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Abstract 
 

This dissertation was written as a part of the MSc in Data Science at the International Hellenic 

University.  

Sleep is a necessary part in every human’s life. Effective diagnosis and treatment of patients with 

sleep-related complaints is currently an urgent and heavily researched topic in the healthcare 

community. Sleep stage classification was introduced almost 50 years ago and manual 

approaches are sometimes used until today. Automatic sleep stage classification using machine 

learning can increase consistency and reliability, assisting experts at diagnosing sleep related 

health problems. In this dissertation, multiple classifiers are tested on 3 different datasets of 

healthy and patient subjects. The optimal algorithm achieves accuracy over 90% for the healthy 

subjects’ dataset. In the results, the difference between the EEG patterns of healthy and patient 

subjects is highlighted. It is finally concluded that, using mixed datasets from healthy people and 

patients with minor sleep disorders, decent classification accuracies can be achieved. In addition 

to that, algorithms can generalize better as they can be used for a larger number of people. 
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1 Introduction 
 

1.1 Problem Statement 

 

Sleep is fundamental for physical health and good quality of life. The understanding of 

the complex and dynamic phenomenon of sleep has always been a field of research for many 

scientists.  

One of the most common methods that are used for sleep research is “sleep stage 

classification”. This method has been used for decades and it is still considered essential for the 

understanding of sleep architecture [1]. Sleep stage classification is one of the most critical steps 

in effective diagnosis and the treatment of sleep-related disorders. Classic approaches involve 

trained human sleep scorers, utilizing a manual scoring technique, according to some certain 

standards. Visual inspection undertaken by sleep experts is a time-consuming and burdensome 

task. Over the years, researchers have been trying to find more efficient, reliable and accurate 

methods for the classification process. Computer-assisted sleep stage classification systems are 

nowadays considered essential for both sleep-related disorders diagnosis and sleep monitoring. 

Over the years, the models that have been developed have been successfully applied to the sleep 

scoring problem. Even with that success, the research is ongoing aiming at improving these 

automated classification schemes. 

 

1.2 Thesis Objectives 

 

For years, researchers have been attempting to create automated sleep stage classifiers 

that can perform as well as human scorers. These efforts have seen some success using methods 

such as neuro-fuzzy systems (NFS), support vector machines (SVM) or artificial neural networks 

(ANN). The objective of this thesis is to suggest a sleep stage classification algorithm utilizing 

with the best possible way the existing features suggested by the literature, while introducing 
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some novelties on the feature extraction process, that result into a model with high classification 

accuracy. The algorithm is evaluated according to the new sleep scoring standards suggested by 

AASM [2], and is evaluated after choosing the appropriate metrics. The manual scoring is 

considered as a “golden standard” and everything is calculated with respect to that. Different 

models of classifiers are developed and they are compared to each other. All of the above 

methods are tested on three different datasets, including subjects with different sleeping habits 

(healthy-patients). Another pursuit of this thesis is to comparatively evaluate the suggested 

algorithm on these different datasets and draw conclusions about its generalization performance. 

 

1.3 Thesis Composition 

 

The rest of the thesis is structured as follows: 

In Chapter 2 the background theory which is necessary for the comprehension of the problem is 

analyzed. The importance of the researched problem is highlighted from medical aspect. 

In Chapter 3 the literature review related to the problem of sleep stage classification is 

summarized. Shallow and deep learning approaches are presented while different feature 

extraction approaches are pointed out. 

In Chapter 4 the data and methods used in this thesis are analyzed. Acquisition of data and data 

preprocessing methods are introduced. Feature extraction process is described and the selection 

of the classification algorithms is performed. 

In Chapter 5 the results obtained from testing the algorithms on the selected datasets, are 

presented.  

In Chapter 6 the results are discussed, conclusions are drawn and the direction of future studies 

is suggested. 
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2 Background Theory 
 

2.1 Sleep Overview 

 

Sleep is a natural condition of body and mind which is part of every person’s life. Most 

people spend at least one third of their lives at a sleeping condition. The maintenance of health, 

wellbeing, homeostasis, memory and cognitive performance is closely related to good sleep 

[3,4]. 

Deprivation of sleep increases the risk of serious health problems such as heart diseases, 

obesity, diabetes and weakness of immunity system. After the pain, sleep disturbances are the 

second most frequent indicator of illness. Moreover, many restorative functions of the human 

body such as memory consolidation, mental restoration, mood and behavior are affected by the 

quality of a human’s sleep [5].  

The invention of electroencephalography in the 1930s is considered as the landmark for 

the beginning of the modern sleep research. In 1937, it was observed for the first time that sleep 

is not a homogeneous procedure, but it is comprised of some discrete stages deriving from the 

EEG [6]. In 1953, the rapid-eye-movement (REM) stage of sleep was observed. During REM 

sleep, rapid, binocularly symmetrical eye movements occur, EEG pattern is similar to the one 

observed during wakefulness and respiratory and heart rate are increased contrary to the other 

sleep stages. REM sleep is also closely related to dreaming as people awakened from REM sleep 

usually reported dreams [7]. According to [8], overnight recordings of EEG and EOG 

(electroculogram) specified the cyclic pattern of REM-NREM sleep which lasts about 90-100 

minutes and this cycle typically occurs 4-5 times during every night. The same research also 

divided NREM sleep into four stages, stage 1 – stage 4, ranging from the lightest to the deepest 

sleep stage. 

People were always trying to explain why sleep is so important for human life. Many theories 

answer adequately to many aspects of this problem, but there is no widely accepted theory able 

to explain all the phenomena related to sleep till now. According to [9] some of the most popular 

theories about sleep importance are the following: 
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1) Conservation of energy: It has been noticed that human energy consumption is increased 

during sleep deprivation while the basal metabolism is decreased 5-25% during sleep 

[10].  

2) Restoration of tissues and growth: During the first hours of sleep growth hormone 

excretion, cell mitosis and protein synthesis are increased. In the time of growth or after a 

more labored day the amount of NREM sleep is increased. However, this theory is 

criticized as some scientists believe that cell mitosis occurs a few hours after food intake 

and the decreasing metabolic rate is in discrepancy with the protein synthesis that needs 

higher energy cost. 

3) Thermoregulation: Sleep is believed to decrease the temperature as experiments with 

long-term sleep deprived rats recorded a temperature increase in about 10 degrees [11]. 

4) Regulation of emotions: Sleep deprivation is closely connected with disturbances of 

emotional behavior. Clinical observations have shown that depressed patients have a 

lower duration of NREM sleep. 

5) Neural maturation: It is assumed that during REM sleep the maturation of brain and 

myelinization of nerve fibers proceed, since it has been noticed that children in about 6 

months of prenatal phase spend 80% of sleep in REM sleep, while in young adults this 

percentage decreases to 25% [10]. 

6) Memory and learning: There is an information transfer between cortex and hippocampus 

during the sleep that realizes the fixation of memory traces or during REM sleep the 

insignificant bindings are abolished [12]. The learning process is related with this 

reprocessing of information. Several studies have shown the improvement of perceptual 

or motor task performance after sleep [13, 14]. The improvement is due to sleep and not 

due to time interval or circadian factors.  

 

2.2 Sleep Stages 

 

The most general categorization of sleep includes the stages of wakefulness, REM sleep 

and non-REM sleep. Apart from that, non-REM sleep is furtherly divided into 4 sub-stages. 

Stage 1 represents light sleep and moving towards stage 4 the sleep gets deeper. The scoring of 
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sleep stages is done according to [15], which is the proposal of a committee led by A. 

Rechtschaffen and A.Kales aiming at standardizing the process of recording and scoring sleep 

stages. It was published in 1968, trying to increase the comparability of the results reported by 

different researchers. This standard became widely accepted and the terminology suggested 

along with the scoring system are often used until today. 

Rechtschaffen and Kales scoring system suggests scoring sleep stages by epochs. The 

duration of the epoch is set at 20 or 30 seconds (nowadays 30 second epochs are used in most 

recordings). The duration of the epoch does not change during the whole recording. When two 

stages occur during one epoch, the one that takes up the largest portion of the epoch should be 

scored as the stage of the epoch. 

Stage W: It corresponds to a waking state. Alpha activity and low voltage, mixed frequency EEG 

are mainly present at this stage. High tonic EMG and eye blinks on the EOG are usually found in 

this stage.  

Movement Time (MT): This scoring is assigned to epochs in which the EEG and EOG 

recordings are obscured for more than half of the epoch by muscle tension of amplifier blocking 

artifacts associated with movement of the subject. Movement time is not counted neither with 

sleep nor with wake time, unless the researcher specifies otherwise. Movement time should not 

be confused with discrete body movements which are physiological events that could happen 

during any sleep stage. Movement arousal is also distinguished in this stage and it is defined as 

any increase in EMG on any channel, which is accompanied by a change in pattern on any 

additional channel. Movement arousal is not used as an epoch score, but it is used as an aid in the 

scoring of sleep stages as it indicates that the continuity of a sleep stage has been disturbed in 

some way. 

Stage 1: It is characterized by low voltage, mixed frequency EEG with a prominence of activity 

at 2-7 Hz. Vertex sharp waves may occur reaching an amplitude of 200μV. Stage 1 often occurs 

during the transition from W to other sleep stages or after body movements during sleep. During 

nocturnal sleep stage 1 is relatively short, as it occurs for only 1 – 7 minutes. Moreover, slow eye 

movements lasting for several seconds may appear during this stage. Scoring of this stage 

requires absolute absence of clearly defined K-complexes and sleep spindles. Traces of low 

voltage activity may appear when stage 2 approaches.  
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Stage 2: The presence of sleep spindles and/or K-complexes in combination with the absence of 

sufficient high amplitude define this stage. The presence of a spindle is registered if its duration 

is at least 0.5 seconds. K-complexes are EEG waveforms with a well delineated negative sharp 

wave, followed by a positive component with a total duration that exceeds 0.5 seconds. Sleep 

spindles occur in 12-14 frequency range. Sleep spindles and K-complexes are transient 

phenomena, so large periods of time may occur between these events without a sleep stage 

change. If the time interval between spindles and/or K-complexes is less than 3 minutes, then the 

intervening epochs are scored as stage 2, if there is no indication of movement arousal. If the 

time interval is more than 3 minutes, then the epochs are scored as stage 1 even if they do not 

contain movement arousal. 

Stage 3: An epoch is labeled as stage 3 when the EEG recording consists of waves of 2Hz or 

slower for at least 20% but not more than 50% of the epoch. The amplitude of these waves is 

greater than 75μV peak-to-peak. Moreover, in this stage sleep spindles or K-complexes may 

occur. 

Stage 4: This stage is defined by an EEG record in which more than 50% of the epoch consists of 

waves of 2Hz or slower and their amplitudes are greater than 75μV peak-to-peak. Even though, 

high amplitude may be present at half of the epoch (or a little more), the majority of stage 4 

epochs are dominated by this activity. Intervals of lower amplitude and faster activity are present 

just for a few seconds. Sleep spindles and K-complexes could also occur in this stage. 

REM: The main characteristics of REM stage are the simultaneous appearance of relatively low 

voltage, mixed frequency EEG activity and episodic REMs. The EEG pattern is closer to the one 

described in stage 1, differentiated by the absence of vertex sharp waves. In REM sleep, 

distinctive saw-tooth waves may appear in vertex and frontal regions combined with bursts of 

rapid eye movements. Alpha waves activity is prominent during REM with the frequency being 

1-2Hz slower than wakefulness. Sleep spindles and K-complexes are completely absent, as it 

happens in stage 1.  

For almost 40 years the only widely accepted method for sleep scoring was R&K method 

even though it was criticized as the rules often resulted in different scoring among experts. The 

American Academy of Sleep Medicine provided some new guidelines in 2007 (updated in 2012) 

regarding terminology, recording method and scoring rules [2]. The most important change was 



7 

 

considered the change in terminology, as the sleep stages were decreased from 7 to 5 and their 

annotations changed. R&K S1-S4 stages were changed to N1-N3 with N3 reflecting slow waves 

sleep (R&K stages S3 and S4). REM sleep is annotated as R and movement time stage is 

abolished. According to [16], following the rules for scoring, there is not a perfect match 

between stages S1-N1, S2-N2, (S3+S4)-N3. It is estimated that AASM rules decreased S2 by 

4.9% while light sleep (S1) and deep sleep (S3+S4) were increased by 2.8% and 2.4% 

respectively. REM stage and total sleep time are not affected significantly. 

 

 

Figure 1  Sleep stages EEG waveforms   

 

2.3 Electroencephalogram and Polysomnography 

 

An electroencephalogram (EEG) is a recording of the voltages generated by the brain 

activity. Electrodes are attached to the scalp. Wires attach these electrodes to a machine, which 

records the electrical impulses. The results are either printed out or displayed on a computer 

screen and are used for the diagnosis of epilepsy, sleep disorders, brain tumors etc.  
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Polysomnography (PSG) is a type of sleep study used for the diagnosis of sleep disorders 

such as sleep apnea, narcolepsy, idiopathic hypersomnia, REM behavior disorder and 

parasomnia. Polysomnography is a process that makes a continuous recording during sleep 

measuring several physiological variables. Except for EEG, electrooculogram (EOG), 

electromyogram (EMG), electrocardiogram (ECG) and respiration traces are measured. The 

polysomnography recordings are studied by experts who analyze sleep quality in both healthy 

and patient subjects. The analysis is done using sleep staging defined by certain standards (R&K, 

AASM). A sample PSG recording of 30 seconds, using Polyman software, is displayed below: 

 

Figure 2 PSG waveform on Polyman 

 

 

2.3.1 The 10-20 Electrodes Positioning System 
 

The 10-20 system is an internationally recognized method which is used for the 

standardization of the electrodes positioning on the human scalp during EEG recording [17]. The 

method ensures that the spacing among electrodes is equal while the placement is adjusted to 

every subject as it is proportional to the subject’s scalp shape and size. The numbers 10 and 20 

denote that the distance between two electrodes is either 10% or 20% of the total front-back or 

right-left distance of the skull. All of the brain regions are covered. Letters are used to identify 
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the lobe location and numbers for the hemisphere location. The lobe locations are Frontal (F), 

Temporal (T), Parietal (P), Occipital (O) and Central (C) even though no central lobe exists and 

it is used only for identification purposes. The ‘z’ (zero) refers to an electrode placed on the mid 

line and finally even (2,4,6,8) and odd (1,3,5,7) numbers refer to electrodes positioned on the 

right and left hemisphere respectively. The electrode placement can be seen in the figure below: 

 

Figure 3 The 10-20 electrodes positioning system   

 

2.3.2 Manual Sleep Scoring 
 

Manual sleep scoring is considered a really demanding process. It is done by certified 

experts and according to very specific rules. The scorers must assign a sleep stage to the subject 

every 30 seconds for as long as the subject is sleeping (7-8 hours). All of the PSG recordings 

(EEG, EOG, EMG, ECG, respiratory recording) have to be taken carefully into consideration 

before the sleep stage is decided. Apart from that, every human may have some minor 

differences to his/her PSG recording depending on his/her age, health condition, sleep condition 
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etc. The PSG may even differ from day to day for the same subject, but polysomnography is a 

process that cannot be easily repeated because of its cost, effort and inconvenience of the patient. 

All the above, denote that it is almost impossible to have 100% reliable sleep scoring. In fact, 

according to [18] in the best of circumstances the experts agree at a percentage of 90%. The 

results of sleep scoring among 3 expert raters at two different groups of PSGs are presented 

below: 

 

Figure 4 Agreement across 3 human scorers on sleep staging  

It becomes obvious that human sleep scoring is done in a subjective way and the results 

depend on the rater’s interpretation of the rules. Automatic sleep staging is a way to overcome 

some of these issues. The authors of [18] develop an automatic sleep staging algorithm and try to 

compare the results with manual scoring. It is found that the auto-staging algorithm was 

comparable to manual scoring for all stages combined (Wake, N2, N3) and the agreement 

slightly decreased for REM sleep. It is also observed that patients with insomnia and psychiatric 

disorders who were using medications, had a more difficult recognition of their N3 and REM 

stages which resulted in lower agreement between raters and auto-staging. Contrary to that, 

patients with Obstructive Sleep Apnea (OSA) have easier to recognize EEG signal patterns 

which leads to a partial agreement between manual and automatic scoring, however the use of 

more than one human experts using majority voting, increased significantly the sensitivity for all 

of the sleep stages. 
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3 Literature Review 
 

During the research it was found that sleep stage classification using machine learning 

has been extensively studied by many researchers. Acquisition of sleep data is not always 

feasible, as they are considered sensitive, medical data. As a consequence, most of the 

researches, including this one, use data available at online data repositories (e.g. Physionet). The 

volume of data is also a problem due to the EEG signal sampling rate that creates huge 

hypnogram files. In most cases, a quite small number of sleep subjects is being used, even less 

than 10. This mainly applies for researches that were carried out some years earlier, since 

computing power nowadays allows the easier processing of big hypnograms files. Data 

preprocessing is a demanding process as hypnograms datasets tend to be noisy and moreover, 

data must be brought to a specific form in order to proceed with the feature extraction. There is a 

big variety of features and data transformations that has already been tested. The classification 

problem has been approached by miscellaneous classifiers, according to the literature, but it still 

remains some opportunity for further investigation mainly for deep learning methods. 

 

3.1 Shallow Learning Approaches 

 

Shallow learning methods follow the typical path of data preprocessing and feature 

extraction before feeding the data into a classifier. 

 

Figure 5 Typical process for shallow learning approaches 

More specifically, in [19] Physionet repository is selected, using data from both male and 

female healthy subjects aged between 21 and 35 years. Hidden Markov Model is used for 

classification trying to correlate the transitions between sleep stages. After studying the accuracy 

of predicting each class (stage) separately, it is deduced that some classes are predicted more 

easily than others. Stage 1 is underrepresented in the dataset and its accuracy is below 50% while 
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stage 4 and REM reach 91% and 86% respectively. The same problem regarding the accuracy of 

sleep stage 1 is met at [20]. In this case, SVM classifier is used while most of the features are 

statistical measures of the Pz-Oz electrode such as absolute mean-value, kurtosis, skewness, 

standard deviation. Basic statistical measures are typically used by all sleep stage classification 

models. In [21], the authors suggest some additional features such as spectral energy band, 

central frequency, bandwidth and Itakura Distance. Conclusively, Itakura distance and central 

frequency are characterized as promising for sleep stage classification tasks. A different 

approach is also noticed at [22], which is one of the few researches that uses data from actual 

patients (male and female patients with apnea). The authors included signals from EEG, EOG 

and EMG. All of the signals were converted to frequency domain using FFT and Delta, Theta, 

Alpha, Beta and Gamma wave frequencies were extracted. Regarding the classifier, MLP 

optimal number of hidden layers and learning rate were estimated after multiple experiments. 

MLP outperformed other classifiers, but its optimum performance is still considered low, so deep 

learning approaches are suggested. Conversion from time domain to frequency domain is widely 

used as a preprocessing tool used for feature extraction. In [23], FFT and wavelet transform 

(WT) in EEG signals are compared. It is found that in the spectral analysis, WT is more efficient 

than FFT, mainly due to the fact that EEG signals are non-stationary, so small changes may not 

be realized by FFT and the analysis may change depending on the length of data. A comparison 

among conditional random fields (CRF), HMMs and Bayesian linear discriminants using the 

AASM scoring standard is attempted in [24]. A total of 443 recordings were used using healthy 

subjects and patients diagnosed with apnea. They were separated at 3 datasets, the first one 

containing 428 healthy or apnea subjects and the second and third one comprising of 6 and 9 

healthy subjects respectively. It is proven that, CRF classifiers are superior to the others and they 

moreover provide moderate sleep stage classification results for patients with apnea, 

outperforming earlier work. A common finding with other researches is the fact that the 

sensitivity of N1 stage needs to be improved. The authors of [25] use single channel EEG 

recording, introducing a new time domain feature named Statistical Behavior of Local Extrema 

(SBLE). This feature provides a profound understanding of the hidden dynamics of EEG signals 

by quantifying and symbolizing its local extrema information. The feature extraction process 

comprises of 6 steps: identification of local extrema, finding amplitude intervals, symbol 

assignment, definition of micro patterns, definition of macro patterns and finally feature 
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extraction. The proposed features are: 1) number of local maxima in each amplitude interval, 2) 

number of local minima in each amplitude interval, 3) number of each macro pattern. The above 

process essentially transforms the values of the EEG time-series signal into a finite set of 

symbols, with each symbol being a member of a predefined symbolic set. The proposed 

classification method using SVM, achieved an accuracy of 91.8% for 5-stage classification at the 

Sleep-EDF database. It is highlighted that only Fpz-Cz channel was used for feature extraction 

and it outperformed Pz-Oz, contrary to what most researches have shown. Furthermore, SBLE 

feature contributed to yielding outstanding results, even when a small part of the whole dataset 

was used for training which means that the proposed method can accelerate the process of 

training the classifier and reduce the computational cost. The novelty of [26] is the emphasis 

given on the feature selection process. EEG signal is decomposed into 8 sub-bands and then 13 

features are extracted for each sub-band. The statistical significance of the features is examined 

using the Kruskal-Wallis test, discarding the ones with low significance. Then the best remaining 

features are selected using mRMR algorithm. Random forest is used for classification achieving 

an average accuracy of 98.5% for the 2-stage classification problem. The method is tested at 3 

Physionet datasets: Sleep-EDF, UCDDB and Expanded Sleep-EDF. Conclusively, the authors 

believe that an implementation of their method to a portable device could be possible, mainly 

because of the use of only one EEG channel and due to the method’s low computational cost. A 

research that focuses on the non-linearity and non-stationarity of EEG data is described in [27]. 

The fact that, non-linear signal processing is more efficient than time domain analysis and power 

spectral analysis, is supported by relevant literature. The analysis of EEG signals is done using 

higher order spectra (HOS) that are spectral representations of higher order moments or 

cumulants of a signal. The Gaussian Mixture Model is used for classification reaching an 

accuracy of 88.7% at 6-stage classification using 2 EEG channels from St Vincent’s University 

Hospital dataset. The high accuracy obtained denotes that HOS analysis can reveal information 

that is hidden due to the EEG signal’s non-stationarity. The majority of the researches related to 

sleep stage classification use time, frequency or time-frequency features. In [28], the problem is 

tackled in a totally different way as graph domain features are extracted from a single channel 

(Pz-Oz). More specifically, each segment of the signal is mapped into a visibility graph (VG) 

and a horizontal visibility graph (HVG), without any frequency domain preprocessing. Then a 

difference visibility graph (DVG) is constructed for each EEG segment. Finally, 7 
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distinguishable degree distribution values are selected for each DVG as representative features, 

which are fed into an SVM classifier. The results are impressive, as an accuracy score of 89% is 

achieved for 10-fold cross-validation with 14963 epochs of EEGs. By the time the paper was 

published, this was by far the best score for Sleep-EDF dataset using more than 10000 epochs. In 

[29], emphasis is given in building a model as simple as possible so that it can be easily deployed 

on a wearable device. Sleep-EDF dataset is chosen and only one EEG channel is used for feature 

extraction. The signal is firstly segmented into 30s epochs and then spectral features are 

computed for each epoch. Less useful features are discarded through a feature selection process. 

Boosted trees algorithm is selected for classification as it is considered a computationally non-

intensive algorithm. The results show 82.03% accuracy for 5-stage classification which is 

generally a poor result, but the whole method seems more plausible to be implemented to a real-

life application. In [30], the authors decided to use 5 EEG channels taking into consideration the 

cross correlation information that exists between channels. Most researches use up to 2 EEG 

channels, so 5 channels were expected to provide some extra information and boost sleep stage 

classification accuracy. It was finally found that this method reached 93.2% average accuracy for 

2 stage classification considering 4 stages in total (S1, S2, S3+S4, REM). This accuracy was 

considered decent when the paper was published, but leads to the conclusion that adding more 

channels to the analysis does not significantly improve classification accuracy. On the contrary, 

it adds unnecessary computational cost and could probably lead to overfitting. A totally different 

set of features is tested in [31]. Distance based features are compared with conventionally used 

features for the sleep stages classification problem, achieving remarkable accuracy. Only healthy 

subjects were used for the evaluation of the proposed method. The C3-A2 EEG channel which is 

proposed by the AASM rules was used for feature extraction along with EOG, EMG and ECG 

signals. The conventional feature vector consisted of 48 features that were found to be the most 

common in the literature. 31 distance-based features were extracted, all of which were based on 

Itakura distance and COSH diastance. 
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3.2 Deep Learning Approaches 

 

Artificial Neural Networks (ANN) and deep learning in general is a solution that is tried 

out at almost every type of machine learning problem. The results are often impressive, 

nevertheless the problem of classification of sleep stages does not seem to have any significant 

improvement at the prediction accuracy. One of the first classification methods that used neural 

networks is described in [32]. The study was published in 1999 and to the authors’ knowledge 

this is the first research that used Wavelet Transform for feature extraction. This is considered a 

milestone, as Wavelet Transform later proved to be really effective at the sleep stage 

classification problem, usually outscoring methods that used Fourier Transform for feature 

extraction. A feedforward neural network was used for classification, which was comprised of 13 

neurons in the input layer, 10 neurons in the hidden layer fully connected to the first layer and 6 

neurons in the output layer. The structure of the network is indicative of the available 

computational power that could be used at that time. The classification results compared to those 

of a human expert reached a 70-80% agreement. Apparently, the results are poor but the methods 

used were novel for that time and paved the way for future studies. In [33] sleep data from 

PhysioBank database were used and Pz-Oz EEG channel was selected for the extraction of 

feature vectors from the signal’s wavelet coefficients. Time-frequency analysis (wavelet 

transform) is suitable for EEG recordings, because the signals are dynamic, sometimes transient 

and mostly non-stationary. The feature vectors were classified using an MLP ANN with one 

hidden layer and traingdx algorithm. It was observed that the optimum number of neurons for the 

hidden layer was 8. After binary classification at a total of 4 stages (Wake, S1+REM, S2, SWS) 

the results indicated 93 ± 4% accuracy. This accuracy score is considered common when one 

class (sleep stage) is classified against all the rest. In [34], a recurrent neural classifier is 

presented, attempting 5-stage classification to 8 recordings obtained from the Sleep-EDF 

database, using energy features that derived from the EEG signal of the Fpz-Cz channel. The 

classification of the proposed neural classifier was tested against a feedforward neural network 

and a probabilistic neural network. It was found that the recurrent classifier was by far more 

accurate, reaching an accuracy of 87%, while the other two classifiers classified correctly 

approximately 81% of the samples. However, it is recognized that the discrimination of stage N1 

from REM sleep needs to be improved. Coming to more recent researches, in [35] the use of 
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complex-valued convolutional neural network is examined. The authors argue that the 

construction of handcrafted features for sleep stage classification is a process that requires 

domain knowledge from experienced experts and besides that, it is time-consuming. Their 

method initially converts real-valued EEG signal into complex numbers. Then the transformed 

signal is fed into the network which is essentially a multi-layer perceptron with a special 

topology containing more than one hidden layers. A 6-layer network is used, reaching 90.8% 

accuracy which outperforms real-valued CNNs. The problem of low classification accuracy for 

stage S1 is also noticed by the authors. Another approach that also uses CNNs is presented in 

[36]. PSGs from Sleep-EDFx database were used for this study and 6-stage classification was 

attempted. Fractional Discrete Fourier Transform (F-DFT) is used to fully utilize the local 

frequency domain information of EEG signals. Wavelet Transform is also used in an effort to 

depict the low frequency structure information of local signals and better classify stages 3 and 4. 

A 3-dimensional signal is constructed from EEG signal, F-DFT signal and WT signal. The signal 

is fed into the CNN where the feature extraction process happens automatically. The total 

accuracy for the 6-stage classification is 90.11%.  
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4 Data and Methods 
 

4.1 Data Acquisition 

 

For the purpose of this thesis, the datasets were obtained from Physionet online data 

repository [37]. Physionet offers free access to a collection of recorded physiological signals and 

open-source software related to the signals’ processing. There are several polysomnographic 

sleep recordings libraries, however the Sleep-EDF Database [Expanded] was used for this 

research [38]. The database was greatly expanded in March 2018 and now contains 197 PSG 

recordings in total that were obtained from 2 different studies. The first study was conducted in 

1987-1991 and had as a target to study the effects of age in sleep quality. 153 recordings are 

from this study and the subjects were healthy Caucasians aged 25-101. Files are named in the 

form SC4ssNEO-PSG.edf where ss is the subject number and N is the night. The remaining 44 

PSGs were obtained in 1994 in a study related to the effects of temazepam on sleep. 22 subjects 

(Caucasian males and females) that had mild difficulty falling asleep but were otherwise healthy 

participated to this research. Each subject was recorded for 2 nights, one of which was after 

temazepam intake and the other after placebo intake. Files are named in the form ST7ssNJ0-

PSG.edf where ss is the subject number, and N is the night.  

All of the PSGs contain EEG, EOG, EMG, respiration and body temperature recordings. 

Sleep scoring is conducted manually by well-trained experts according to Rechtschaffen and 

Kales manual, [15] but Fpz-Cz and Pz-Oz EEG channels are used even though C4-A1 and C3-

A2 are suggested by the manual. EEG, EOG and EMG are sampled at 100Hz. The PSG files are 

formatted in EDF while the hypnograms (annotations) are in EDF+. 

For the purpose of this study it was decided to include 3 groups of subjects. The first one 

contains totally healthy subjects that their PSG was recorded under no medication. The second 

one contains patients that have mild difficulty falling asleep, during their placebo intake nights 

and the third one also contains patients with difficulty falling asleep but the recording was done 

under temazepam effect. 4 PSGs were used for each group. 
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Table 1 PSG recordings for each group of subjects 

Group PSGs 

Group A: Healthy subjects SC4001E0, SC4002E0, SC4011E0, SC4012E0 

Group B: Mild difficulty 

falling asleep – no medication 
ST7011J0, ST7022J0, ST7041J0, ST7052J0 

Group C: Mild difficulty 

falling asleep – temazepam 

intake 

ST7012J0, ST7081J0, ST7152J0, ST7222J0 

 

4.1.1 Temazepam Effects 
 

Temazepam belongs to the class of medications called benzodiazepines and it is used for the 

treatment of short-term sleeping problems (difficulty falling asleep, frequent awakenings, early 

morning awakenings). Temazepam’s plasma half-life is 8.5 ± 1.5 h and maximum plasma levels 

are reached 0.6-0.8 h after oral administration [39]. Benzodiazepines are commonly used 

medications that alter sleep spindles during NREM sleep. The effects of temazepam on human 

EEG have been studied by several researchers in the past. In [40], twenty healthy males aged 21-

26 years with regular sleeping habits participated in the study. The subjects’ EEG was recorder 

both for placebo and temazepam intake nights. It was found that compared to the placebo 

condition, temazepam significantly reduced the interval between lights-off and the first 

occurrence of stage 2 NREM sleep. Moreover, total sleep time was significantly longer in the 

temazepam condition and comparing the first 6 hours of sleep for the two nights, it was noticed 

that temazepam significantly reduced REM sleep but it did not reduce slow-waves sleep or stage 

4 NREM sleep (R&K scoring). A similar study [41], which was also conducted with healthy 

volunteers on placebo and medication nights, detected changes in the recorded EEGs, using 

mean power density spectra and t tests. The authors concluded that the changes of the EEG 

pattern include a decrease in power in the 7 to 12 Hz frequency region and an increase in power 

in the 12 to 25 Hz region. The distinction between placebo and temazepam nights was absolutely 

clear. Lastly, a much newer (2015) study is presented, where sleep was monitored using 256-
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channel hdEEG [42] while prior investigations have typically utilized 1 or 2 central channels in 

their analyses. 18 healthy adults participated in this study recording EEGs on two separate 

nights, after placebo and temazepam intake. Spectral analysis and spindle waveform detection of 

sleep EEG data were performed for each participant night. Sleep staging did not have significant 

differences between placebo and temazepam nights, however spindle duration and amplitude 

were significantly increased for temazepam nights. According to the topographic analysis, 

spindle duration was increased in the vast majority of channels except for a few centrolateral 

derivations. 

 

4.2 Data Preprocessing 

 

The European Data Format (EDF) is a data format that was created in 1990 for the easiest 

storage and exchange of multichannel biological and physical signals. It is the most popular data 

format for EEG and PSG recordings. An extension of EDF, developed in 2002, is EDF+. The 

newer type of files also contains interrupted recordings, annotations, stimuli and events. All 

existing EDF viewers are also compatible with EDF+. 

The PSG recordings that were downloaded for this study were EDF files and their respective 

hypnograms were EDF+. Some certain steps of preprocessing were followed for each file, so that 

it could result into a dataset that could be read from python in order to proceed with the feature 

extraction process. 

- PSG 

The first step was using the appropriate software for opening EDF files. “Polyman” was used for 

this purpose, which is an open-source software available at Physionet webpage. PSG files are 

loaded on Polyman and the user has the opportunity to plot one or many of the channels of the 

PSG recording. 
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Figure 6 Adding PSG signals to Polyman 

The selected signal was converted to ASCII and finally the file which was created was 

converted to .csv so that it could be read from python. The signals that were used to the final 

datasets are the following:  

 EEG Fpz-Cz  

 EEG Pz-Oz  

 EOG Horizontal 

 

- Hypnogram 

Hypnograms had EDF+ format and EDF Browser was used for their easier manipulation. This 

software is also open-source and available at Physionet webpage. When hypnogram files were 

loaded the expert annotations for the corresponding PSG appeared. 
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Figure 7 Reading hypnogram annotations (EDF+ files) on EDF Browser  

Then, by selecting the option “Export EDF to ASCII” a .txt file was created that 

contained the annotations, the onset and the time duration of each sleep stage. Finally, this .txt 

was also converted to .csv. 

Examining the annotations file, it becomes clear that some parts of the signal need to be 

removed. Movement time is a stage that has to be discarded. Moreover, most of the recordings 

start and/or finish with many consecutive hours of “Awake” stage for the subject. Keeping these 

parts of the signals would create imbalance to the sleep stages of the dataset, so they were also 

discarded. Apparently, the same parts of the recording were discarded for all of the channels that 

were used for the feature extraction, so that time correspondence was kept among them. 

 

4.3 Selection of Scoring Standard 

For the purpose of this research, the sleep scoring standard of the American Academy of 

Sleep Medicine was used [2]. This standard is much more recent than R&K rules and most of the 
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studies published the latest years follow this standard. At this point, an inconsistency between 

AASM scoring and the available sleep datasets needs to be pointed out. As it has been mentioned 

before, there are not many polysomnographic recordings publicly available, as medical data are 

considered sensitive. As a matter of fact, most of the PSG datasets are quite old and the scoring 

from the experts is done according to the old R&K rules. So, recent studies usually convert sleep 

stages from R&K to AASM simply by adding stages S3 + S4 of slow wave sleep, creating stage 

N3. This conversion cannot be considered totally accurate, as the new rules have changed the 

overall duration of every sleep stage during a normal night’s sleep. In addition to that, the new 

rules suggest sampling frequency of 500Hz while most datasets (including the one used in this 

study) include signals sampled at 100Hz. Moreover, the proposed EEG channels are F4-M1, C4-

M1, O2-M1 and backup channels F3-M2, C3-M2 and O1-M2. Sleep EDF-x EEG signals that 

were analyzed in this study are from channels Fpz-Cz and Pz-Oz. 

Despite the above inconsistencies it has been noticed that many recent studies select to 

follow the AASM scoring rules even if the dataset is annotated otherwise. Consequently, AASM 

manual is also chosen for this study which means that samples are classified at epochs of 30 

seconds or 3000 data points (f=100Hz) using 5 stages for classification (W, N1, N2, N3, R). 

 

4.4 Feature Engineering 

 

After the dataset is cleaned, raw data must be transformed into meaningful features that 

represent the information carried by the signal. 

 

4.4.1 Feature Extraction 
 

The nature of the signal should be well understood, in order to create features that 

describe raw data with the best possible way. PSG signals are non-stationary, which means that 

the signal’s statistics change over time. This means that analysis of the signal on the time domain 

is not sufficient. Time domain features, frequency domain features, time-frequency domain 

features, entropy features and non-linear features are extensively used in the literature [43] as 

they reveal different aspects of the EEG, EMG and EOG signals. 
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Figure 8 Conventional features extracted from PSG recordings 
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The features that were extracted from the PSG signals are presented below. For every feature, 

each instance was calculated at 30 second epochs, so 3000 data points were used for every 

instance. 

 Arithmetic Mean: This feature was used both for EEG signals (2 channels) and EOG. The 

mean electric potential of an epoch is calculated. The data points of an epoch (electric 

potentials) were added and then divided by 3000.  

       
   

   
   

 
 

 

 Variance: It was also used for both EEG and EOG signals. Variance measures how much 

an epoch’s data points spread out from their average value. 

                 

 

 Skewness: Is is a measure of the degree of asymmetry of a distribution. The skewness of 

a normal distribution is zero, while positive and negative skewness indicates that data are 

skewed right and left respectively. Skewness is a higher-order-statistics measure (third 

moment). 

          
          

     

  
 

 

 Kurtosis: It is the peakedness or flatness of the graph of a frequency distribution 

especially with respect to the concentration of values near the mean as compared with the 

normal distribution. Kurtosis is a higher-order-statistics measure (fourth moment). 
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 Entropy: It is a way to measure the randomness of an epoch’s data points. Entropy 

describes the lack of order or predictability. High entropy denotes a stochastic process 

that does not form a specific pattern. 

                     

 

   

 

 

 EEG Frequency Bands: EEG waveforms are classified into five different frequency 

bands. These bands are components of the overall EEG waveform captured from one 

electrode. Band information can be extracted when a mathematical transformation like 

Fourier Transform is used, in order to convert the signal from time domain to frequency 

domain. Frequency bands have been successfully used as a feature to many machine 

learning problems related to EEG analysis, from classification of sleep stages [44] to 

epilepsy detection, human emotion recognition [45] and cognitive performance [46]. 

 

Figure 9 Comparison of EEG bands 
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After the signal is converted to the frequency domain, features can be extracted. The 

mean value and the average power of each band (delta, theta, alpha, beta, gamma) were 

extracted for every epoch. 

               
 

 
        
 

   

  

 

 Power spectral Density: It is used to describe how the power of a signal or a time-series is 

distributed over frequency. The power is defined as the squared value of the signal. The 

unit of PSD is energy per frequency and its computation is done directly from FFT. 

 

 Petrosian Fractal Dimension: Fractal dimension is a ratio that provides a statistical index 

of complexity, comparing how detail in a pattern changes depending on the scale at 

which it is measured. Petrosian Fractal Dimension is a feature extracted from PyEEG 

library [47] which is an open-source python module for EEG/MEG feature extraction. 

 

All of the above features were included in the final model. However, some other features that 

eventually did not improve the model’s accuracy were tried. 

 Hjorth parameters: This is a feature that is widely used on EEG feature extraction [48, 49, 

50]. Hjorth mobility and complexity are also computed from PyEEG library. 
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 Wavelet analysis features: Wavelet Transform (WT) solves Fourier Transform’s 

disadvantage, which is that is does not provide any localization in time. In WT, some 

scaled (stretched and compressed versions) of a mother wavelet are correlated with the 

original signal, revealing details at different scales. For non-stationary signals, such as 

EEG signals, WT which is a time-frequency analysis method is often used with great 

results [32, 51]. In this study, some statistical features were extracted from the 

approximation and the detail coefficients of WT, but they did not contribute towards the 

improvement of the model’s accuracy.  

 

 Number of zero crossings: This feature counts the occurrences of a signal value change 

from positive to negative, or from negative to positive. It has been used in 

electroencephalography both for sleep stage classification [52] and epileptic seizures 

detection [53].  

 

Another method which was tried, but was finally rejected is the filtering of the raw signal. PSG 

signals contain a lot of noise because of the subject’s movements or the electrodes’ contact with 

the scalp. The idea of denoising the signal has been used in the past and according to [54, 55] 

Savitzky-Golay filter has been successfully tested for EEG signal processing. In the present 

study, when raw signal was initially filtered with a Savitzky-Golay filter and the features were 

extracted afterwards, the model’s accuracy dropped by 3-4%. This means that some useful 

information of the signal was lost, trying to smoothen the noise. 

 

4.4.2 PSG Signals as Time-Series 
 

The EEG and EOG signals that were used for feature extraction, can be considered as time-series 

data. The signals’ discrete data points form a sequence which is ordered in time. This ordering 

creates dependence between adjacent points of the signal that could possibly provide some extra 

information to our model and increase its predictive accuracy. This concept has been 

implemented in the literature, mostly at deep learning models that used LSTM layers [56, 57]. In 

this study, a different approach is used, as the existing features are shifted in time. More 

specifically, the 36 features that are initially extracted are shifted one time-step backward and 
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one time-step forward. Finally, the proposed model ends up with 108 features (3*36). Time-

shifting for one feature is explained at the tables below: 

 

 

The novelty of the current study is focused on the above feature transformation that increased the 

model’s accuracy by 3-4% depending on the dataset that it was tested. Moreover, it is an 

approach that did not significantly increase the time complexity of the model. 
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4.5 Classification Methods 

 

After the feature extraction process, the model was tested with many different classifiers (linear, 

decision trees, boosting) in order to study the behavior of each classifier and select the best one. 

Gaussian Naïve Bayes and Support Vector Machines (SVM) provided the worst results, out of 

all the classifiers that were used. SVM was expected to be more efficient as it has been 

successfully used in the literature [20]. Low accuracy may have occurred as a result of 

suboptimal tuning of the algorithm’s parameters. Logistic Regression and Random Forest 

algorithms achieved decent results that approach the optimal solutions. The performance of 

Logistic Regression is remarkable as it is a computationally cheap algorithm that runs very fast. 

The best results were obtained with Extremely Randomized Trees, Gradient Boosting and 

XGBoost which are analyzed below: 

 Extremely Randomized Trees: During the nineties, the systematic study of tree-based 

models revealed their high variance. During the same period, the idea of combining 

multiple models in order to reduce variance and bias appeared. In 1994, Leo Breiman 

proposed “Bagging” [58] which can be considered a particular instance of a broader 

family of ensemble methods that are called randomization methods. These methods 

introduce randomization into the learning algorithm, providing a different version of the 

original learning sample at every run. Extremely Randomized Trees is a tree-based 

ensemble method, presented in 2006, that is suitable for both classification and regression 

problems. The algorithm selects splits, both attribute and cut-point, totally or partially at 

random [59]. The Extra-Trees algorithm builds an ensemble of unpruned decision or 

regression trees according to the classical top-down procedure, but has two important 

differences with other tree-based ensemble methods.  Firstly, it splits nodes by choosing 

cut-points totally at random and secondly it uses the whole learning sample to grow the 

tree. When the algorithm was introduced it was found that among other ensemble 

methods, Extra-Trees significantly reduce variance and moderately increase bias, 

providing the best tradeoff between bias and variance [59]. 

 Gradient Boosting: Boosting is an ensemble technique in which the predictors are not 

made independently, but sequentially. The main idea is that the subsequent predictors 
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learn from the errors of the previous ones. Therefore, unlike bootstrap, the observations 

have unequal probability of appearing in the next models, and more specifically, 

observations with the highest error appear most. Gradient Boosting is built on the above 

rationale, producing a prediction model (suitable for classification and regression) using 

an ensemble of weak prediction models, typically decision trees. The algorithm tries to 

reach a local minimum of the loss function. An analogy with gradient descent process is 

that gradient descent tries to update its parameter along the negative gradient direction 

whereas gradient boosting adds a new function to the model that moves along the 

negative gradient direction. 

 XGBoost: The name XGBoost stands for “eXtreme Gradient Boosting”. It is a scalable 

and accurate implementation of gradient boosting and it has proven to push the limits of 

computing power for boosted trees algorithms as it was built and developed for the sole 

purpose of model performance and computational speed. Specifically, it was engineered 

to exploit every bit of memory and hardware resources for tree boosting algorithms. The 

implementation of XGBoost offers several advanced features for model tuning, 

computing environments and algorithm enhancement. It is capable of performing the 

three main forms of gradient boosting (Gradient Boosting (GB), Stochastic GB and 

Regularized GB) and it is robust enough to support fine tuning and addition of 

regularization parameters. 

  

The tuning of the above algorithms is done taking into consideration that all of them are 

ensemble methods which are robust to overfitting. Regarding the Extra Trees Classifier 250 

estimators (number of trees in the forest) are selected and ‘gini index’ is used for the 

measurement of the quality of a split. The estimators of Gradient Boosting (number of boosting 

stages to perform) is set to 1200, which is found to be the optimal point, as further increase does 

not improve the classifier’s accuracy but increases its complexity. The learning rate of XGBoost 

is found to be optimal at 0.21. Since all three algorithms performed equally well, an ensemble 

between them was attempted. The three algorithms were combined using a voting classifier. The 

voting parameter is set to ‘hard’, which means that majority rule voting is implemented. Voting 

classifier resulted at higher classification accuracy comparing to each classifier separately. 
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5 Results 
 

5.1 5-stage Classification 

 

In this section the three datasets are classified according to AASM guidelines. The 

distribution of each sleep stage across the datasets is depicted in the graph below. N2 stage is 

dominant at all cases, as it was expected, while light and deep sleep follow the expected 

characteristics when comparing healthy and patient datasets, as healthier subjects tend to have a 

bigger percentage of deep sleep and a smaller percentage of light sleep. The pattern formed at the 

“Awake” stage is created randomly and has to do with the dataset cleaning, where large portions 

of “Awake” stage are discarded from the signal. There is class imbalance at all datasets, which 

will be taken into consideration at the commenting of the results. This imbalance led to the 

selection of the F-score metric, along with accuracy at the experiments that follow. F-score is 

interpreted as a weighted average of precision and recall. In the multi-class case, it is the average 

of the F-score of each class.  

 

Figure 10 Percentage of each sleep stage across all datasets 



32 

 

5.1.1 Healthy Subjects 
 

The classification algorithm was firstly implemented on the healthy dataset which, as expected, 

provided the highest accuracy and f-score. 

Table 2 Healthy Dataset Classification 

5–stage classification – Healthy subjects 

 

Precision Recall F1-score Support 

Sleep Stage N1 0.79 0.66 0.72 64 

Sleep Stage N2 0.94 0.95 0.94 375 

Sleep Stage N3 0.92 0.95 0.94 154 

REM 0.86 0.87 0.87 123 

Awake 0.87 0.85 0.86 40 

Avg/Total 0.91 0.91 0.91 756 

 

Accuracy = 90.87% 

F-score = 0.866 

 

5.1.2 Patient Subjects (no medication) 
 

The patient subjects’ dataset has as a result a decrease on the accuracy and f-score. 

 

 

 



33 

 

Table 3 Patients dataset classification (no medication) 

5–stage classification – Patient subjects (no medication) 

 Precision Recall F1-score Support 

Sleep Stage N1 0.69 0.59 0.64 70 

Sleep Stage N2 0.88 0.92 0.9 378 

Sleep Stage N3 0.88 0.8 0.84 128 

REM 0.96 0.93 0.95 163 

Awake 0.82 0.92 0.87 64 

Avg/Total 0.87 0.88 0.87 803 

Accuracy = 87.55% 

F-score = 0.838 

5.1.3 Patient Subjects (Temazepam) 
 

The accuracy remains similar to the previous case. 

Table 4 Patients dataset classification (Temazepam) 

5–stage classification – Patient subjects (Temazepam medication) 

 Precision Recall F1-score Support 

Sleep Stage N1 0.6 0.62 0.61 64 

Sleep Stage N2 0.9 0.93 0.91 390 

Sleep Stage N3 0.91 0.83 0.87 109 

REM 0.9 0.84 0.87 137 

Awake 0.92 0.91 0.91 99 

Avg/Total 0.88 0.88 0.88 799 
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Accuracy = 87.61% 

F-score = 0.836 

 

5.1.4 Combining Datasets 
 

In the results that follow, it was attempted to train the model with data from the healthy 

subjects’ dataset and then try to test the accuracy on datasets with patient subjects (with or 

without medication). As expected, the accuracy dramatically falls as healthy and patient subjects 

have totally different characteristics. 

Table 5 Classification results training on healthy and testing on patient (no mediaction) subjects 

5–stage classification – Train Healthy/Test Patients 

 Precision Recall F1-score Support 

Sleep Stage N1 0.25 0.34 0.28 385 

Sleep Stage N2 0.64 0.79 0.71 1867 

Sleep Stage N3 0.71 0.01 0.02 610 

REM 1 0.03 0.06 778 

Awake 0.26 0.79 0.39 374 

Avg/Total 0.65 0.48 0.41 4014 

 

Accuracy = 48.13% 

F-score = 0.292 
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Table 6 Classification results training on healthy and testing on patient (Temazepam) subjects 

5–stage classification – Train Healthy/Test Temazepam 

 Precision Recall F1-score Support 

Sleep Stage N1 0.26 0.37 0.31 413 

Sleep Stage N2 0.76 0.83 0.79 1976 

Sleep Stage N3 0 0 0 538 

REM 0.8 0.17 0.28 668 

Awake 0.27 0.76 0.4 399 

Avg/Total 0.56 0.55 0.51 3994 

Accuracy = 55.1% 

F-score = 0.354 

The next table presents the results of training the model with patient subjects without medication 

and then testing it to patients with temazepam. The accuracy in this case is significantly better as 

it reaches 75%. 

Table 7 Classification results training on patients without medication and testing on patients with Temazepam 

5–stage classification – Train Patients/Test Temazepam 

 Precision Recall F1-score Support 

Sleep Stage N1 0.56 0.31 0.4 413 

Sleep Stage N2 0.83 0.83 0.83 1976 

Sleep Stage N3 0.91 0.76 0.83 538 

REM 0.52 0.76 0.62 668 

Awake 0.8 0.76 0.78 399 

Avg/Total 0.76 0.75 0.75 3994 
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Accuracy = 74.81% 

F-score = 0.691 

In the last experiment of the 5-stage classification it was attempted to merge the 3 datasets into a 

single one. The algorithm was trained and tested on this common dataset. The results were 

impressive as both accuracy and f-score were high, which means that the proposed model can 

predict the sleep stages of healthy and patient subjects equally well. 

Table 8 Classification results using all datasets for training and testing 

5–stage classification – All datasets combined 

 Precision Recall F1-score Support 

Sleep Stage N1 0.67 0.62 0.65 207 

Sleep Stage N2 0.91 0.95 0.93 1150 

Sleep Stage N3 0.93 0.86 0.89 384 

REM 0.9 0.9 0.9 408 

Awake 0.84 0.82 0.83 208 

Avg/Total 0.88 0.89 0.89 2357 

Accuracy = 88.63% 

F-score = 0.84 

 

5.2 2-stage Classification 

 

In this section, each sleep stage is classified versus all others. This type of classification 

may be used when wake stage needs to be distinguished from the sleep stages, or REM sleep to 

be differentiated from NREM sleep, or deep sleep percentage to be extracted from the rest of the 

sleep.  
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 The accuracies obtained from 2-class classification are obviously better than those 

obtained from multi-class classification. However, the problem of poor detection of stage N1 that 

is pointed out in many studies is also found here.  

5.2.1 Healthy Subjects 
 

Table 9 2-stage classification results for healthy subjects 

Sleep Stage Accuracy F-score 

N1 93.78% 0.72 

N2 93.78% 0.938 

N3 97.22% 0.956 

REM 95.1% 0.906 

Awake 98.02% 0.892 

 

5.2.2 Patient Subjects (no medication) 
 

Table 10 2-stage classification results for patient subjects without medication 

Sleep Stage Accuracy F-score 

N1 93.28% 0.675 

N2 89.41% 0.894 

N3 95.77% 0.916 

REM 96.76% 0.948 

Awake 97.63% 0.918 
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5.2.3 Patient Subjects (Temazepam) 
 

Table 11 2-stage classification results for patient subjects with Temazepam intake 

Sleep Stage Accuracy F-score 

N1 93.37% 0.663 

N2 88.24% 0.882 

N3 95.99% 0.909 

REM 93.74% 0.875 

Awake 96.87% 0.921 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

6 Discussion 
 

This section contains the discussion regarding the methods and subsequent observed 

results, as well as some suggestions for future pursuits in this area. 

 

6.1 Analysis of Methods 

 

The methods used in this thesis were chosen taking into consideration the state-of-the-art 

methods found in the literature about the sleep stage classification problem. The choices that 

were made regarding the parameters and implementation of the methods definitely had an impact 

on the results. 

  The available EEG channels at the recordings of the Sleep EDF-x Database are FPz-Cz 

and Pz-Oz. The channels suggested by AASM scoring rules are C4-M1, F4-M1 and O2-M1. 

This fact may have prevented the detection of certain patterns that would be available from these 

channels. According to [2], some researchers support that k-complexes are detected more easily 

in the frontal lobe derivations. In general, most of the existing available PSG datasets fail to meet 

the standards defined by AASM rules. As a consequence, the vast majority of the studies 

conducted so far are not compliant with AASM rules.  

 The features that were used for the classification models of this thesis, were chosen 

empirically after studying the relevant literature. The trial and error process was followed, 

adding and removing features, in order to achieve the optimal model. Principal component 

analysis was attempted at the final model but it failed to provide better classification accuracy. 

The technique that gave the biggest boost to the model’s accuracy was the incorporation of the 

time sequence of the instances, described in 3.4.2. The logic behind this technique was that, 

during training, every instance of the EEG is considered independent from its past or future 

values. As it turned out an instance can be classified with greater accuracy when the previous 

and the next value of the signal is known. This creates a restriction for our model, since it could 

not be applied at a real-time sleep scoring application.   
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6.2 Analysis of Results 

 

With a first look at the results it is obvious that there is some imbalance among the 

datasets. This is considered normal, as according to normal sleep pattern the sleep stages are not 

evenly distributed to a night’s sleep. Stage 2 is dominant reaching almost 50% of the whole sleep 

duration. The discrimination between the healthy and the patients’ dataset becomes clear by 

observing that healthy subjects tend to have a greater duration of stage 3 deep sleep. 

 At the 5-stage classification problem, the algorithm achieves the highest accuracy 

(90.8%) with the healthy subjects’ dataset. Obviously, the EEGs from healthy people form 

patterns that are distinguished more easily and the algorithm is able to perform the classification 

task more efficiently. The f-score reaches 0.868 which is a sign that the classes are not predicted 

equally correctly due to imbalance, but this deviation was not considered very important, so class 

balancing techniques were not used. The accuracy score remains high when the algorithm is 

trained on the patients’ dataset (without medication intake). Apparently, people with sleep 

disorders have similar EEGs, so this model was trained at sleep patterns for this type of patients 

achieving accuracy close to 87.5%. Following the same procedure for the Temazepam dataset 

the accuracy remains similar at 87.6%. The conclusion which is drawn is that sleep disorders and 

medication intake can distort the EEG signal and make the sleep stage classification task more 

difficult.  

The next experiment had as a target to find out the difference between EEG signals from 

healthy and patient subjects. It was decided to train the model on the healthy dataset and then try 

to generate predictions for the others. Accuracy dramatically dropped to 48.1% and 55.1% 

respectively for the two patient datasets. Training on the patients’ datasets and testing on the 

temazepam, increased the accuracy to 74.8%. It becomes clear that healthy and patient subjects 

have totally different EEG signal patterns and it is not possible for a model to get trained on one 

of them and then try to make predictions for the other. 

Combining all datasets to one, was an idea towards the direction of creating one model 

that can predict sleep stages correctly for a larger group of people. When the algorithm was 

trained using all datasets, it generated predictions with an accuracy of 88.63% and an f-score of 

0.84. This result is considered decent and the accuracy is satisfying, taking into consideration 

that the model might be “tricked” as it is trained on different datasets that are not quite similar. A 



41 

 

model that generalizes better can have multiple benefits. For example, the implementation of the 

algorithm to a wearable device used for sleep scoring would be very useful if it could be used by 

people who are healthy or people who face some difficulties with their sleeping habits or even 

use some hypnotics like temazepam. 

The last experiment was about 2-stage classification. It is deduced that wake stage can be 

distinguished from sleep stages with a high accuracy, although there is a larger gap between 

accuracy and f-score as the wake stage is highly underrepresented. REM and NREM sleep seem 

to be easily differentiated at all datasets with a percentage above 90% which is confident. N1 

stage remains problematic as it has already been pointed out by many studies. Even though the 

class is predicted with high accuracy, f-score is much lower. A more thorough analysis of this 

result can be seen at the following confusion matrix of the experiment 4.1.1. The majority of the 

misclassified instances that belong to class N1 are falsely classified as REM. This is justified by 

the fact that sleep spindles and k-complexes do not exist neither at N1 stage nor at REM stage, so 

these stages are difficult to distinguish. 

 

Table 12 Confusion matrix of the experiment 4.1.1 

 
N1 N2 N3 REM W 

N1 47 4 0 11 2 

N2 5 359 9 2 0 

N3 0 12 142 0 0 

REM 5 11 0 106 1 

W 3 1 0 2 34 

 

 

 

 

Predicted 

   Actual 
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6.3 Conclusions and Future Work 

 

Automatic sleep scoring algorithms should ideally have confident results not only for 

healthy but also for patient subjects. Comparing the experiments that were conducted in this 

study it is found that the optimal choice is training the model with data from subjects with 

different EEG patterns. The tradeoff between the algorithm’s accuracy and its capability of 

implementation at both healthy and patient subjects seems to be beneficial as accuracy is slightly 

decreased.  

The sleep scoring problem has already reached at a high level of accuracy by many 

researchers. Most of the challenges have already been addressed but there still remain some 

slight issues. First of all, the diversity between the datasets used for the different studies, 

produces results that are not easily compared. As it is natural, an algorithm that achieves a high 

score on one dataset, may achieve a much different score on a different dataset depending on the 

subjects whose PSGs are being studied. The use of different channels by the datasets can also be 

a problem that prevents the comparison of the results. The creation of public datasets following 

specific guidelines e.g. AASM scoring rules would solve the above issue for future studies. 

Secondly, the feature engineering part of the models used for sleep staging seems to be 

exhaustively studied. There are many published studies that use different approaches (time, 

frequency, time-frequency domain) and this field seems to be adequately covered. An 

appropriate combination of features could probably create a model that would outperform the 

current ones. Finally, the majority of the classification algorithms have already been tested 

including deep learning methods. Deep learning has been proven less effective than expected at 

the sleep stage classification problem. Multi-layer models with huge computational cost, achieve 

similar accuracies with simple SVM or tree models, as it was shown in the literature review.  

Since models have reached accuracies almost similar to human raters, the improvement 

of human scoring errors should be studied. Improving the ground truth of the datasets used, will 

eventually improve the predictions of the algorithms. According to [60], all efforts for automatic 

scoring are limited by the accuracy provided by the visual classification of sleep stages. It is 

expected that this accuracy will improve and consequently allow the successful development of 

computer based sleep scoring. 
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Even though there are many studies regarding automatic sleep scoring, there are much 

fewer real-life applications that the algorithms are actually used. Future researchers should be 

focused on the development of those applications and on the issues that could probably arise. 

Hospitals or sleep clinics equipped with automatic sleep scorers could faster and more easily 

diagnose sleep related issues to patients, since a human scorer (doctor) would no longer be 

necessary. In addition to that, many patients could have their own portable scoring device. Most 

of the algorithms used for scoring use 1 or 2 EEG channels, so the process of attaching multiple 

scalp electrodes can be avoided. 
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