142 research outputs found

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Efficient Multicast Algorithms for Mesh and Torus Networks

    Get PDF
    With the increasing popularity of multicomputers, efficient way of communication within its processors has become a popular area of research. Multicomputers refer to a computer system that has multiple processors, they have high computational power and they can perform multiple tasks concurrently. Mesh and Torus are some of the commonly used network topologies in building multicomputer systems. Their performance highly depends on the underlying network communication such as multicast. Multicast is a communication method in which a message is sent from a source node to a certain number of destinations. Two major parameters used to evaluate multicast are time that a multicast process takes to deliver the message to all destinations and traffic that indicates the number of links used for this process. Research indicates that in general, it is NP- complete to find an optimal multicasting algorithm which is efficient on both time and traffic. This thesis suggests two new algorithms to achieve multicast in mesh and torus networks. Extensive simulations of these algorithms show that in practice they perform better than existing ones

    Static allocation of computation to processors in multicomputers

    Get PDF

    Real-time processing of radar return on a parallel computer

    Get PDF
    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time

    A Parallel Branch-and-Bound Method for Cluster Analysis

    Get PDF
    Cluster analysis is a generic term coined for procedures that are used objectively to group entities based on their similarities and differences. The primary objective of these procedures is to group n items into K mutually exclusive clusters so that items within each cluster are relatively homogeneous in nature while the clusters themselves are distinct. In this research, we have developed, implemented and tested an asynchronous, dynamic parallel branchand-bound algorithm to solve the clustering problem. In the developmental environment, several processes (tasks) work independently on various subproblems generated by the branch-and-bound procedure. This parallel algorithm can solve very large-scale, optimal clustering problems in a reasonable amount of wall-clock time. Linear and superlinear speedups are obtained. Thus, solutions to real-world, complex clustering problems, which could not be solved due to the lack of efficient parallel algorithms, can now be attempted

    An Adaptative Multi-GPU based Branch-and-Bound. A Case Study: the Flow-Shop Scheduling Problem

    Get PDF
    Solving exactly Combinatorial Optimization Problems (COPs) using a Branch-and-Bound (B&B) algorithm requires a huge amount of computational resources. Therefore, we recently investigated designing B&B algorithms on top of graphics processing units (GPUs) using a parallel bounding model. The proposed model assumes parallelizing the evaluation of the lower bounds on pools of sub-problems. The results demonstrated that the size of the evaluated pool has a significant impact on the performance of B&B and that it depends strongly on the problem instance being solved. In this paper, we design an adaptative parallel B&B algorithm for solving permutation-based combinatorial optimization problems such as FSP (Flow-shop Scheduling Problem) on GPU accelerators. To do so, we propose a dynamic heuristic for parameter auto-tuning at runtime. Another challenge of this work is to exploit larger degrees of parallelism by using the combined computational power of multiple GPU devices. The approach has been applied to the permutation flow-shop problem. Extensive experiments have been carried out on well-known FSP benchmarks using an Nvidia Tesla S1070 Computing System equipped with two Tesla T10 GPUs. Compared to a CPU-based execution, accelerations up to 105 are achieved for large problem instances.Comment: 14th IEEE International Conference on High Performance Computing and Communications, HPCC 2012 (2012

    Small-world interconnection networks for large parallel computer systems

    Get PDF
    The use of small-world graphs as interconnection networks of multicomputers is proposed and analysed in this work. Small-world interconnection networks are constructed by adding (or modifying) edges to an underlying local graph. Graphs with a rich local structure but with a large diameter are shown to be the most suitable candidates for the underlying graph. Generation models based on random and deterministic wiring processes are proposed and analysed. For the random case basic properties such as degree, diameter, average length and bisection width are analysed, and the results show that a fast transition from a large diameter to a small diameter is experienced when the number of new edges introduced is increased. Random traffic analysis on these networks is undertaken, and it is shown that although the average latency experiences a similar reduction, networks with a small number of shortcuts have a tendency to saturate as most of the traffic flows through a small number of links. An analysis of the congestion of the networks corroborates this result and provides away of estimating the minimum number of shortcuts required to avoid saturation. To overcome these problems deterministic wiring is proposed and analysed. A Linear Feedback Shift Register is used to introduce shortcuts in the LFSR graphs. A simple routing algorithm has been constructed for the LFSR and extended with a greedy local optimisation technique. It has been shown that a small search depth gives good results and is less costly to implement than a full shortest path algorithm. The Hilbert graph on the other hand provides some additional characteristics, such as support for incremental expansion, efficient layout in two dimensional space (using two layers), and a small fixed degree of four. Small-world hypergraphs have also been studied. In particular incomplete hypermeshes have been introduced and analysed and it has been shown that they outperform the complete traditional implementations under a constant pinout argument. Since it has been shown that complete hypermeshes outperform the mesh, the torus, low dimensional m-ary d-cubes (with and without bypass channels), and multi-stage interconnection networks (when realistic decision times are accounted for and with a constant pinout), it follows that incomplete hypermeshes outperform them as well
    • …
    corecore