15 research outputs found

    SCENE AND OBJECT CLASSIFICATION USING BRAIN WAVES SIGNAL

    Get PDF
    This study aims to classify the scene and object using brain waves signal. The dataset captured by the electroencephalograph (EEG) device by placing the electrodes on scalp to measure brain signals are used. Using captured EEG dataset, classifying the scene and object by decoding the changes in the EEG signals. In this study, independent component analysis, event-related potentials, and grand mean are used to analyze the signal. Machine learning algorithms such as decision tree, random forest, and support vector machine are used to classify the data. This technique is useful in forensic as well as in artificial intelligence for developing future technology.Â

    Consciousness Levels Detection Using Discrete Wavelet Transforms on Single Channel EEG Under Simulated Workload Conditions

    Get PDF
    EEG signal is one of the most complex signals having the lowest amplitude which makes it challenging for analysis in real-time. The different waveforms like alpha, beta, theta and delta were studied and selected features were related with the consciousness levels. The consciousness levels detection is useful for estimating the subjects’ performance in certain selected tasks which requires high alertness. This estimation was performed by analyzing signal properties of the EEG using features extracted through discrete wavelet transform with a moving window of 10 seconds with 90% overlap. The EEG signal is decomposed in to wavelets and the average energy and power of the coefficients related to the EEG bands is taken as the features. The data is collected from standard EEG machine from the volunteers as per the protocol. C3 and C4 locations (unipolar) of the standard 10-20 electrode system were selected. The central region of the brain is most optimal location for the consciousness levels detection. The estimation of the data using Discrete Wavelet Transform (DWT) energy, power features provided better accuracy when the central regions were chosen. An accuracy of 99% was achieved when the algorithm was implemented using a classifier based on linear kernel support vector machines (SVM)

    Detecting Depression Using Single-Channel EEG and Graph Methods

    Get PDF
    Objective: This paper applies graph methods to distinguish major depression disorder (MDD) and healthy (H) subjects using the graph features of single-channel electroencephalogram (EEG) signals. Methods: Four network features—graph entropy, mean degree, degree two, and degree three—were extracted from the 19-channel EEG signals of 64 subjects (26 females and 38 males), and then these features were forwarded to a support vector machine to conduct depression classification based on the eyes-open and eyes-closed statuses, respectively. Results: Statistical analysis showed that graph features with degree of two and three, the graph entropy of MDD was significantly lower than that for H (p < 0.0001). Additionally, the accuracy of detecting MDD using single-channel T4 EEG with leave-one-out cross-validation from H was 89.2% and 92.0% for the eyes-open and eyes-closed statuses, respectively. Conclusion: This study shows that the graph features of a short-term EEG can help assess and evaluate MDD. Thus, single-channel EEG signals can be used to detect depression in subjects. Significance: Graph feature analysis discovered that MDD is more related to the temporal lobe than the frontal lobe

    A Gathered Images Analysis Method to Evaluate Sound Sleep

    Get PDF
    This paper proposes a method to evaluate a sound sleep using an image gathering technique and its analysis techniques. The proposed method consists of three phases; gathered images generation, gathered images analysis and sound sleep evaluation. The gathered images designed to gather sleep postures and their changes are generated at 1 second, 10 seconds, 1 minute, 10 minutes, 1 hour intervals and all times, respectively. In the gathered image analysis, the gathered images are analyzed by calculating difference values among the gathered images of 10-minute and all times. Then, the sound sleep conditions are evaluated by visual inspection and analysis results. In order to show the effectiveness of the proposed method, we conduct experiments using real movies and their images. In experimental results, we confirm that there were sound sleep conditions, bad sleep conditions and borderline cases by checking subjective evaluation using questionnaire and generated gathered images visually. Moreover, we confirm that the calculated difference values among the gathered images of 10-minute and all times are different between sound sleep and other cases. Furthermore, the analyzed results show that the proposed method was successful in the sleep conditions classifications on four of five subjects. These results suggest that the gathered images analysis method is effective for evaluating whether sleep condition is sound sleep or not. In particular, it is important to calculate the difference values among the gathered images of 10-minute and all times to evaluate sleeping conditions

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Age-related network topological difference based on the sleep ECG signal

    Get PDF
    Age has been shown to be a crucial factor for the EEG and fMRI small-world networks during sleep. However, the characteristics of the age-related network based on sleep ECG signal and how the network changes during different sleep stages are poorly understood. This study focuses on to explore the age-related scale-free and small-world network properties of the ECG signal from male subjects during distinct sleep stages, including the wakeful(W), light sleep (LS), deep sleep (DS) and rapid eye movement (REM) stages. The subjects are divided into two age groups: younger (age&lt;=40, n=11) group and older group (age&gt;40, n=25). For the scale-free network analysis, our results reveal a distinctive pattern of the scale free network topologies between two age groups, including the mean degree ( ), the clustering coefficient ( ), and the path length ( )features, such as the slope distribution of in younger group increased from 1.99 during W to above 2.05 during DS. In addition, the results indicate that the small-world properties can be found across all sleep stages in both age groups. But the small-world index in the LS and REM stages significantly decreased with age (p=0.0006 and p=0.05 respectively). The comparison analysis result indicates that the network topology variations of the sleep ECG signals prone to show age-relevant differences which could be used for sleep stage classification and sleep disorder diagnosis

    Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal

    Get PDF
    Abstract Sleep staging is an important part of diagnosing the different types of sleep-related disorders because any discrepancies in the sleep scoring process may cause serious health problems such as misinterpretations of sleep patterns, medication errors, and improper diagnosis. The best way of analyzing sleep staging is visual interpretations of the polysomnography (PSG) signals recordings from the patients, which is a quite tedious task, requires more domain experts, and time-consuming process. This proposed study aims to develop a new automated sleep staging system using the brain EEG signals. Based on a new automated sleep staging system based on an ensemble learning stacking model that integrates Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting). Additionally, this proposed methodology considers the subjects' age, which helps analyze the S1 sleep stage properly. In this study, both linear (time and frequency) and non-linear features are extracted from the pre-processed signals. The most relevant features are selected using the ReliefF weight algorithm. Finally, the selected features are classified through the proposed two-layer stacking model. The proposed methodology performance is evaluated using the two most popular datasets, such as the Sleep-EDF dataset (S-EDF) and Sleep Expanded-EDF database (SE-EDF) under the Rechtschaffen & Kales (R&K) sleep scoring rules. The performance of the proposed method is also compared with the existing published sleep staging methods. The comparison results signify that the proposed sleep staging system has an excellent improvement in classification accuracy for the six-two sleep states classification. In the S-EDF dataset, the overall accuracy and Cohen's kappa coefficient score obtained by the proposed model is (91.10%, 0.87) and (90.68%, 0.86) with inclusion and exclusion of age feature using the Fpz-Cz channel, respectively. Similarly, the Pz-Oz channel's performance is (90.56%, 0.86) with age feature and (90.11%, 0.86) without age feature. The performed results with the SE-EDF dataset using Fpz-Cz channel is (81.32%, 0.77) and (81.06%, 0.76), using Pz-Oz channel with the inclusion and exclusion of the age feature, respectively. Similarly the model achieved an overall accuracy of 96.67% (CT-6), 96.60% (CT-5), 96.28% (CT-4),96.30% (CT-3) and 97.30% (CT-2) for with 16 selected features using S-EDF database. Similarly the model reported an overall accuracy of 85.85%, 84.98%, 85.51%, 85.37% and 87.40% for CT-6 to CT-2 with 18 selected features using SE-EDF database

    Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal

    No full text
    The existing sleep stages classification methods are mainly based on time or frequency features. This paper classifies the sleep stages based on graph domain features from a single-channel electroencephalogram (EEG) signal. First, each epoch (30 s) EEG signal is mapped into a visibility graph (VG) and a horizontal VG (HVG). Second, a difference VG (DVG) is obtained by subtracting the edges set of the HVG from the edges set of the VG to extract essential degree sequences and to detect the gait-related movement artifact recordings. The mean degrees (MDs) and degree distributions (DDs) P(k) on HVGs and DVGs are analyzed epoch-by-epoch from 14,963 segments of EEG signals. Then, the MDs of each DVG and HVG and seven distinguishable DD values of PP (k)(k) from each DVG are extracted. Finally, nine extracted features are forwarded to a support vector machine to classify the sleep stages into two, three, four, five, and six states. The accuracy and kappa coefficients of six-state classification are 87.5% and 0.81, respectively. It was found that the MDs of the VGs on the deep sleep stage are higher than those on the awake and light sleep stages, and the MDs of the HVGs are just the reverse
    corecore