
HAL Id: hal-00705868
https://hal.inria.fr/hal-00705868

Submitted on 20 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Adaptative Multi-GPU based Branch-and-Bound. A
Case Study: the Flow-Shop Scheduling Problem.

Imen Chakroun, Nouredine Melab

To cite this version:
Imen Chakroun, Nouredine Melab. An Adaptative Multi-GPU based Branch-and-Bound. A Case
Study: the Flow-Shop Scheduling Problem.. 14th IEEE International Conference on High Performance
Computing and Communications, HPCC 2012, Jun 2012, Liverpool, United Kingdom. �hal-00705868�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49888465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00705868
https://hal.archives-ouvertes.fr

An Adaptative Multi-GPU based

Branch-and-Bound. A Case Study: the Flow-Shop

Scheduling Problem

I. Chakroun, N. Melab

Université Lille 1, LIFL/UMR CNRS 8022 - INRIA Lille Nord Europe

59655 - Villeneuve d’Ascq cedex - France

Email: {imen.chakroun, nouredine.melab}@lifl.fr

Abstract—Solving exactly Combinatorial Optimization
Problems (COPs) using a Branch-and-Bound (B&B) algorithm
requires a huge amount of computational resources. Therefore,
we recently investigated designing B&B algorithms on top of
graphics processing units (GPUs) using a parallel bounding
model. The proposed model assumes parallelizing the evaluation
of the lower bounds on pools of sub-problems. The results
demonstrated that the size of the evaluated pool has a significant
impact on the performance of B&B and that it depends
strongly on the problem instance being solved. In this paper,
we design an adaptative parallel B&B algorithm for solving
permutation-based combinatorial optimization problems such as
FSP (Flow-shop Scheduling Problem) on GPU accelerators. To
do so, we propose a dynamic heuristic for parameter auto-tuning
at runtime. Another challenge of this pioneering work 1 is to
exploit larger degrees of parallelism by using the combined
computational power of multiple GPU devices. The approach
has been applied to the permutation flow-shop problem.
Extensive experiments have been carried out on well-known FSP
benchmarks using an Nvidia Tesla S1070 Computing System
equipped with two Tesla T10 GPUs. Compared to a CPU-based
execution, accelerations up to ×105 are achieved for large
problem instances.

Index Terms—Branch-and-Bound Algorithms, Multi-GPU
Computing, Parallel Bounding, Flow-Shop Scheduling Problem.

I. INTRODUCTION

Solving to optimality large size combinatorial optimization

problems (COPs) 2 using a Branch and Bound algorithm

(B&B) is CPU time-consuming. Although B&B allows to

reduce considerably the exploration time using a bounding

mechanism, often only small or moderately-sized instances can

be practically solved. Therefore, over the last decades, parallel

computing has been revealed as an attractive way to deal with

larger instances of COPs. However, while many contributions

have been proposed for parallel B&B methods using Massively

Parallel Processors [4], Networks or Clusters of Workstations

[1] and SMP machines [5], very few contributions have

been proposed for designing B&B algorithms on Graphical

Processing Units (GPUs) [11], [9]. For years, the use of

1To the best of our knowledge, our work is the first implementation of an
adaptative Branch and Bound on multi-GPUs platforms.

2An optimization problem consists in minimizing or maximizing a cost
function. Without loss of generality, in this paper the minimization case is
considered.

graphics processors was dedicated to graphics applications.

Driven by the demand for high-definition 3D graphics on

personal computers, GPUs have evolved into a highly parallel,

multithreaded and many-core environment. Their utilization

has recently been extended to other application domains such

as scientific computing [12].

Most of existing parallel B&B algorithms, such as the above

ones, are based on the parallel exploration of the search tree.

Such parallel model is not suited to GPUs because the explored

search tree is highly irregular. In our work [11], we proposed a

pioneering investigation of using a parallel bounding model for

designing B&B algorithms over GPUs. The proposed model

assumes parallelizing the evaluation of the lower bounds on

pools of sub-problems. The experimental results show that

significant accelerations can be obtained especially for large

problem instances and large pools of subproblems. Results

demonstrate also that the size of the evaluated pool has an

important impact on the performance of the B&B and that it

depends strongly on the problem instance being solved. It is

thus hard to fix it a priori and so has to be tuned dynamically

depending on the problem instance being tackled.

In this paper, we design an adaptative parallel B&B algo-

rithm for solving permutation-based combinatorial optimiza-

tion problems such as FSP (Flow-shop Scheduling Problem)

on GPU accelerators. The idea is to dynamically tune the

size of the pool being off-loaded to the GPU taking into

consideration both the characteristics of the used device and

the problem instance being tackled. Another challenge of this

work is to exploit larger degrees of parallelism by utilizing

multiple GPUs. Indeed, execution on parallel GPUs is promis-

ing since applications that are best suited to run on GPUs

inherently have large amounts of parallelism. Using multiple

GPUs avoids also dealing with the limitations of devices, like

memory resources, by exploiting the combined resources of

multiple boards.

The remainder of the paper is organized as follows: Sec-

tion II presents the B&B algorithm and the permutation

Flow-shop Scheduling Problem. In Section III, we describe

our adaptative GPU-based proposed approach for B&B. In

Section IV, we describe our methodology for using multiple

GPUs. In Section V, we report experimental results demon-

strating the efficiency of our approach. Finally, some conclu-

sions and perspectives of this work are drawn in Section VI.

II. B&B FOR THE PERMUTATION FLOW-SHOP

SCHEDULING PROBLEM

A. B&B algorithms

Branch-and-Bound (B&B) algorithms are well-known exact

methods for solving to optimality combinatorial optimization

problems. They are based on an implicit enumeration of all

the solutions of the considered problem. The search space

is explored by dynamically building a tree whose root node

designates the original problem. The construction of the B&B

tree and its exploration are performed using four operators:

branching, bounding, selection and elimination. The algorithm

proceeds in several iterations during which the best solution

found so far is progressively improved. The generated and not

yet examined sub-problems are kept into a list initialized to the

original problem. At each iteration, a sub-problem is selected

from this list according to some defined strategy (depth-first,

best-first,. . .), using the selection operator. Then, a branching

operator is applied on the selected sub-problem, subdividing

its solution space into two or more subspaces to be investigated

in a subsequent iteration. For each one of the generated sub-

problems, the bounding operator calculates a lower bound that

is compared to the upper-bound. Each sub-problem having

a greater bound than the upper-bound, the cost of the best

solution found so far, is pruned using the elimination operator.

Thanks to the bounding operator, B&B allows to reduce

considerably the computation time needed to explore the

whole solution space. However, the exploration time remains

significant and parallel processing is thus required. In [10],

three parallel models are identified for B&B algorithms:

parallel application of the operators on the generated sub-

problems (Type 1), parallel building and exploration of a

B&B tree (Type 2), and parallel (cooperative or independent)

building and exploration of several B&B trees (Type 3). We

have already rethinked these parallel approaches for large-

scale computational grids [7] using Type 2 parallel model.

Grid computing provides an impressive computing power to

solve challenging instances in combinatorial optimization [3].

However, computational grids providing a huge amount of

resources are not easily available and accessible for any user.

Recently, Graphics Processing Units (GPU accelerators) have

emerged as a new popular support for massively parallel

computing. GPUs are high-performance many-core processors

capable of very high computation and data throughput. Such

resources are also energy-efficient and unlike grids they are

highly available every where. In the following, we use the

Type 1 parallel model on GPU for solving Flow-Shop prob-

lems.

B. The permutation Flow-shop Scheduling problem

The general FSP can be formulated as follows [2]. FSP

consists in scheduling a pool of n jobs on a set of m machines

such that each of the jobs J1, J2, . . . , Jn has to be processed

on the machines M1, M2, . . . , Mm in that order. Job Ji (i = 1,

2, . . . , n) consists therefore of a sequence of m operations Oi1,

���������
���������
���������

���������
���������
���������

���
���
���
���

����
����
����
����

�����
�����
�����
�����
������
������
������
������

����������
����������
����������

����������
����������
��������������

����
����
����

��
��
��
��

���������
���������
���������
���������

��
��
��

��
��
��

����������
����������
����������
����������

�������
�������
�������

�������
�������
�������

M

M

M

M

1

2

3

4

J

J

J

J

J

J

J

J J

J

J

J
3

3

2

2

2

1

1

1

3 2 1

3

Processing Times

Optimal Solution

16

1 3 5
3

2

5 3 4 1

2 2 1 4

J

J

J

M M M M

2

1

1 2 3 4

Fig. 1. Illustration of a permutation FSP with n = 3 and m = 4. The table
reports the processing times of the jobs on the machines. The Gantt diagram
shows the optimal solution to the problem instance.

Oi2, . . .Oim; Oik being the processing of Ji on Mk during

an uninterrupted processing time pik. Mk (k = 1, 2, . . . , m)

can handle at most one job at a time. The objective is to find

a processing order on each Mk such that the time required

to complete all jobs is minimized. If the problem is restricted

to the minimization over all permutation schedules, meaning

with the same processing order on each machine, the resulting

problem is called the permutation Flow-Shop problem, which

is the focus of this work. Figure 1 shows an example of an

FSP instance (with n = 3 and m = 4) and its associated

optimal solution.

In the B&B applied to the the FSP, the node number i
in the search tree represents the sub-problem in which job

Ji is scheduled first on all machines. The decomposition of

this problem generates n sons, each of them designates a

sub-problem. The recursive application of the decomposition

operator on the generated sub-problems allows to develop the

search tree. The number of potential schedules (permutations)

is n!, which is extremely large for large problem instances

such as 200 × 20 (200! schedules!) Taillard’s ones [14]. To

speedup the exploration of such large search trees, two major

powerful ways are used. The first way consists in using an

efficient bounding operator. Applied to a sub-problem, such

operator associates a value to its corresponding tree node using

a lower bound function. If this lower bound value is greater

than the cost of the best schedule found so far (upper bound),

the sub-problem is not decomposed and its tree node is pruned.

The second way is to use massively parallel computing based

on the three parallelism types presented in the section II-A.

We remind that the focus of this paper is only on Type 1 i.e.

the parallel evaluation of the lower bound on a pool of sub-

problems.

In the following, we present a new auto-adaptative GPU-

based approach for the parallel evaluation of the lower bound

in B&B algorithms.

III. OUR ADAPTATIVE GPU-BASED B&B ALGORITHM

The proposed approach is based on the GPGPU (CUDA or

OpenCL) parallel paradigm. According to this paradigm, the

programmer writes a serial program that calls parallel kernels.

The kernel is the core code that defines the computation to

be performed by a large number of threads. These threads are

organized in collections called blocks that can be assigned to

a single multiprocessor and which execution is time-shared. A

collection of all blocks in a single execution is called a grid.

In our revisited GPU-based B&B algorithm, the generation

(elimination, selection and branching operations) of the sub-

problems to be solved is performed on CPU and the evaluation

of their lower bounds (bounding operation) is executed on

the GPU device. As illustrated in Figure 2, the pool of sub-

problems generated on CPU is off-loaded to the GPU device

to be evaluated by a pool of threads. Each thread applies the

lower bound function to one sub-problem. Once the evaluation

is completed, the lower bound values are returned back to

the CPU to be used by the elimination operator. The process

is iterated until the exploration is completed and the optimal

solution is found.

One of the challenging concerns that must be considered

to make efficient our GPU-based B&B is supplying the

device with a large pool of subproblems. Indeed, in [11],

experiments show that the proposed parallel bounding model

is efficient only when large pools (thousands of sub-problems)

are considered whatever the size of the FSP instances being

tackled is. As a solution for the problem, we come up with a

new selection strategy. Indeed, rather than selecting a single

pending node as in traditional B&B algorithms, our approach

assume that a pool of pending nodes is selected from the

search tree (see Figure 2). At each iteration of the algorithm,

a pool of unexplored nodes is selected from the search tree

according to their depth. Deepest pending nodes are the first

selected for being branched. As explained before, that pool

of sub-problems, corresponding to the generated tree nodes

and resulting from the branching operation, is off-loaded from

CPU to GPU to be evaluated by blocks of threads.

In our investigation proposed in [11], results also demon-

strate that the size of the pool to be off-loaded to the GPU

has an important impact on the performance of the algorithm.

We have also noticed that this parameter depends strongly on

the problem instance being solved. It is thus hard to be fixed

a priori and so has to be tuned dynamically depending on the

problem. For dealing with this issue, we propose an empirical

heuristic for parameters auto-tuning at runtime. Algorithm 1

gives the general template for this heuristic. The main idea

of this approach is to send the pending sub-problems using

different-sized “waves” to the GPU device during the first

iterations of the B&B algorithm. Regularly, we compute the

efficiency of the used pool and then double the size of the

pool to off-load to the GPU. After a fixed number of trials, the

better efficiency overall selected configurations is used for the

1 2 4 5

3 6

1 2 4 5

3 6

pool to evaluate using

Exploration

GPU

1 6

LB LB

Node . . . Node

61

Elimination

root node

inner nodes

pending (unnexplored) nodes

CPU

predefined selection strategy

T
0

T
m

T
1

H
ie

ra
rc

hi
ca

l M
em

or
y

L
B

 C
om

pu
tin

g
Fu

nc
tio

n

Fig. 2. The overall architecture of our GPU-accelerated branch-and-Bound
algorithm. Our approach introduces two main adaptations compared to a
traditional B&B : selection of thousand of nodes and evaluation in parallel.

remaining iterations of the algorithm. As explained above, the

pool of sub-problems off-loaded to the GPU is evaluated by a

pool of threads where each thread applies the lower bound

function to one sub-problem. Consequently, the number of

sub-problems to evaluate in parallel strongly depends of the

total number of threads that would be triggered on the GPU.

Actually, tunning the size of the ”wave” to submit to the GPU

is equivalent to adjusting the number of the threads to run in

parallel.

Our heuristic first identifies the characteristics of the used

hardware. Thanks to this property, the algorithm becomes

highly portable and could easily be run over heterogeneous

GPU architetures transparently to the user. The heuristic deter-

mines the maximum configuration that can be used, namely the

maximum number of threads and blocks that can run in parallel

over the GPU card. Indeed, in some cases, when a thread block

allocates more registers than are available on a multiprocessor,

the kernel execution fails since too many threads are requested.

During all the tuning process, the number of threads per

blocks is set using the occupancy calculator tool provided by

NVIDIA which allows the programmer to easily calculate the

best thread block size based on register and shared memory

usage of a kernel. Regarding the number of blocks per grid, our

primary concern when choosing this parameter was keeping

the entire GPU busy. Indeed, the number of blocks in a grid

should be larger than the number of multiprocessors so that

all multiprocessors have at least one block to execute. Thus,

we first initialize the number of blocks with the number of

the multiporcessors detected on the device. This number is

doubled repeatdly after a certain number of iterations (fixed

experimentally) and until the number of threads per blocks ×
the number of blocks doesn’t exceed the maximum number of

active threads allowed on the device.

So far, our empirical search of the best efficiency is coarse-

grained. Indeed, doubling the size in every step, and stopping

when the efficiency is no longer improved, or when the limits

of the GPU have been reached might founds an imprecise

upper bound of the performance. For this reason and in order

to make the tuning more thorough, we considered to also

perform a binary search around the best pool size found so

far. When the maximum number of active threads is reached,

the iterative doubling proccess terminates and returns the best

found configuration parameters. The heuristic then computes

a downwards and an upwards search around the best pool size

found so far. The better efficiency overall selected configura-

tions is used for the remaining iterations of the algorithm.

Algorithm 1 Dynamic parameter tuning heuristic

Data: nb iterations;

Result: best number of threads

max nb threads = Detect GPU Charateristics();

nb threads = Use Cuda Occupancy Calculator();

nb blocks := Get Number Of Multiporcessors();

while not empty tree() do

while pool size ≤ nb threads × nb blocks do
take sub problem();

end

Iteration pre-treatment on host side;

Kernel evaluation on GPU;

Iteration post-treatment on host side;

if (iteration % nb iterations = 0) and ((nb threads ×
nb blocks) ≤ max nb threads) then

if Is best pool improved() then
best number of threads = nb threads ×
nb blocks ;

end

nb blocks := nb blocks * 2 ;
end

else
Compute Binary Search Around Best Pool() ;

end

iteration := iteration + 1 ;
end

IV. RESHAPING THE GPU-BASED B&B ALGORITHM FOR

MULTI-GPU ARCHITECTURE

Nowadays, the trend in general-purpose computing on

graphics processing units is to use multiple GPUs on a given

system, much like using multiple cores on CPU-based systems.

In the following, we detail the changes we have made to

our GPU-based B&B algorithm presented in section III. Our

objective here is to consider the benefits of exploiting larger

degrees of parallelism by running our algorithm on multiple

(parallel) GPUs.

The first step toward a multi-GPU design is to determine

how many GPUs will be used and how each GPU will be

exploited. In this work, our aim in using multi-GPUs is

to speedup kernel execution rather than utilizing each GPU

differently (for example for evaluating different lower bound

functions). Consequently, our concern here is to define a

workload distribution between the used GPUs in order to

make all the available devices compute the same work in

parallel without need of synchronization. Since our approach

ensures that the decomposed sub-problems are different and

independent from each other and since the used lower bound

function is problem-dependent, we opted for simply splitting

the pool of sub-problems among the selected GPUs. Each pool

is then be evaluated in parallel and independently from other

pools. However, after each GPU finishes computing the kernel

function, the outputs from each device have to be merged to

get final results. The size of the pool to submit to each GPU

is calculated using the proposed heuristic (see Section III).

As explained in Section III, the main CPU thread selects

a pool of unexplored nodes from the search tree according

to their depth. That pool of sub-problems is equally splitted

into as much pools as the number of the used devices. In

order to ensure complete concurrency between the bounding

computations, we create as much CPU threads3 as GPUs to

be utilized. We assign to each thread CPU an individual GPU

using the NVIDIA CUDA Runtime API “cudaSetDevice()”

method [6], which gives the possibility to select which device

to execute the kernel on. Each created thread CPU copies its

pool of sub-problems from the CPU to its affiliated GPU,

executes the kernel, and copies the resulting bounds back to the

CPU. The main CPU thread waits for all other CPU threads to

complete and merges results into one. The process is illustrated

in figure 3.

Fig. 3. Parallel evaluation of bounds over multiple GPUs

V. EXPERIMENTS

In the following, an experimental study is presented with the

objective to evaluate the performance impact of the presented

auto-tuned GPU-accelerated B&B algorithm and the effect

of exploiting larger degrees of parallelism by using multiple

GPUs accelerators.

3We used lightweight threads defined by the POSIX Threads library.

A. Flow-shop instances

In our experiments, we used the flow-shop instances defined

by Taillard [14]. These standard instances are often used

in the literature to evaluate the performance of algorithms

that minimize the makespan. Optimal solutions of some of

these instances are still not known. The different instances are

designated by n ×m, where n and m represent respectively

the number of jobs (between 20 and 500) to be scheduled and

the number of machines (20,10,5) to be used. In our exper-

iments, we used only the instances with 10 or 20 machines

since instances with 5 machines are easy to solve. For these

instances, with 5 machines, the used bounding operator gives

so good lower bounds that it is posssible to solve them in few

minutes using a sequential B&B. Therefore, these instances

do not require the use of a GPU. We also omit instances with

500 jobs because they do not fit in the memory of the CPU.

B. Hardware and software platforms

The approach has been implemented using C-CUDA 4.0.

The experiments have been carried out using an Intel Xeon

E5520 bi-processor. This bi-processor is 64-bit, quad-core

and has a clock speed of 2.27GHz. It is coupled with an

Nvidia Tesla S1070 Computing System which is an 1U rack-

mount system equiped with two Tesla T10 GPUs. Each GPU

contains 240 CUDA cores, a 4GB global memory, a 16.38KB

shared memory, and a warp size of 32 threads. Using the

occupancy calculator tool provided by NVIDIA, which allows

the programmer to easily calculate the best thread block size

based on register and shared memory usage of a kernel,

we figure out that a block size equal to 256 gives the best

results. Therefore, we fixed the block size to 256 in all our

experiments. Here we notice that the number of threads per

block is a multiple of the warp size which makes the kernel

avoid wasting computation on underpopulated warps. We vary

the number of blocks in order to guarentee that the total

number of active threads equals the size of the pool to submit

to the GPU. As explained in Section III, we first initialize

the number of blocks with the number of the multiporcessors

detected on the device.

C. Experimental protocol: speedup computation

To evaluate the performance of the proposed approach,

we calculate the speedup obtained by comparing our GPU

B&B version to a sequential B&B version deployed on a

single CPU core. Since the used instances are very hard

to solve (optimal solutions for many of these instances are

still not known), we used the approach defined in [3] to

run experiments. Employing this method allows to obtain a

random list L of subproblems such as the resolution of L
lasts Tcpu minutes with a sequential B&B. To ensure that the

subproblems explored by the GPU and CPU B&B versions

are exactly the same, we initialize the pool of our GPU-

based B&B with the same list L of subproblems used in the

3A warp contains 32 threads in the G80 model

sequential version. If we suppose the resolution of the GPU-

based B&B last Tgpu minutes, the reported speedup of our

algorithm will be equal to Tcpu/Tgpu.

D. Performance impact of GPU-based parallelism

The objective of the experimental study presented in this

section is to demonstrate that the use of a GPU allows

to significantly accelerate the execution time of the B&B

algorithm whatever is the FSP instance. The second objective

is to find for each problem instance the best pool size that

allows to take the most benefit from the use of the GPU.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

20x10 50x10 100x10 200x10 20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Best-Pool 8192

Best-Pool 8192
Best-Pool 8192

Best-Pool 8192

Best-Pool 12288

Best-Pool 16384

Best-Pool 65536

Best-Pool 65536

Fig. 4. The speedups and corresponding used pools obtained using the auto-
tuned algorithm.

Figure 4 depicts the speedups obtained for the different

problem instances using the approach proposed in Section III.

For each problem instance we report the best pool returned by

our dynamic parameter tuning heuristic. The reported results

show that evaluating in parallel the bounds of a judiciously

selected pool allows to significantly speedup the execution

of the B&B. Indeed, an acceleration factor up to (×78) is

obtained for the 200 × 20 problem instances. The results

show also that the parallel speedup grows with the size of

the problem instance. For a fixed number of machines, the

obtained speedup grows accordingly with the number of jobs.

For instance, the speedup obtained with 200 jobs (×78) is

higher than the one obtained with 100 jobs (×73), 50 jobs

(×62) and 20 jobs (×44). This is due to the complexity of

the computation of the lower bound which is O(m2.n.logn).
For large problem instances (i.e. large values of n and m)

the grain size of the kernel executed by each thread is much

higher which increases the GPU throughput.

To validate the proposed heuristic for auto-tuning the pool

size, we run several experiments using different pre-fixed pool

sizes. The corresponding results are reported in Table I. The

rows correspond to the problem instances defined by (Number

of jobs × Number of machines) and the columns correspond

to the size of the pool of sub-problems to be evaluated in

parallel.

Reported results clearly confirm that the best size of the

pool depends strongly on the problem instance being solved.

For instance, the best speedups for the 200 × 20 instances are

obtained with a pool size of 65536. However, with the 50 × 20

instances, the best speedup is obtained with a pool of 16384

problems. Another important result is that the best speedups

measured when varying the sizes of the pool are obtained with

the same pool sizes returned by our heuristic (see figure 4).

For example, the best speedup for the 200 × 20 instances is

obtained with a pool size of 65536 which is the best pool size

our heuristic figure out for those instances.

E. Performance impact of MultiGPU-based parallelism

In this section, we experiment the use of our parallel

B&B algorithm with multiple GPUs. The objective here is

to evaluate the impact of the multiGPU-based parallelism

proposed in section IV.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

20x10 50x10 100x10 200x10 20x20 50x20 100x20 200x20

S
pe

ed
up

Problem instances

Using One GPU
Using Two GPUs

Fig. 5. Comparing the parallel efficiency for different problem instances
using a single / multiple GPUs.

Figure 5 compares the computed speedups obtained for the

different problem instances using respectiveley one and two

GPU(s). The reported results show that evaluating bounds in

parallel over two GPUs provides further orders of speedups

compared to an execution where only a single GPU is used

whatever the instance is. For instance, an acceleration factor

up to ×105 is obtained with two GPUs for the 200 × 20

problem instances while a speedup of ×78 is obtained for

the same instances using only one device. In this case, exe-

cuting the bounding operation on parallel GPUs provides an

improvement about 26% compared to a single GPU execution.

The improvement we noticed when using two GPUs was

somehow predictable. Indeed, exploiting the combined re-

sources of multiple boards is promising for applications that

have large amounts of parallelism. Our preliminary investiga-

tion [11] demonstrated that computing the lower bounds for

the flow-shop permutation problem is one of those applications

since significant acceleration factors have been mesured when

running this function on parallel over a GPU.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented new insights into parallel

B&B algorithms for solving permutation-based combinatorial

optimization problems such as FSP on multiple GPU accel-

erators. The contributions consist in proposing an adaptative

GPU-based parallel B&B algorithms and in exploiting larger

degrees of parallelism by utilizing multiple GPUs. The Flow-

Shop scheduling problem has been considered as a case

study. The proposed approaches have been experimented on

well-known FSP benchmarks using an Nvidia Tesla S1070

Computing System equipped with two Tesla T10 GPUs.

In our proposed auto-tuned GPU-based approach, the de-

composition and pruning of the sub-problems is performed

on CPU and the evaluation of their lower bounds (bounding

operation) is executed on the GPU device. Pools of sub-

problems are off-loaded from CPU to GPU to be evaluated

by blocks of threads. After evaluation, the lower bounds are

returned to the CPU. In order to dynamically tune the size of

the pool to be submitted to the GPU, we propose an heuristic

for parameters auto-tuning at runtime. The main idea of this

heuristic is to send the pending sub-problems using different-

sized “waves” to the GPU device during the first iterations of

the B&B algorithm. Regularly, the efficiency of the used pool

is computed and the size of the pool to off-load to the GPU is

doubled. After a fixed number of trials, the best efficiency

over all selected configurations is used for the remaining

iterations of the algorithm. The experimental results show that

accelerations up to ×78 can be obtained especially for large

problem instances and large pools of sub-problems and that

the best speedups are obtained using the pool sizes returned

by the heuristic.

Another challenge of this work was to exploit larger degrees

of parallelism by utilizing the combined computational power

of multiple graphical cards. Our concern towards a multi-GPU

implementation of our parallel B&B was to define a workload

distribution between the used GPUs in order to make all the

available devices compute the same work in parallel without

need of synchronization. Experimental results demonstrate that

using two GPUs is beneficial and improvement up to 23% is

reached compared to an execution with a single GPU. Thus,

our proposed adaptative multi-GPU based Branch and Bound

enables to achieve speedups of ×105 over a CPU version.

We are currently investigating the combination of the two

parallel models Type 1 and Type 2 (see Section II-A) for the

design and implementation of a GPU-accelerated multi-core

B&B algorithm. In the near future, we plan to extend this work

to a cluster of GPU-accelerated multi-core processors. From

application point of view, the objective is to solve to optimality

challenging and unsolved Flow-Shop instances as we did it for

one 50×20 problem instance with grid computing [3]. Finally,

we plan to investigate other lower bound functions to deal with

other combinatorial optimization problems.

REFERENCES

[1] M. J. Quinn. Analysis and implementation of branch-and-bound algo-
rithms on a hypercube multicomputer. IEEE transactions on computers,

(No. of jobs × No. of machines) 4096 6144 8192 12288 16384 32768 65536

200×20 40,49 57,60 62,64 69,76 73,90 75,48 78,14

100×20 42,79 54,83 61,96 65,81 69,93 71,57 73,27

50×20 40,74 51,40 57,31 60,89 62,15 59,19 58,94

20×20 33,38 40,26 43,60 45,51 44,16 39,75 38,36

200×10 19,34 21,91 23,03 22,71 22,11 21,68 21,09

100×10 19,15 20,76 22,09 21,72 21,56 21,30 20,40

50×10 18,21 20,01 20,42 19,93 19,55 18,77 18,25

20×10 13,60 14,81 15,03 14,58 13,92 12,28 11,52

TABLE I
PARALLEL SPEEDUP MESURED FOR DIFFERENT PROBLEM INSTANCES AND POOL SIZES WITHOUT USING THE AUTO-TUNING HEURISTIC.

Vol. 39, No3, pp. 384-387, 1990.
[2] J.K. Lenstra, B.J. Lenstra, and A.H.G.R. Kan. A general bounding scheme

for the permutation flow-shop problem. Operations Research, 26(1):53–
67, 1978.

[3] M. Mezmaz, N. Melab and E-G. Talbi. A Grid-enabled Branch and
Bound Algorithm for Solving Challenging Combinatorial Optimization
Problems. In Proc. of 21th IEEE Intl. Parallel and Distributed Processing
Symp. (IPDPS), Long Beach, California, March 26th-30th, 2007.

[4] R. Allen, L. Cinque, S. Tanimoto, L. Shapiro and D. Yasuda. A parallel
algorithm for graph matching and its MasPar implementation. IEEE
Transactions on Parallel and Distributed Systems, Vol. 8, No. 5, 1997.

[5] L.G. Casadoa, J.A. Martneza, I. Garcaa and E.M.T. Hendrixb. Branch-
and-Bound interval global optimization on shared memory multiproces-
sors. Optimization Methods and Software, Vol. 23, No.5, pp. 689-701,
2008.

[6] CUDA C Best Practices Guide. http://developer.nvidia.com/nvidia-gpu-
computing-documentation.

[7] M. Djamai, B. Derbel and N. Melab. Distributed B&B: A Pure Peer-
to-Peer Approach. In Proc. of IEEE IPDPS’2011, Woks. on Large-Scale
Parallel Processing (LSPP), May 16-20, Anchorage (Alaska), 2011.

[8] T-V. Luong, N. Melab and E-G. Talbi. GPU Computing for Parallel Local
Search Metaheuristic Algorithms. IEEE Transactions on Computers,
http://doi.ieeecomputersociety.org/10.1109/TC.2011.206, 2012.

[9] A.Boukedjar, M.Lalami, D.El Baz. Parallel branch and bound on a CPU-
GPU system. Euromicro International Conference on Parallel Distributed
and Network-based Processing (PDP 2012), Garching (Allemagne), 15-17
Fvrier 2012, pp.392-398 Rapport LAAS N11471

[10] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms:
Survey and Synthesis. Operations Research, 42(06):1042–1066, 1994.

[11] I. Chakroun, A. Bendjoudi and N. Melab. Reducing Thread Divergence
in GPU-based B&B applied to the Flow-Shop Problem. In LNCS Proc. of
9th Intl. Conf. on Parallel Processing and Applied Mathematics (PPAM),
2011.

[12] Jakub Kurzak, David A. Bader, and Jack Dongarra (eds.). Scientific
Computing with Multicore and Accelerators, Chapman & Hall / CRC
Press, 2010.

[13] S. Tschoke, R. Lubling and B. Monien. Solving the traveling sales-
man problem with a distributed branch-and-bound algorithm on a 1024
processor network. In Proc. of 9th Intl. Parallel Processing Symposium
(IPPS), pp. 182 - 189, 1995.

[14] E. Taillard. Taillard’s FSP benchmarks. http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html.

