4,735 research outputs found

    Participatory design for drug-drug interaction alerts

    Get PDF
    The utilization of decision support systems, in the point of care, to alert drug-drug interactions has been shown to improve quality of care. Still, the use of these systems has not been as expected, it is believed, because of the difficulties in their knowledge databases; errors in the generation of the alerts and the lack of a suitable design. This study expands on the development of alerts using participatory design techniques based on user centered design process. This work was undertaken in three stages (inquiry, participatory design and usability testing) it showed that the use of these techniques improves satisfaction, effectiveness and efficiency in an alert system for drug-drug interactions, a fact that was evident in specific situations such as the decrease of errors to meet the specified task, the time, the workload optimization and users overall satisfaction in the system.Fil: Luna, Daniel Roberto. Instituto Tecnologico de Buenos Aires. Departamento de Investigacion y Doctorado.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Otero, Carlos Martin. Instituto Tecnológico de Buenos Aires; Argentina. Hospital Italiano. Departamento de Informática En Salud.; ArgentinaFil: Almerares, Alfredo. Hospital Italiano. Departamento de Informática En Salud.; Argentina. University of Oregon; Estados UnidosFil: Stanziola, Enrique Luis. Hospital Italiano. Departamento de Informática En Salud.; ArgentinaFil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Oregon Health And Science University; . Instituto Tecnologico de Buenos Aires. Departamento de Investigacion y Doctorado.; ArgentinaFil: González Bernaldo De Quirós, Fernán. Hospital Italiano. Departamento de Informática En Salud.; Argentin

    Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation

    Get PDF
    OBJECTIVE: To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. MATERIALS AND METHODS: We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug-allergy, drug-drug interaction, and drug-disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. RESULTS: Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1-5) compared to original alerts: 4 (1-7); p=0.024). DISCUSSION: Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. CONCLUSIONS: This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes

    Usability flaws of medication-related alerting functions: A systematic qualitative review

    Get PDF
    AbstractIntroductionMedication-related alerting functions may include usability flaws that limit their optimal use. A first step on the way to preventing usability flaws is to understand the characteristics of these usability flaws. This systematic qualitative review aims to analyze the type of usability flaws found in medication-related alerting functions.MethodPapers were searched via PubMed, Scopus and Ergonomics Abstracts databases, along with references lists. Paper selection, data extraction and data analysis was performed by two to three Human Factors experts. Meaningful semantic units representing instances of usability flaws were the main data extracted. They were analyzed through qualitative methods: categorization following general usability heuristics and through an inductive process for the flaws specific to medication-related alerting functions.Main resultsFrom the 6380 papers initially identified, 26 met all eligibility criteria. The analysis of the papers identified a total of 168 instances of usability flaws that could be classified into 13 categories of usability flaws representing either violations of general usability principles (i.e. they could be found in any system, e.g. guidance and workload issues) or infractions specific to medication-related alerting functions. The latter refer to issues of low signal-to-noise ratio, incomplete content of alerts, transparency, presentation mode and timing, missing alert features, tasks and control distribution.Main conclusionThe list of 168 instances of usability flaws of medication-related alerting functions provides a source of knowledge for checking the usability of medication-related alerting functions during their design and evaluation process and ultimately constructs evidence-based usability design principles for these functions

    Implementing Operations Support Systems in E-Health Based Systems

    Get PDF
    Information and communication technologies have been introduced in different dimensions of the health care. e-Health is the use of advanced communications technologies such as the Internet, portable, wireless and other sophisticated devices to support health care delivery and education. It has the potentials of improving the efficiency of health care delivery globally. With the increasing demand for information at the point of care, health care providers could explore the advances provided by mobile technologies and the increasing capabilities, compactness and pervasiveness of computing devices to adopt operations supports systems (OSS) in e-Health based systems in order to provide efficient services and enhance their performances. In this paper, we present, the development and implementation of operations supports in e- Health based systems. The system promises to deliver greater productivity for health care practitioner

    Annotated Bibliography: Understanding Ambulatory Care Practices in the Context of Patient Safety and Quality Improvement.

    Get PDF
    The ambulatory care setting is an increasingly important component of the patient safety conversation. Inpatient safety is the primary focus of the vast majority of safety research and interventions, but the ambulatory setting is actually where most medical care is administered. Recent attention has shifted toward examining ambulatory care in order to implement better health care quality and safety practices. This annotated bibliography was created to analyze and augment the current literature on ambulatory care practices with regard to patient safety and quality improvement. By providing a thorough examination of current practices, potential improvement strategies in ambulatory care health care settings can be suggested. A better understanding of the myriad factors that influence delivery of patient care will catalyze future health care system development and implementation in the ambulatory setting
    • …
    corecore