and energy-consuming

operation for NVMs. Second, the accuracy of RNNs heavily depend on the structure of the utilized

activation function. A suitable CMOS design for implementing the non-linear sigmoid and tanh

activation functions, as the primary thresholding functions used in RNNs, requires significant area

and power budget. Their minimization is an important but underexplored concept in neuromorphic

computing paradigm. Most of the prior works proposing a hardware for various neural networks

utilize CMOS based activation functions with a built-in truth table [71], which impose large area

and additional clock cycles to compute the desired function. The RNN implementation in [67]

utilizes ReRAM crossbar arrays as synapses along with CMOS-based activation functions.

Although this work presents a comprehensive hardware implementation for RNNs and provides

an efficient synaptic connection, the CMOS-based neuron is a large compound circuit consisting

of four distinct parts. All these parts eventually impose high energy consumption on the overall

design. The ReRAM-based CiM architecture for RNNs in [71] provides a detailed design with an

exclusive processing engine employing three distinct subarrays for processing the data, including

the use of a ReRAM-based crossbar, specialized functional units, and a multiplier. However, the

86

neuron design still occupies extensive silicon area and relatively high order of energy

consumption.

In this chapter, we develop a ReRAM-based RNN and LSTM architecture with feedback using

spin-based Adjustable Probabilistic Activation Function (APAF) to achieve high energy- and area-

efficiency, while keeping the accuracy loss and processing speed comparable with the baseline

designs. The proposed activation function design is based on low energy barrier probabilistic spin

logic devices referred to in the literature as probabilistic bits (p-bits) [55].

The remainder of the section is organized as follows. Section 5.1. presents the prior work on

activation function unit. Section 5.2. delineates the proposed energy-efficient RNN and LSTM

architecture, including the accelerator design, APAF unit and its corresponding algorithm. Section

5.3. details the simulation results including the evaluation framework, comparison and achieved

accuracy. Section 5.4. concludes the chapter.

5.1. Prior Work on Activation Function Unit

Hardware implementation of an ideal low-power activation function with small area overhead is

one of the challenging research goals in ANNs. There have been various activation function

designs proposed for ANNs utilizing both CMOS-based and emerging device-based technologies

thus far. However, considering the high number of activation functions employed in each layer of

ANNs, these designs still impose high energy consumption or large area overhead and are not

readily suitable for evolving compound multi-layer networks. We briefly study some of these

activation functions here. The tanh activation function design in [152] is a CMOS-based stochastic

design with Finite State Machines (FSMs) as its building block, aiming to reduce power dissipation

87

and area overhead by utilizing simpler stochastic arithmetic. However, this design requires long

bit-stream lengths generated by Linear Feedback Shift Registers (LFSRs), and CMOS pseudo-

random number generators for implementing the probabilistic behavior leading to longer latencies

and higher energy consumption. In [153], the authors indicate that implementing a precise sigmoid

function leads to excessive area and energy overheads, and therefore, a simplified hardware design

based on subsampling and approximation can achieve energy-efficiency while incurring a small

accuracy loss. Although this approach is very practical, the implemented activation function uses

logic gates for its approximation unit and a 64×16 lookup table on top of a pseudo random number

generator, which still imposes high energy and area overheads. In [67], a CMOS-based activation

function consisting of four distinct parts as current generator, function generator, pulse generator

and a digital controller is presented with a large circuit footprint and high energy consumption.

The special function unit in [71] utilizes the Chebyshev approximation [154] approach, with

relatively high power and area compared to the other similar approaches, to implement an

approximate tanh activation function. In this method, the CPU initially calculates the coefficients

and loads them into the local register. Later, during RNN computing mode, the unit will read the

register and calculate the nonlinear function. On the other hand, there are other efforts based on

hybrid spin-CMOS p-bit device, which leverage the physical behaviors of nano magnets to

perform the computation intrinsically [59]. Although this stochastic activation function offers

ultra-low footprint and power consumption, the output of this circuit is probabilistic binary (either

“0” or “1”), which is not feasible to be used in RNNs with deterministic sigmoid and tanh

functions. Hence, we were motivated to propose a novel activation function based on the p-bit

88

device with software support, capable of performing non-linear functions in a semi-probabilistic

manner to attain good accuracy.

5.2. Proposed RNN Architecture

In this section, we propose an energy-efficient RNN platform with ReRAM crossbar to

comprehensively realize a low-latency feedback component and low area-overhead activation

function required by this network.

5.2.1 Microarchitectural Design

A detailed representation of the proposed CiM architecture is shown in Figure 5.1. This

architecture is essentially developed on top of the 1T1R-resistive main memory architecture [76,

150] by dividing every memory chip into multiple memory banks. Each memory bank is then

divided into multiple computational sub-arrays realized using Resistive Crossbars as shown in

Figure 5.1. In order to make the ReRAM-based accelerator suitable for RNN computation, we

have grouped the resistive crossbar units at the bank level into sets of three interconnected subunits

indicated by U-Array, W-Array, and V-Array. Definitions of U, V, W are described in Equation

(2.10-2.11). All crossbar units are developed with typical memory peripheral circuits and only

differ from an interconnection perspective. Figure 5.2 shows the circuit and interconnection

scheme developed for the sub-units. In each crossbar, the Source-Line (SL) is shared amongst the

resistive synapses in the same column connected to neurons and the Bit-line (BL) and Word-line

(WL) are shared amongst the synapses in the same row. Thus, each synapse in the resistive crossbar

is controlled with three signals. The W and V resistive crossbar arrays are connected to a shared

89

Figure 5.1: The proposed RNN CiM accelerator architecture.

Figure 5.2: The proposed ReRAM-based RNN architecture with stochastic activation functions as

neurons.

90

activation function unit through SL peripheral to reduce the area overhead and save energy.

However, U-array is solely connected to internal memory bus. A buffer component (Buf in Figure

5.1) is also connected to the SL peripherals in all sub-arrays to store the output value before feeding

it to the activation functions. As shown in Figure 5.2, the digital input i(t) is first converted by the

Digital-to-Analog Converter (DAC) using Input Encoding component into analog current (In) and

then is applied to the crossbar. Considering wi,j as the synaptic weight, the dot-product computation

is accomplished by every ReRAM crossbar through the intrinsic current-mode weighted

summation operation (∑ 𝐼(𝑛).𝑤𝑖, 𝑗127
𝑛=0). To realize the RNN’s mathematical representation in

Equation (2.10-2.11), U-array generates U.i(t) dot-product (weighted summation current) in a

single memory cycle in the feedforward path (step-1 in Figure 5.1). Then, without converting the

current back to voltage, through resistive voltage divider, Analog-to-Digital Converter (ADC) and

activating the outputs, such weighted current (IU.i(t)) is directed to W-array through the memory

bus (step-2 in Figure 5.1). Now, inspired by [67], we designed a new interconnect scheme to direct

the activated outputs (W.h(t-1)) of hidden layer neurons (W-array) to its inputs to implement the

feedback component in RNNs (step-3 in Figure 5.1). In this way, W-array receives U.i(t) and

W.h(t-1) current components and calculates the summation to generate h(t) in the second memory

cycle leveraging the hidden layer neuron explained in the next sub-section. The h(t) is then sent to

V-array to generate y(t) output represented in Equation (2.11) (step-4 in Figure 5.1).

91

Figure 5.3: The building block of Spin-based activation functions (p-bit) [55].

5.2.2. Adjustable Probabilistic Activation Function (APAF)

Spin-based Building Block (p-bit): The primary building block of the proposed APAF design is

the spintronic device described in 5.1.2. providing a novel probabilistic logic (p-bit) [55].

Proposed Design: RNNs and LSTMs utilize the sigmoid and tanh functions for gating purposes

in input, output, and forget components. As explained, the p-bit device has an intrinsic probabilistic

behavior which follows the sigmoid function behavior in an average time interval. Since the

sigmoid function outputs a value between “0” and “1”, it can either allow complete flow or no

flow of information throughout the gates in RNNs. From the circuit implementation perspective,

such sigmoidal behavior can be modulated with the p-bit device by connecting a proper inverter

to VDD and GND, as depicted in Figure 5.3 (a). In Figure. 5.4 (b), the black dotted curve indicates

the analytical output given by the sigmoid function, σ (z) = 1/(1 + exp(−z)), where z is the

input and the gree n-circle curve is the p-bit running output average, fitted to the analytical sigmoid

function. Similarly, the nonlinear hyperbolic tangent or tanh function output values, which are

between “+1” and “-1”, could be designed on top of the sigmoidal function mathematically as

92

tanh(𝑥) = 2𝜎(2𝑥) − 1. This can be readily implemented in the circuit-level by inserting a proper

inverter (connected to VDD and -VDD) after sensing the p-bit device resistance. Figure 5.4 (c)

 Figure 5.4: Time-averaged behavior of the SHE-MTJ based p-bit device, (a) is the magnetization

fluctuations, (b) and (c) are the implemented sigmoid and tanh behaviors respectively.

shows the analytical output values of the tanh function by the dotted black curve along with the

time-averaged value of the slightly modified p-bit device’s output voltage by the blue-circle curve

i.e. tanh (Ic), when the input current increases from negative to positive values. Based on this

Figure, at each time step, if the input is zero, the p-bit output takes on a value of “−1” or “+1” with

equal probability. A negative input Ic makes negative values more likely and vice versa.

Therefore, the time-averaged output of the p-bit device can provide both sigmoid and tanh function

behaviors via slightly different circuit designs. However, in practice, the p-bit device output for

each input at a time is a binary “0” or “1” (AP or P). On the other hand, the ideal mathematical

sigmoid or tanh functions are not limited to binary states and have a specific output from a limited

range for each input number. Training neural networks to high levels of accuracy is one of the

major goals of every RNN and the binary output of the p-bit device limits the accuracy of such

93

networks. Utilizing the p-bit device as a practical activation function, capable of mimicking the

ideal mathematical sigmoid or tanh functions with a range of output numbers, requires a novel

complementary activation circuit and mechasnism. The key observation to utilize p-bit behavior

in order to implement a non-binary activation function is that the stochasticity for a range of input

current values close to zero is at the highest level, whereas the stochasticity decreases as the input

current values reach to their minimum/maximum levels. The APAF design extracts this behavior

with a symmetric range of output voltage numbers by running the p-bit with the same input for

multiple time intervals and storing the output for each one. The stored output combinations will

be later mapped into a voltage value utilizing a low-overhead Look-Up Table (LUT). This idea

allows the p-bit to function in an enhanced non-binary state while maintaining its low-power and

low-area properties compared with its CMOS counterpart. For hardware implementation, we

enhanced the p-bit stochastic activation function by adding three components, as depicted in Figure

5.5. First, a 2𝑛-bit buffer (here, 4-bit) is added to latch the output voltage of p-bit circuit

(out_array). Second, a compressor unit (cmp) consisting of CMOS full-adders are leveraged to

efficiently sum up and compress the saved binary data in out_array (here, 4-2 cmp). Third, a LUT

is used to eventually generate the activation function output. To avoid multiple crossbar

computations, we synchronized the write/read access transistors of the p-bit device. This method

provides the ability to maintain a valid crossbar output current and apply it to the activation

function unit based on the required number of times. In this way, we consider two complement

signals for wr and rd as shown in Figure 5.5. For every sample, first the wr signal goes high and

the p-bit device is programmed based on the crossbar output current. Accordingly, the wr signal

94

goes low and the rd signal goes high to readout the p-bit resistance and generate the output bit.

Moreover, to exploit the full capability of APAF and achieve the full parallelism and input-output

Figure 5.5: The proposed Adjustable Probabilistic Activation Function (APAF) design with Al=

5.

95

synchronization, we propose the software support in Algorithm 1. Here, Pulse Interval (PI), and

Accuracy Level (𝐴𝑙) are regulatory parameters. As we aim to apply the crossbar input to the

activation unit multiple times, the algorithm requires to maintain the input current for a specific

time window. PI enables the controller to issue the read command for inputs in a preset time range

and separates each set of inputs based on the system requirements and restrictions. This attribute

further enhances the algorithm by restricting the possible noises that can be applied to the system.

The 𝐴𝑙 parameter is defined to adjust the accuracy level of the activation unit based on the desired

performance and tradeoffs.

Given the proposed ReRAM-based RNN architecture shown in Figure 5.2, by having the crossbar

input 𝑈. 𝑖(𝑡) + 𝑊. ℎ(𝑡 − 1), the algorithm first checks the input pulse interval (PI (𝑓𝑚𝑎𝑝𝑖𝑛)) to

ensure it is greater than the required minimum pulse interval PI (min) (line-2). It then, applies the

Algorithm 1: Adjustable Probabilistic Activation Function (APAF) applied to each p-bit

in crossbar array

Leveraging p-bit based approximation: By iteratively applying the input feature maps, the

presented method is able to approximate the sigmoid and tanh functions.

input: fmapin: Input feature map, PI: Pulse Interval,

Al: Accuracy Level

output: Activated fmapout

1: Initialization: PI (min), Al

2: if (PI (𝑓𝑚𝑎𝑝𝑖𝑛) > PI (min))

 3: Isum ← ∑ 𝑉(𝑓𝑚𝑎𝑝𝑖𝑛). 𝐺𝑖∀𝑖 /*Crossbar compute */

4: for 𝑖 ←0 to 𝑖 < Al /*Iterating based on the Al */

5: ti←pbit (Isum) /*Store in buffer*/

6: cmp=cmp+ ti /*Compressing generated bit-stream*/

7: end for

8: else break

9: end if

10: V(fmapout) ←Conv(cmp)

11: return V(fmapout)

96

input currents to compute the weighted summation in W-array and generates probabilistic h(t)

output. This is shown in Figure 5.5 for the SL0. In the next step, the algorithm iterates based on

the accuracy level and applies the same input to W-array (line-4) for 𝑖 = 2𝑛 times (rather than only

one time) and profiles the p-bit activation function output every time by storing them in a 2𝑛-bit

(here 4-bit) buffer (line-5). Using this method, the accuracy level can be mathematically

represented as 𝐴𝑙 = 2𝑛 + 1. As Figure 5.5 shows, we have exemplified the performance of the

system with 5 levels of accuracy as output voltages (-0.8, -0.4, 0, 0.4, 0.8). To reach 𝐴𝑙 = 5, 𝑖

should be equal to 4, meaning 4 iterations are needed. The 4-bit buffered data is then compressed

by cmp unit and given to the converter (Resistive-LUT). LUT is prestored with the sampled

floating-point activation values corresponding to cmp output combinations. For example,

considering 4 iterations, regardless of p-bit output combination, if the compressed value is 001,

the converter selects -0.4 as the output. This could come from either 0001/0010/0100/1000 p-bit

output bitstreams. Such APAF design is applicable in a variety of ANN applications needing non-

linear and deterministic tanh and sigmoid activation functions.

5.3 Results

5.3.1 Evaluation Framework

To evaluate the performance of the proposed RNN accelerator and perform a fair comparison with

state-of-the-art designs, we developed a novel bottom-up evaluation framework, as shown in

Figure 5.6. The presented HW/SW cross layer framework starts with device-level modeling of

memristive synapse and spin-based p-bit neuron components. We used the SPICE model for

memristors with the Ag-Si memristor device parameters from [106]. The SHE-MTJ electrical

97

model is developed in Verilog-A, which incorporates the Landau Lifshitz–Gilbert (LLG) equation

to model the free layer magnetization dynamics and nonequilibrium Green’s function (NEGF) to

calculate the resistance range (RP, RAP) with the device parameters tabulated in Table 2.1. We then

combine the SPICE models of CMOS transistors and memristors under 14nm PTM-MG library

[155]. At the circuit level, we developed crossbar arrays under several sizes (32×32, 64×64,

128×128, 256×256) for the RNN evaluations and developed crossbar arrays under two sizes

(32×32, 128×128) for LSTM evaluation with p-bit activation functions in HSPICE. We

implemented all peripheral circuits including row address decoders, array controller, etc. in

Synopsys Design Compiler [111]. For the architecture level assessment, we extensively modified

the MNSim simulator [156] to co-simulate with our developed RNN and LSTM library. This

library takes the circuit-level data as input and feeds it into memory level evaluations. We used

the resistive parameters in [157] with Rlow = 315K and Rhigh = 1.1G to assess the latency, area, and

energy of the crossbar arrays in MNSim. For the application level performance, we built an image

recognition classifier in Pytorch using the MNIST dataset for the RNN design [158]. Such RNN

takes an image of hand-written numbers from 0–9 as input and classifies it based on the shape. We

also built three distinct name predictor LSTM networks via ideal, binary, and the proposed non-

binary APAF neuron, employing the popular names dataset available as national data [159]. For

the hardware mapping, every input feature-map is treated as a 2D matrix and then partitioned and

mapped to the crossbar array. The mapped data is fed into RNN-enabled MNSim to extract the

architecture-level performance parameters as depicted in Figure 5.6.

98

Figure 5.6: HW-SW cross-layer evaluation framework developed in this work.

Bit-Width Setup: We consider three degrees of weight quantization to explore the accuracy of

the platform (W=4, 2, 1) with I=3-/5-bit APAF output. Hence , we report the accuracy for 6 bit-

width configuration of <I:W> (<3:4>, <5:4>, <3:2>, <5:2>, <3:1>, <5:1>).

Hardware Setup: The under-test RNN structure generally consists of 128 hidden layer neurons

and 10 output neurons. It has two linear layers, similar to Figure 2.11, that function over input and

hidden states, with APAF design mimicking the tanh function followed by one fully-connected

layer with LogSoftmax activation function. This is mapped into ReRAM crossbar units with the

proposed layer connectivity in Section 5.2.

99

5.3.2. Functionality Analysis of APAF

Figure 5.7. shows the SPICE simulation waveforms verifying the functionality of the proposed

circuitry for the APAF design. In this Figure, we evaluate the output of APAF’s p-bit component

four times (labeled by p-bit 1 to p-bit 4) for four consecutive clock cycles, under five different

input currents, which later will be mapped into five outputs. Here, Isum represents the weighted

summation of input currents realized by the resistive sub-array, ranging from -50μA to +50μA,

flowing into the p-bit device. When the Isum is equal to -50μA or +50μA, the output of all four p-

bit devices for the entire four clock cycles are “1” and “0”, respectively. This indicates the

deterministic behavior of the activation function under these charge currents. These outputs will

later be mapped to 0.8v and -0.8v, respectively, by the converter. When the Isum is -5μA, we

Figure 5.7: The transient simulation result of the neuron w.r.t. the crossbar SL current.

100

Table 5.1: The p-bit output error rate vs. the APAF error rate.

observe different outputs for each p-bit device. The p-bit output (p-bit) 1, 3 and 4 have one “0”

and three “1”s in four consecutive clock cycles that will be mapped to 0.4v. However, we observe

“1111” for the p-bit output 2, indicating a slight error in this case. When the Isum is 35μA the output

of all p-bit devices for the entire four clock cycles are “0000”, which is again in the deterministic

range of the p-bit device as shown in Figure 5.4 (a). Finally, when the Isum is 3μA, we again observe

different outputs for the p-bit devices. Accordingly, the p-bit output (p-bit) 1, 2, and 3 will be

mapped to 0v and the p-bit output (p-bit) 4 will be mapped to -0.8 as an error.

 We extensively analyzed the variation tolerance of the APAF by running a rigorous Monte-Carlo

simulation at the sub-array level with 10,000 trials, by adding a σ= 10% variation to crossbar

conductance and an m% process variation on the Tunnel Magneto-Resistance (TMR) of p-bit

device. We reported the calculated error rate in Table 5.1 for both p-bit output and the APAF after

the converter. Our first observation is that even considering a typical 10% variation on MTJ’s

TMR, when p-bit shows an error rate of 0.22% for Al=3, the APAF design’s error rate was found

 Variation (m%)

Accuracy

level

Probed

Outputs
±5% ±10% ±15% ±20%

Al=3
p-bit 0.00% 0.22% 0.56% 5.90%

APAF 0.00% 0.00% 0.19% 1.45%

Al=5
p-bit 0.00% 0.25% 0.55% 5.39%

APAF 0.00% 0.00% 0.00% 0.28%

101

Table 5.2: The comparison of APAF with CMOS-based designs.

to be 0.00%; thus, the overall functionality provides a reasonable approximation to the tanh

function. Our second observation is by increasing the accuracy level from 3 to 5, while the p-bit

output error rate does not necessarily change, with a specific m value, the APAF error rate

remarkably reduces. This mainly stems from the fact that the converter’s LUT is now able to

convert the compressed value to a specific output level with higher precision. Additionally, we

compared the area and energy consumption of the proposed design with [153] and [152] CMOS-

based designs, under two distinct sub-array sizes as tabulated in Table 5.2. The simulations show

that our proposed neuron achieves up to 34× improvement in energy efficiency and 2× area

reduction compared to the CMOS-based non-binary designs. The energy consumption results for

[153] could not be appropriately reported.

5.3.3. Application-level Evaluation

To fairly compare this result with other ReRAM accelerators, we implemented the CMOS analog

design (represented by D1, henceforth) [152], CMOS digital design (D2) [153], an RNN-enabled

Prime [76] platform (D3), and ReRAM RNN design (D4) [67] from scratch in the same technology

node as our design using the presented cross-layer platform.

 32x32 128x128

xbar Size [153] [152] Here [153] [152] Here

xbar # 68 68 68 5 5 5

Area (mm2) 0.17 0.07 0.06 0.06 0.02 0.02

Energy

(uJ)
N/A 4.04 0.14 N/A 1.03 0.03

102

Energy Consumption: Figure 5.8 reports and compares the energy consumption breakdown of the

proposed design with the previous works under four distinct sub-array sizes (32×32, 64×64,

128×128, and 256×256) to run MNIST dataset. Based on the experiment, a significant amount of

energy (over 87%) is consumed by DAC/ADC/CMOS activation units in all ReRAM

implementations. We observe that replacing the large CMOS ADC and activation in counterpart

designs with the APAF provides an outstanding energy-saving for the RNN accelerator. In this

experiment, by setting the APAF accuracy-level to 5 (Al=5), on average the proposed design

Figure 5.8: Components of energy consumption for ReRAM crossbar designs with various sub-

array sizes (note: left y-axis: log-scaled).

103

Figure 5.9: Trade-off between energy consumption and accuracy w.r.t. Al on MNIST data-set.

achieves 28.7×, 74.5×, and 51× improvements in term of energy consumption compared with the

D1, D3, D4, respectively, while reducing the activation function footprint by a factor of 11 on

average over 4 different sub-array sizes. It is worth noting that D1 [152] uses LFSR, bit-wise AND,

tree adder, FSM-based, and CMOS tanh as activation function components and D2 [153] utilizes

64×16 LUTs, CMOS pseudo random number generator, and comparator as the main activation

components. Moreover, Figure 5.8 shows the correlation between energy consumption and sub-

array size. It can be observed that the larger the sub-array size is, the less crossbar utilization and

energy budget are required to process the input feature maps.

Accuracy-Energy Trade-offs: We explore the existing trade-off between the overall inference

accuracy of the RNN running MNIST dataset and energy consumption of APAF with respect to

the Al, as shown in Figure 5.9. Here, we consider two bit-width configurations for the input i.e.

<I>=3-/5-bit (corresponding to the previous layer’s APAF output), while quantizing the weight to

1, 2, and 4 bits. The blue curves in this plot are dedicated to demonstrating the energy consumption

of APAF unit for 3-/5-bit input bit-width versus Al. They confirm that an increase in Al comes at

104

the cost of higher energy-consumption for the platform, as we are utilizing the APAF a greater

number of times. In addition, the green (/red) curves are dedicated to show the accuracy of <I>=3-

bit (/5-bit) configuration when <W> changes. Higher weight bit-width provides a higher accuracy

for the platform in a particular Al. Therefore, the higher overall accuracy could be met by

increasing Al. We can see when Al = 5, <5:4> configuration achieves close to 98%, which is

comparable to full precision network accuracy on CNNs [81].

Figure 5.10: The experimental results of the LSTM network with (a) ideal, (b) binary and (c)

proposed non-binary APAF-based neuron.

(a) (b) (c)

105

Figure 5.10 shows the experimental results for three distinct neuron designs including loss,

perplexity, and accuracy fluctuations for all cases in a name predictor LSTM networks via ideal,

binary, and the APAF design, employing the popular names dataset. Unlike accuracy, for loss and

perplexity parameters, lower values are preferred. The plotted data is an average of 30 training

sample batch sets. The accuracy indicates the performance of the neural network while the

perplexity graph evaluates the currently implemented network regarding the sample data

modeling. In Fig. 6. (a), the ideal sigmoid neuron displays the limits on possibility with an

approximation for all plots. In the binary neuron case shown in Figure 5.10 (b), there is a sharp

rise in accuracy in the first sets of batches. However, it initially does not reach the performance

of the ideal sigmoidal model (Figure 5.10 (a)). Consequently, the results of the binary case have

a long tail that starts around set number 50, in which the system gradually improves as it progresses

towards the end of the batches. Additionally, the perplexity graph shows that disturbance from

discontinuity of the binary activation causes the training algorithm to struggle in modeling the

samples using the network. After 8,000 training samples, the network with the binary neuron

shows 58% degradation at modeling the data compared to the ideal sigmoid neuron.

Utilizing the proposed non-binary neuron, the results are very close to the ideal case as shown in

Figure 5.10 (c). The enhanced activation mechanism allows it to mimic the ideal sigmoidal system.

This is reflected in the perplexity graphs converging to similar values, with the proposed non-

binary neuron with only 7% degradation compared to the sigmoidal system. However, the

proposed neuron, also starts with a slightly slower training speed, as the binary activation function.

But this tail is much shorter, lasting over the course of approximately 1,050 training samples.

106

Figure 5.11: Breakdown of area overhead of peripherals for (a) D3 as the base-line and (b) the

proposed RNN accelerator with Al= 5.

Area Overhead: To evaluate the area overhead of the presented accelerator on top of commodity

ReRAM chip, we took three main hardware cost sources into consideration: (1) hybrid spin-CMOS

APAF unit connected to every SL; (2) the ctrl's overhead to adjust regulatory parameters based on

APAF algorithm; (3) the output driver’s overhead to connect with the shared activation functions

and buffer array as depicted in Figure 5.1. The detailed breakdowns of area overhead of D3’s

design and our presented design are shown in Figure 5.10. We take D3 in Figure 5.10 (a) as the

baseline for comparison and assess the area alteration with respect to the different components. As

shown in the Figure, D3 requires ~37% area increase (activation functions + ctrl) to support RNN

computation. However, the presented design only imposes 15%-20% area overhead, depending on

the demanded accuracy level (here Al= 5).

Latency: An APAF-based mechanism offers significant improvements in terms of energy-

efficiency and peripheral footprint and it does not rely on multiple weighted summation

computation to realize sigmoidal or tanh functions. Although we have multiple computations for

107

activation function unit, the added latency to overall computation will be negligible as the crossbar

computation will be performed once. Based on our experiments, the crossbar computation latency

with APAF is comparable to D1 and D2, due to two prevailing reasons. First, the APAF eliminates

the latency of multi-cycle LFSR, tree adder, FSM, and CMOS pseudo random number generator

to realize the activation function. The APAF generates the output in a single memory cycle (<1ns).

Second, the proposed parallel feedback component combined with APAF discussed earlier

actively eliminates the need for the high-latency write-back operation in the previous platform,

D1-D4.

Resource Utilization: We further explored the memory bottleneck ratio and resource utilization of

different in-memory computing accelerator (D1-D4 and our proposed design) compared with an

NVIDIA GTX 1080Ti Pascal GPU with 3,584 CUDA cores running at 1.5GHz. As shown in

Figure 5.11, we projected the memory bottleneck as the time fraction at which the crossbar must

wait for data and on-/off-chip data communication hinders the overall performance. We extracted

the results for each platform considering the number of memory accesses. In this plot, we can see

that ReRAM crossbars spend less than 38% time for memory access and data transfer. However,

the GPU spends over 90% of its time loading data from the memory. The proposed platform with

APAF and D4 achieve the highest utilization ratio by efficiently utilizing up to 88% of the

computation resources.

108

Figure 5.12: Resource utilization ratio for different platforms.

5.4. Conclusion

Energy-efficient hardware design for data-intensive complex networks such as RNNs has been one

of the main challenges in this area. To achieve high levels of energy-efficiency, we proposed a

comprehensive hardware implementation for RNNs based on CiM architecture. The proposed

design is formed upon ReRAM based crossbars and ultra-low power spin-based p-bit devices as

the building block for APAF design. The presented simulation results show that the proposed

APAF design provides the desired functionality while showing a high tolerance in crossbar

conductance variations and process variations. The comparison of the proposed design with

recognized state-of-the-art designs shows up to 74.5× improvements in energy consumption, ~11×

area reduction in activation function unit, comparable accuracy and latency, and up to 88%

resource utilization verifying its advancements.

109

CHAPTER 6 : CONCLUSION AND FUTURE WORK

As discussed in the previous chapters, recently the neuromorphic computing paradigms have

achieved impressive outcomes in the algorithm-level studies. These models perform

computationally intensive operations such as Multiplication and Addition (MAC), on large

datasets, which requires high power consumption and face the famous memory-wall challenge. In

order to overcome these challenges energy-efficient non von Neuman computing architectures are

required that can be implemented with low-power devices. Unlike the algorithm-level

improvements in various neuromorphic paradigms, there are fewer studies that propose an

architecture-level solution. In this proposal, three distinct energy-efficient accelerators have been

proposed for GANs, biologically-inspired networks, and recurrent neural networks. On the other

hand, there are still several other neural networks that are in dire need of a suitable hardware

implementation to increase the efficiency and speed of the training, such as Long-Short Term

Memory networks (LSTMs) and Spiking neural networks. These type of networks are based on

unsupervised neural networks and are widely used in making predictions based on the temporal

sequence of the input data and utilize a memory unit to predict the next data based on the previous

input in the memory unit. These networks interact with larger datasets and have a more complex

network structure compared to the other artificial neural networks. Therefore, these networks

require an efficient hardware implementation, which enables them to train faster and has a built-

in non-volatile element as the required memory unit for the feedback component. MRAM-based

architecture is a perfect candidate to provide both power efficiency and non-volatility for such

designs.

110

6.1. Technical Summary

In summary, the major contributions in this dissertation can be listed as follows:

1) In the first cross-layer design for GANs, a partial replacement approach is introduced

which can find the locations of layers in both G and D networks to be quantized in a way

to achieve the best performance, a maximum number of quantized layers and lowest

accuracy loss. It can massively reduce the required storage and computational resources in

the inference paths with the minimum performance degradation compared to the full-

precision model.

2) Further improvement in the performance efficiency of systems such as energy and area

reduction are achieved by developing a new approximate arithmetic unit. To avoid

unacceptable error in output behaviors a partial approximate computing datapath consisting

of a precise adder and an approximate adder is developed.

3) A PIM accelerator is proposed for GAN, namely ApGAN, based on memristor

computational subarrays and ultra-low power activation function to efficiently accelerate

its training within the non-volatile memory. Moreover, we present a pipeline computation

optimization approach to further enhance the training efficiency of ApGAN in hardware

level.

4) Finally, the evaluation of system accuracy in different data precision and the system

performance in speed and energy are carried out. Applying steps 1 to 3 causes an extensive

reduction in energy and area as well, whereas an acceptable accuracy is achieved. Our

111

experimental results show that it improves the energy-efficiency and speed by ~21× and

35.5× speedup compared with GPU platform.

5) A new binary STM-LTM platform is proposed with composite synapse of SHE-MTJ and

a capacitive memory bit-cell to mimic the behavior of biological synapses. Our design

realizes the memory potentiation through continual update using STM-to-LTM transfer.

6) We present a hardware-enabled STM-LTM transition algorithm for the platform

considering the hardware parameters.

7) We explore the efficiency of the platform running the STM-LTM transition algorithm

considering the correlation between energy, array size, and STM-to-LTM threshold.

8) We propose an energy-efficient and high performance CiM platform, based on a new set

of circuit-level and micro-architectural techniques with cross-layer (circuit, architecture,

and algorithm) co-optimization to implement various RNNs.

9) We introduce novel concept of Adjustable Probabilistic Activation Function (APAF) using

a p-bit device as a part of the shared activation unit in conjunction with the core

computations within the crossbar. This design extracts the stochastic behavior of the p-bit

device to implement the approximate sigmoid and tanh functions within the CiM platform

with a high level of energy-efficiency.

10) We propose a customized matching algorithm for the APAF design to regulate the

implemented shared activation unit with regards to its hardware constraints.

11) We develop a cross-layer device-to-application evaluation framework to analyze the

efficiency and performance of the proposed platform considering the array size and

accuracy level to compare those with leading alternative designs in the literature.

112

6.2. Future Work

The competition between all the different training methods and enhancement approaches in

various deep neural network paradigms narrows down to the main goal of this research field which

is the inference accuracy. The research in this dissertation can be extended to develop high

precision deep neural networks utilizing novel multibit spin devices as its building block. High

precision networks are especially important in artificial neural networks that aim to mimic natural

neural networks more closely such as SNNs and LSTM networks. In artificial neural networks,

high precision computation plays a vital role as the process of mapping and training in the hardware

requires extensive quantization methods that leads to a forced accuracy drop.

To implement multibit synapses, we propose utilizing an MRAM-based compound synapse. This

SOT-MRAM-based multibit resistive device shown in Figure 6.1, provides a separate read and

write path which will reduce the read error rate, since write operation is performed using the spin

Figure 6.1: Multibit stochastic SOT-MRAM-based.

113

Hall Effect (SHE) write mechanism [160]. Additionally, SOT-MRAM is expected to perform

better in terms of endurance, power consumption, and speed [27].

114

APPENDIX: COPYRIGHT PERMISSIONS

115

116

REFERENCES

[1] R. R. Schaller, "Moore's law: past, present and future," IEEE spectrum, vol. 34, no. 6, pp.

52-59, 1997.

[2] B. Davari, R. H. Dennard, and G. G. Shahidi, "CMOS scaling for high performance and

low power-the next ten years," Proceedings of the IEEE, vol. 83, no. 4, pp. 595-606, 1995.

[3] S. Angizi and D. Fan, "ReDRAM: A Reconfigurable Processing-in-DRAM Platform for

Accelerating Bulk Bit-Wise Operations," in 2019 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2019, pp. 1-8: IEEE.

[4] S. Salehi Mobarakeh, "Energy-Efficient Signal Conversion and In-Memory Computing

using Emerging Spin-based Devices," 2020.

[5] X. Fong et al., "Spin-transfer torque devices for logic and memory: Prospects and

perspectives," IEEE Transactions on Computer-Aided Design of Integrated Circuits

Systems, vol. 35, no. 1, pp. 1-22, 2015.

[6] D. E. Nikonov and I. A. Young, "Overview of beyond-CMOS devices and a uniform

methodology for their benchmarking," Proceedings of the IEEE, vol. 101, no. 12, pp. 2498-

2533, 2013.

[7] S. Yu, "Neuro-inspired computing with emerging nonvolatile memorys," Proceedings of

the IEEE, vol. 106, no. 2, pp. 260-285, 2018.

[8] S. Sheikhfaal and R. F. DeMara, "Short-Term Long-Term Compute-In-Memory

Architecture: A Hybrid Spin/CMOS Approach Supporting Intrinsic Consolidation," IEEE

Journal on Exploratory Solid-State Computational Devices Circuits, 2020.

[9] A. Roohi, "Normally-off computing design methodology using spintronics: from device to

architectures," in 2020 11th International Green and Sustainable Computing Workshops

(IGSC), 2020, pp. 1-4: IEEE.

[10] D. Silver et al., "Mastering the game of go without human knowledge," nature, vol. 550,

no. 7676, pp. 354-359, 2017.

[11] J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review," Proceedings of

the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

[12] W. Shi and S. Dustdar, "The promise of edge computing," Computer, vol. 49, no. 5, pp.

78-81, 2016.

[13] M. Horowitz, "Energy table for 45nm process," in Stanford VLSI wiki, 2014.

[14] S. Angizi and D. Fan, "Imc: energy-efficient in-memory convolver for accelerating

binarized deep neural network," in Proceedings of the Neuromorphic Computing

Symposium, 2017, pp. 1-8.

[15] S. Angizi and D. Fan, "Graphide: A graph processing accelerator leveraging in-dram-

computing," in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, pp. 45-

50.

[16] S. Angizi, Z. He, F. Parveen, and D. Fan, "Rimpa: A new reconfigurable dual-mode in-

memory processing architecture with spin hall effect-driven domain wall motion device,"

in 2017 IEEE Computer Society annual symposium on VLSI (ISVLSI), 2017, pp. 45-50:

IEEE.

117

[17] Z. He, S. Angizi, and D. Fan, "Exploring STT-MRAM based in-memory computing

paradigm with application of image edge extraction," in 2017 IEEE International

Conference on Computer Design (ICCD), 2017, pp. 439-446: IEEE.

[18] A. Roohi, S. Sheikhfaal, S. Angizi, D. Fan, and R. F. DeMara, "ApGAN: Approximate

GAN for Robust Low Energy Learning From Imprecise Components," IEEE Transactions

on Computers, vol. 69, no. 3, pp. 349-360, 2019.

[19] J. C. Slonczewski, "Current-driven excitation of magnetic multilayers," Journal of

Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1-L7, 1996.

[20] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, "Spin-torque switching with

the giant spin Hall effect of tantalum," Science, vol. 336, no. 6081, pp. 555-558, 2012.

[21] S. Wolf et al., "Spintronics: a spin-based electronics vision for the future," science, vol.

294, no. 5546, pp. 1488-1495, 2001.

[22] I. Prejbeanu et al., "Thermally assisted MRAM," Journal of Physics: Condensed Matter,

vol. 19, no. 16, p. 165218, 2007.

[23] T. Devolder, C. Chappert, J. Katine, M. Carey, and K. Ito, "Distribution of the

magnetization reversal duration in subnanosecond spin-transfer switching," Physical

Review B, vol. 75, no. 6, p. 064402, 2007.

[24] H. Zhao et al., "Low writing energy and sub nanosecond spin torque transfer switching of

in-plane magnetic tunnel junction for spin torque transfer random access memory," Journal

of Applied Physics, vol. 109, no. 7, p. 07C720, 2011.

[25] D. Fan, S. Maji, K. Yogendra, M. Sharad, and K. Roy, "Injection-locked spin hall-induced

coupled-oscillators for energy efficient associative computing," IEEE Transactions on

Nanotechnology, vol. 14, no. 6, pp. 1083-1093, 2015.

[26] W. Kang, Z. Wang, Y. Zhang, J.-O. Klein, W. Lv, and W. Zhao, "Spintronic logic design

methodology based on spin Hall effect–driven magnetic tunnel junctions," Journal of

Physics D: Applied Physics, vol. 49, no. 6, p. 065008, 2016.

[27] S. Manipatruni, D. E. Nikonov, and I. A. Young, "Energy-delay performance of giant spin

Hall effect switching for dense magnetic memory," Applied Physics Express, vol. 7, no.

10, p. 103001, 2014.

[28] C. Chappert, A. Fert, and F. N. Van Dau, "The emergence of spin electronics in data

storage," Nanoscience Technology: A Collection of Reviews from Nature Journals, pp.

147-157, 2010.

[29] A. Roohi, "Normally-Off Computing Design Methodology Using Spintronics: From

Devices to Architectures," 2019.

[30] M. N. Baibich et al., "Giant magnetoresistance of (001) Fe/(001) Cr magnetic

superlattices," Physical review letters, vol. 61, no. 21, p. 2472, 1988.

[31] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in

layered magnetic structures with antiferromagnetic interlayer exchange," Physical review

B, vol. 39, no. 7, p. 4828, 1989.

[32] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, "Large magnetoresistance at

room temperature in ferromagnetic thin film tunnel junctions," Physical review letters, vol.

74, no. 16, p. 3273, 1995.

[33] J. Rowell, M. Gurvitch, and J. Geerk, "Modification of tunneling barriers on Nb by a few

monolayers of Al," Physical Review B, vol. 24, no. 4, p. 2278, 1981.

118

[34] S. S. Parkin et al., "Giant tunnelling magnetoresistance at room temperature with MgO

(100) tunnel barriers," Nature materials, vol. 3, no. 12, pp. 862-867, 2004.

[35] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, "70% TMR at room

temperature for SDT sandwich junctions with CoFeB as free and reference layers," IEEE

Transactions on Magnetics, vol. 40, no. 4, pp. 2269-2271, 2004.

[36] W. Pratt Jr, S.-F. Lee, J. Slaughter, R. Loloee, P. Schroeder, and J. Bass, "Perpendicular

giant magnetoresistances of Ag/Co multilayers," Physical review letters, vol. 66, no. 23, p.

3060, 1991.

[37] M. Julliere, "Tunneling between ferromagnetic films," Physics letters A, vol. 54, no. 3, pp.

225-226, 1975.

[38] Q. Xu, H. Chen, J. Lu, G. NI, and Y. DU, "Giant Magnetic Tunneling Effect in Fe/Al~

2O~ 3/Fe," Journal of Functional Materials, vol. 31, no. SUPP, pp. 42-42, 2000.

[39] S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, "Giant tunneling

magnetoresistance up to 410% at room temperature in fully epitaxial Co∕ Mg O∕ Co

magnetic tunnel junctions with bcc Co (001) electrodes," Applied Physics Letters, vol. 89,

no. 4, p. 042505, 2006.

[40] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, "Giant room-temperature

magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions," Nature

materials, vol. 3, no. 12, pp. 868-871, 2004.

[41] S. Ikeda et al., "Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion

in Co Fe B∕ Mg O∕ Co Fe B pseudo-spin-valves annealed at high temperature," Applied

Physics Letters, vol. 93, no. 8, p. 082508, 2008.

[42] W. J. Gallagher and S. S. Parkin, "Development of the magnetic tunnel junction MRAM

at IBM: From first junctions to a 16-Mb MRAM demonstrator chip," IBM Journal of

Research Development, vol. 50, no. 1, pp. 5-23, 2006.

[43] T. L. Gilbert, "A Lagrangian formulation of the gyromagnetic equation of the

magnetization field," Phys. Rev., vol. 100, p. 1243, 1955.

[44] A. Brataas, A. D. Kent, and H. Ohno, "Current-induced torques in magnetic materials,"

Nature materials, vol. 11, no. 5, pp. 372-381, 2012.

[45] D. C. Ralph and M. D. Stiles, "Spin transfer torques," Journal of Magnetism and Magnetic

Materials, vol. 320, no. 7, pp. 1190-1216, 2008.

[46] J. Grollier et al., "Spin-polarized current induced switching in Co/Cu/Co pillars," Applied

Physics Letters, vol. 78, no. 23, pp. 3663-3665, 2001.

[47] J. Hayakawa et al., "Current-induced magnetization switching in MgO barrier based

magnetic tunnel junctions with CoFeB/Ru/CoFeB synthetic ferrimagnetic free layer,"

Japanese journal of applied physics, vol. 45, no. 10L, p. L1057, 2006.

[48] Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, "Observation of spin-transfer

switching in deep submicron-sized and low-resistance magnetic tunnel junctions," Applied

Physics Letters, vol. 84, no. 16, pp. 3118-3120, 2004.

[49] H. Zhao et al., "Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel

junctions with interface perpendicular anisotropy," Journal of Physics D: Applied Physics,

vol. 45, no. 2, p. 025001, 2011.

119

[50] Z. Wang, W. Zhao, E. Deng, J.-O. Klein, and C. Chappert, "Perpendicular-anisotropy

magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque," Journal of

Physics D: Applied Physics, vol. 48, no. 6, p. 065001, 2015.

[51] L. Liu, C.-F. Pai, D. Ralph, and R. Buhrman, "Magnetic oscillations driven by the spin Hall

effect in 3-terminal magnetic tunnel junction devices," Physical review letters, vol. 109,

no. 18, p. 186602, 2012.

[52] L. Liu, T. Moriyama, D. Ralph, and R. Buhrman, "Spin-torque ferromagnetic resonance

induced by the spin Hall effect," Physical review letters, vol. 106, no. 3, p. 036601, 2011.

[53] C.-F. Pai, L. Liu, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, "Spin transfer torque devices

utilizing the giant spin Hall effect of tungsten," Applied Physics Letters, vol. 101, no. 12,

p. 122404, 2012.

[54] A. Roohi, R. Zand, D. Fan, and R. F. DeMara, "Voltage-based concatenatable full adder

using spin hall effect switching," IEEE transactions on computer-aided design of

integrated circuits systems, vol. 36, no. 12, pp. 2134-2138, 2017.

[55] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, "Stochastic p-bits for invertible logic,"

Physical Review X, vol. 7, no. 3, p. 031014, 2017.

[56] R. Andrawis, A. Jaiswal, and K. Roy, "Design and comparative analysis of spintronic

memories based on current and voltage driven switching," IEEE Transactions on Electron

Devices, vol. 65, no. 7, pp. 2682-2693, 2018.

[57] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic interpolation

recoder for energy-error-product efficient DBNs with p-bit devices," IEEE Transactions

on Emerging Topics in Computing, 2020.

[58] S. Sheikhfaal, S. D. Pyle, S. Salehi, and R. F. DeMara, "An Ultra-Low Power Spintronic

Stochastic Spiking Neuron with Self-Adaptive Discrete Sampling," in 2019 IEEE 62nd

International Midwest Symposium on Circuits and Systems (MWSCAS), 2019, pp. 49-52:

IEEE.

[59] R. Zand, K. Y. Camsari, S. D. Pyle, I. Ahmed, C. H. Kim, and R. F. DeMara, "Low-energy

deep belief networks using intrinsic sigmoidal spintronic-based probabilistic neurons," in

Proceedings of the 2018 on Great Lakes Symposium on VLSI, 2018, pp. 15-20.

[60] K. Y. Camsari, S. Ganguly, and S. Datta, "Modular approach to spintronics," Scientific

reports, vol. 5, p. 10571, 2015.

[61] A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep

convolutional generative adversarial networks," arXiv preprint arXiv:.06434, 2015.

[62] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, "Improved

techniques for training gans," arXiv preprint arXiv:.03498, 2016.

[63] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein generative adversarial networks,"

in International conference on machine learning, 2017, pp. 214-223: PMLR.

[64] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, "Improved training

of wasserstein gans," arXiv preprint arXiv:.00028, 2017.

[65] M. Song, J. Zhang, H. Chen, and T. Li, "Towards efficient microarchitectural design for

accelerating unsupervised gan-based deep learning," in 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 66-77: IEEE.

[66] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent

neural networks on sequence modeling," arXiv preprint arXiv:. 2014.

120

[67] Y. Long, E. M. Jung, J. Kung, and S. Mukhopadhyay, "Reram crossbar based recurrent

neural network for human activity detection," in 2016 International Joint Conference on

Neural Networks (IJCNN), 2016, pp. 939-946: IEEE.

[68] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient

descent is difficult," IEEE transactions on neural networks, vol. 5, no. 2, pp. 157-166,

1994.

[69] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, J. Schmidhuber, and l. systems,

"LSTM: A search space odyssey," IEEE transactions on neural networks, vol. 28, no. 10,

pp. 2222-2232, 2016.

[70] K. Smagulova, O. Krestinskaya, A. P. James, and S. Processing, "A memristor-based long

short term memory circuit," Analog Integrated Circuits Signal Processing, vol. 95, no. 3,

pp. 467-472, 2018.

[71] Y. Long, T. Na, and S. Mukhopadhyay, "ReRAM-based processing-in-memory

architecture for recurrent neural network acceleration," IEEE Transactions on Very Large

Scale Integration Systems, vol. 26, no. 12, pp. 2781-2794, 2018.

[72] J. Brownlee, "A gentle introduction to the rectified linear unit (ReLU)," Machine learning

mastery, vol. 6, 2019.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," Advances in neural information processing systems, vol.

25, pp. 1097-1105, 2012.

[74] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, "Dorefa-net: Training low bitwidth

convolutional neural networks with low bitwidth gradients," arXiv preprint arXiv:.06160,

2016.

[75] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "Xnor-net: Imagenet classification

using binary convolutional neural networks," in European conference on computer vision,

2016, pp. 525-542: Springer.

[76] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory," ACM SIGARCH Computer Architecture

News, vol. 44, no. 3, pp. 27-39, 2016.

[77] M. Imani, Y. Kim, and T. Rosing, "Mpim: Multi-purpose in-memory processing using

configurable resistive memory," in 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC), 2017, pp. 757-763: IEEE.

[78] F. Chen, L. Song, and Y. Chen, "Regan: A pipelined reram-based accelerator for generative

adversarial networks," in 2018 23rd Asia and South Pacific Design Automation Conference

(ASP-DAC), 2018, pp. 178-183: IEEE.

[79] B. Li, L. Song, F. Chen, X. Qian, Y. Chen, and H. H. Li, "Reram-based accelerator for

deep learning," in 2018 Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2018, pp. 815-820: IEEE.

[80] S. Angizi, Z. He, and D. Fan, "PIMA-logic: a novel processing-in-memory architecture for

highly flexible and energy-efficient logic computation," in Proceedings of the 55th Annual

Design Automation Conference, 2018, pp. 1-6.

[81] S. Angizi, Z. He, A. S. Rakin, and D. Fan, "Cmp-pim: an energy-efficient comparator-

based processing-in-memory neural network accelerator," in Proceedings of the 55th

Annual Design Automation Conference, 2018, pp. 1-6.

121

[82] S. Angizi, J. Sun, W. Zhang, and D. Fan, "GraphS: A graph processing accelerator

leveraging SOT-MRAM," in 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2019, pp. 378-383: IEEE.

[83] A. Roohi, S. Angizi, D. Fan, and R. F. DeMara, "Processing-in-memory acceleration of

convolutional neural networks for energy-effciency, and power-intermittency resilience,"

in 20th International Symposium on Quality Electronic Design (ISQED), 2019, pp. 8-13:

IEEE.

[84] A. Roohi and R. F. DeMara, "NV-clustering: Normally-off computing using non-volatile

datapaths," IEEE Transactions on Computers, vol. 67, no. 7, pp. 949-959, 2018.

[85] A. Roohi and R. F. DeMara, "PARC: A novel design methodology for power analysis

resilient circuits using spintronics," IEEE Transactions on Nanotechnology, vol. 18, pp.

885-889, 2019.

[86] G. W. Burr et al., "Experimental demonstration and tolerancing of a large-scale neural

network (165 000 synapses) using phase-change memory as the synaptic weight element,"

IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3498-3507, 2015.

[87] S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan, "PIM-Assembler: A processing-in-memory

platform for genome assembly," in 2020 57th ACM/IEEE Design Automation Conference

(DAC), 2020, pp. 1-6: IEEE.

[88] D. Reis et al., "Modeling and benchmarking computing-in-memory for design space

exploration," in Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020, pp.

39-44.

[89] L. Yang, S. Angizi, and D. Fan, "A flexible processing-in-memory accelerator for dynamic

channel-adaptive deep neural networks," in 2020 25th Asia and South Pacific Design

Automation Conference (ASP-DAC), 2020, pp. 313-318: IEEE.

[90] I. J. Goodfellow et al., "Generative adversarial networks," arXiv preprint arXiv:. 2014.

[91] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski, "Bingan: Learning compact binary

descriptors with a regularized gan," arXiv preprint arXiv:.06778, 2018.

[92] Y. Cao, G. W. Ding, K. Y.-C. Lui, and R. Huang, "Improving GAN training via binarized

representation entropy (BRE) regularization," arXiv preprint arXiv:.03644, 2018.

[93] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, "Binary generative adversarial

networks for image retrieval," in Proceedings of the AAAI Conference on Artificial

Intelligence, 2018, vol. 32, no. 1.

[94] J. Liu, J. Zhang, Y. Ding, X. Xu, M. Jiang, and Y. Shi, "PBGen: Partial Binarization of

Deconvolution-Based Generators for Edge Intelligence," arXiv preprint arXiv:.09153,

2018.

[95] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, "Low-power digital signal

processing using approximate adders," IEEE Transactions on Computer-Aided Design of

Integrated Circuits Systems, vol. 32, no. 1, pp. 124-137, 2012.

[96] N. Compute. (2010). PTX: Parallel thread execution ISA version 2.3. Available: Dostopno

na: http://developer. download. nvidia. com/compute/cuda

[97] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[98] H. Xiao, K. Rasul, and R. Vollgraf, "Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms," arXiv preprint arXiv:.07747, 2017.

http://developer/

122

[99] A. Krizhevsky and G. Hinton, "Convolutional deep belief networks on cifar-10,"

Unpublished manuscript, vol. 40, no. 7, pp. 1-9, 2010.

[100] A. Coates, A. Ng, and H. Lee, "An analysis of single-layer networks in unsupervised

feature learning," in Proceedings of the fourteenth international conference on artificial

intelligence and statistics, 2011, pp. 215-223: JMLR Workshop and Conference

Proceedings.

[101] Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," in

Proceedings of the IEEE international conference on computer vision, 2015, pp. 3730-

3738.

[102] L. Theis, A. v. d. Oord, and M. Bethge, "A note on the evaluation of generative models,"

arXiv preprint arXiv:.01844, 2015.

[103] S. Barratt and R. Sharma, "A note on the inception score," arXiv preprint arXiv:.01973,

2018.

[104] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception

architecture for computer vision," in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 2818-2826.

[105] F. Li, B. Zhang, and B. Liu, "Ternary weight networks," arXiv preprint arXiv:.04711,

2016.

[106] L. Gao, F. Alibart, and D. B. Strukov, "Analog-input analog-weight dot-product operation

with Ag/a-Si/Pt memristive devices," in 2012 IEEE/IFIP 20th International Conference on

VLSI and System-on-Chip (VLSI-SoC), 2012, pp. 88-93: IEEE.

[107] (2011). Design Compiler, Ncsu eda freepdk45. Available:

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[108] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "Nvsim: A circuit-level performance, energy,

and area model for emerging nonvolatile memory," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994-1007, 2012.

[109] A. S. Rakin, S. Angizi, Z. He, and D. Fan, "PIM-TGAN: A processing-in-memory

accelerator for ternary generative adversarial networks," in 2018 IEEE 36th International

Conference on Computer Design (ICCD), 2018, pp. 266-273: IEEE.

[110] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, "YodaNN: An ultra-low power

convolutional neural network accelerator based on binary weights," in 2016 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), 2016, pp. 236-241: IEEE.

[111] P. Kurup and T. Abbasi, Logic synthesis using Synopsys®. Springer Science & Business

Media, 2012.

[112] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, "CACTI-

3DD: Architecture-level modeling for 3D die-stacked DRAM main memory," in 2012

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, pp. 33-38:

IEEE.

[113] M. Tommiska, "Efficient digital implementation of the sigmoid function for

reprogrammable logic," IEE Proceedings-Computers Digital Techniques, vol. 150, no. 6,

pp. 403-411, 2003.

[114] R. Zhao et al., "Accelerating binarized convolutional neural networks with software-

programmable fpgas," in Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, 2017, pp. 15-24.

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

123

[115] S. Angizi, Z. He, F. Parveen, and D. Fan, "IMCE: Energy-efficient bit-wise in-memory

convolution engine for deep neural network," in 2018 23rd Asia and South Pacific Design

Automation Conference (ASP-DAC), 2018, pp. 111-116: IEEE.

[116] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan, "Design and evaluation of a spintronic in-

memory processing platform for nonvolatile data encryption," IEEE Transactions on

Computer-Aided Design of Integrated Circuits Systems, vol. 37, no. 9, pp. 1788-1801,

2017.

[117] G. Indiveri et al., "Neuromorphic silicon neuron circuits," Frontiers in neuroscience, vol.

5, p. 73, 2011.

[118] N. Caporale and Y. Dan, "Spike timing–dependent plasticity: a Hebbian learning rule,"

Annu. Rev. Neurosci.

, vol. 31, pp. 25-46, 2008.

[119] R. Lamprecht and J. LeDoux, "Structural plasticity and memory," Nature Reviews

Neuroscience, vol. 5, no. 1, pp. 45-54, 2004.

[120] I. Winkler and N. Cowan, "From sensory to long-term memory: evidence from auditory

memory reactivation studies," Experimental psychology, vol. 52, no. 1, pp. 3-20, 2005.

[121] J. L. McGaugh, "Memory-a century of consolidation," Science, vol. 287, no. 5451, pp. 248-

251, 2000.

[122] B. L. Jackson et al., "Nanoscale electronic synapses using phase change devices," ACM

Journal on Emerging Technologies in Computing Systems, vol. 9, no. 2, pp. 1-20, 2013.

[123] G. S. Snider, "Spike-timing-dependent learning in memristive nanodevices," in 2008 IEEE

international symposium on nanoscale architectures, 2008, pp. 85-92: Ieee.

[124] A. Sengupta, Z. Al Azim, X. Fong, and K. Roy, "Spin-orbit torque induced spike-timing

dependent plasticity," Applied Physics Letters, vol. 106, no. 9, p. 093704, 2015.

[125] U. Cilingiroglu, "A purely capacitive synaptic matrix for fixed-weight neural networks,"

IEEE transactions on circuits and systems, vol. 38, no. 2, pp. 210-217, 1991.

[126] W. E. Engeler, "Neural net using capacitive structures connecting input lines and

differentially sensed output line pairs," ed: Google Patents, 1993.

[127] D. Kwon and I.-Y. Chung, "Capacitive Neural Network Using Charge-Stored Memory

Cells for Pattern Recognition Applications," IEEE Electron Device Letters, vol. 41, no. 3,

pp. 493-496, 2020.

[128] Z. Wang et al., "Capacitive neural network with neuro-transistors," Nature

communications, vol. 9, no. 1, pp. 1-10, 2018.

[129] Q. Zheng et al., "Artificial Neural Network Based on Doped HfO 2 Ferroelectric

Capacitors With Multilevel Characteristics," IEEE Electron Device Letters, vol. 40, no. 8,

pp. 1309-1312, 2019.

[130] S. D. Pyle, R. Zand, S. Sheikhfaal, and R. F. Demara, "Subthreshold Spintronic Stochastic

Spiking Neural Networks With Probabilistic Hebbian Plasticity and Homeostasis," IEEE

Journal on Exploratory Solid-State Computational Devices Circuits, vol. 5, no. 1, pp. 43-

51, 2019.

[131] A. Sengupta and K. Roy, "Short-term plasticity and long-term potentiation in magnetic

tunnel junctions: Towards volatile synapses," Physical Review Applied, vol. 5, no. 2, p.

024012, 2016.

124

[132] T. Chang, S.-H. Jo, and W. Lu, "Short-term memory to long-term memory transition in a

nanoscale memristor," ACS nano

vol. 5, no. 9, pp. 7669-7676, 2011.

[133] G. Srinivasan, A. Sengupta, and K. Roy, "Magnetic tunnel junction based long-term short-

term stochastic synapse for a spiking neural network with on-chip STDP learning,"

Scientific reports, vol. 6, p. 29545, 2016.

[134] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, "Drisa: A dram-based

reconfigurable in-situ accelerator," in 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2017, pp. 288-301: IEEE.

[135] Y. Li et al., "Capacitor-based cross-point array for analog neural network with record

symmetry and linearity," in 2018 IEEE Symposium on VLSI Technology, 2018, pp. 25-26:

IEEE.

[136] K. Y. Camsari, S. Salahuddin, and S. Datta, "Implementing p-bits with embedded MTJ,"

IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767-1770, 2017.

[137] (2010). DRAM Power Model. Available: https://www.rambus.com/energy/

[138] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "Nvsim: A circuit-level performance, energy,

and area model for emerging nonvolatile memory," IEEE TCAD, vol. 31, no. 7, pp. 994-

1007, 2012.

[139] J. Sankey et al., "Mechanisms limiting the coherence time of spontaneous magnetic

oscillations driven by dc spin-polarized currents," Physical review B, vol. 72, no. 22, p.

224427, 2005.

[140] D. Fan, S. Maji, K. Yogendra, M. Sharad, and K. Roy, "Injection-locked spin hall-induced

coupled-oscillators for energy efficient associative computing," IEEE Transactions on

Nanotechnology, vol. 14, no. 6, pp. 1083-1093, 2015.

[141] S. Han et al., "Ese: Efficient speech recognition engine with sparse lstm on fpga," in

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2017, pp. 75-84.

[142] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, "14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-

RNN processor for general-purpose deep neural networks," in 2017 IEEE International

Solid-State Circuits Conference (ISSCC), 2017, pp. 240-241: IEEE.

[143] H. Sak, A. Senior, and F. Beaufays, "Long short-term memory based recurrent neural

network architectures for large vocabulary speech recognition," arXiv preprint arXiv:.

2014.

[144] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, "NDA: Near-DRAM

acceleration architecture leveraging commodity DRAM devices and standard memory

modules," in 2015 IEEE 21st International Symposium on High Performance Computer

Architecture (HPCA), 2015, pp. 283-295: IEEE.

[145] S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan, "PANDA: Processing-in-MRAM

Accelerated De Bruijn Graph based DNA Assembly," arXiv preprint arXiv:.06177, 2020.

[146] S. Angizi, Z. He, and D. Fan, "Energy efficient in-memory computing platform based on

4-terminal spin Hall effect-driven domain wall motion devices," in Proceedings of the on

Great Lakes Symposium on VLSI 2017, 2017, pp. 77-82.

https://www.rambus.com/energy/

125

[147] S. Angizi, J. Sun, W. Zhang, and D. Fan, "Pim-aligner: A processing-in-mram platform for

biological sequence alignment," in 2020 Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2020, pp. 1265-1270: IEEE.

[148] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, "Pinatubo: A processing-in-memory

architecture for bulk bitwise operations in emerging non-volatile memories," in

Proceedings of the 53rd Annual Design Automation Conference, 2016, pp. 1-6.

[149] A. F. Vincent et al., "Spin-transfer torque magnetic memory as a stochastic memristive

synapse for neuromorphic systems," IEEE transactions on biomedical circuits, vol. 9, no.

2, pp. 166-174, 2015.

[150] H.-S. P. Wong et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp.

1951-1970, 2012.

[151] S. Angizi et al., "Accelerating Deep Neural Networks in Processing-in-Memory Platforms:

Analog or Digital Approach?," in 2019 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), 2019, pp. 197-202: IEEE.

[152] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, "VLSI

implementation of deep neural network using integral stochastic computing," IEEE

Transactions on Very Large Scale Integration Systems, vol. 25, no. 10, pp. 2688-2699,

2017.

[153] M. N. Bojnordi and E. Ipek, "Memristive boltzmann machine: A hardware accelerator for

combinatorial optimization and deep learning," in 2016 IEEE International Symposium on

High Performance Computer Architecture (HPCA), 2016, pp. 1-13: IEEE.

[154] M. Price, J. Glass, and A. P. Chandrakasan, "14.4 A scalable speech recognizer with deep-

neural-network acoustic models and voice-activated power gating," in 2017 IEEE

International Solid-State Circuits Conference (ISSCC), 2017, pp. 244-245: IEEE.

[155] Predictive Technology Model (PTM). Available: http://ptm.asu.edu/

[156] L. Xia et al., "MNSIM: Simulation platform for memristor-based neuromorphic computing

system," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 37, no. 5, pp. 1009-1022, 2017.

[157] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, "Nvsim: A circuit-level performance, energy,

and area model for emerging nonvolatile memory," IEEE Transactions on Computer-Aided

Design of Integrated Circuits Systems, vol. 31, no. 7, pp. 994-1007, 2012.

[158] The MNIST database of handwritten digits. Available: http://yann.lecun.com/exdb/mnist/

[159] Beyond the Top 1000 Names Available: https://www.ssa.gov/oact/babynames/limits.html

[160] V. Ostwal, R. Zand, R. DeMara, and J. Appenzeller, "A novel compound synapse using

probabilistic spin–orbit-torque switching for MTJ-based deep neural networks," IEEE

Journal on Exploratory Solid-State Computational Devices Circuits, vol. 5, no. 2, pp. 182-

187, 2019.

http://ptm.asu.edu/
http://yann.lecun.com/exdb/mnist/
https://www.ssa.gov/oact/babynames/limits.html

	Energy-Efficient In-Memory Architectures Leveraging Intrinsic Behaviors of Embedded MRAM Devices
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 : INTRODUCTION
	1.1 Research Motivation
	1.2 Need for Energy-Efficient Machine Learning Architectures
	1.3 Contribution of the Dissertation

	Chapter 2 : BACKGROUND
	2.1 Spintronic Devices
	2.1.1 Magnetic Tunnel Junction (MTJ)
	2.1.2 Magnetic Field Switching
	2.1.3 Spin Transfer Torque (STT) Switching
	2.1.4. Spin Hall Effect (SHE) Switching
	2.1.5 Probabilistic Spintronic Device (p-bit)

	2.2 Explored Neural Networks
	2.2.1 Generative Adversarial Networks
	2.2.2 Recurrent Neural Networks
	2.2.3 Long Short-Term Memory (LSTM) Networks

	Chapter 3 : APPROXIMATE GENERATIVE ADVERSERIAL NETWORK (APGAN)
	3.1. Fundamentals of Generative Adversarial Networks
	3.2. Approximate GAN (ApGAN) Architecture
	3.3 ApGAN Training
	3.4 Partial Approximate Computing Unit
	3.5 ApGAN Accelerator
	3.5.1 Architecture
	3.5.2 Resistive Computational Sub-Array
	3.5.3 Configurable In-Memory Addition Scheme
	3.5.4 Instructions
	3.5.5 Hardware Mapping
	3.5.6 Parallelism

	3.6 Performance Evaluation
	3.6.1 Experimental Setup and Results
	3.6.2 Hardware Setup and Results

	3.7. Conclusion

	Chapter 4 : STM-LTM ARCHITECTURE
	4.1. Fundamentals of Biologically-Inspired Computing
	4.2. Biologically Inspired STM-LTM Architecture
	4.2.1. Memory Units
	4.2.2. Circuit Architecture

	4.3. STM-LTM Transition
	4.4. Simulation Results
	4.4.1. Evaluation Setup
	4.4.2. Results
	4.4.3 Energy/Delay Comparison

	4.5. Conclusion

	Chapter 5 : ENERGY-EFFICIENT RECURRENT NEURAL NETWORKS
	5.1. Prior Work on Activation Function Unit
	5.2. Proposed RNN Architecture
	5.2.1 Microarchitectural Design
	5.2.2. Adjustable Probabilistic Activation Function (APAF)

	5.3 Results
	5.3.1 Evaluation Framework
	5.3.2. Functionality Analysis of APAF
	5.3.3. Application-level Evaluation

	5.4. Conclusion

	Chapter 6 : CONCLUSION AND FUTURE WORK
	6.1. Technical Summary
	6.2. Future Work

	APPENDIX: COPYRIGHT PERMISSIONS
	REFERENCES

