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Abstract 

Age has been shown to be a crucial factor for the EEG and fMRI small-world networks during 

sleep. However, the characteristics of the age-related network based on sleep ECG signal and 

how the network changes during different sleep stages are poorly understood. This study 

focuses on to explore the age-related scale-free and small-world network properties of the ECG 

signal from male subjects during distinct sleep stages, including the wakeful(W), light sleep 

(LS), deep sleep (DS) and rapid eye movement (REM) stages. The subjects are divided into 

two age groups: younger (age<=40, n=11) group and older group (age>40, n=25). For the scale-

free network analysis, our results reveal a distinctive pattern of the scale free network 

topologies between two age groups, including the mean degree ( d ), the clustering coefficient 

( c ), and the path length  ( l )features, such as the slope distribution of c  in younger group 

increased from 1.99 during W to above 2.05 during DS. In addition, the results indicate that the 

small-world properties can be found across all sleep stages in both age groups. But the small-

world index  in the LS and REM stages significantly decreased with age (p=0.0006 and p=0.05 

respectively). The comparison analysis result indicates that the network topology variations of 

the sleep ECG signals prone to show age-relevant differences which could be used for sleep 

stage classification and sleep disorder diagnosis.  

Keywords: Complex networks; Sleep; Electrocardiography; clustering coefficient; Scale-free and small-world networks 

 

1. Introduction 

Sleep is an important biological process which is essential 

for an individual’s performance, learning ability and physical 

movement. Spatial Complex network (SCN) has been shown 

to be a powerful approach for quantifying sleep patterns of 

brain functions. A node of the SCN could be a brain region, a 

voxel [1] or an EEG channel [2, 3]. An edge of the SCN is 

presented when there is an anatomical connection or 

functional correlation between two nodes.  

Researchers have highlighted that sleep functions could be 

measured by network topology indicators of multichannel 

EEG signals or fMRI signals. Bassett et.al [4] showed that the 

functions of human brain systems have a small world network 

property (SWN) which has a high clustering coefficient ( c ) 

and a short path length ( l ).  The SWN has been shown to 

steadily increase from the light sleep stage to the deep sleep 

stage with a higher c  and lower l  based on EEGs [2]. Also, 

study has shown that a brain network of the fMRI data has a 

higher SWN in the deep sleep stage than those in wakefulness 

[5]. However, another study of Uehara et al. [6] claimed that

l  actually the SWN showed an increase from the light sleep 
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stage to the wakeful stage.  The exact network properties 

changes of different sleep stages are still under debate. In 

addition, the network topology differences between the REM 

and the light sleep are still unclear. Most existed literature only 

discussed the wakefulness and the NREM sleep stages without 

considering the REM stage [5-8]. One of the key reasons is 

that it is difficult to differentiante the REM sleep stage and 

deep sleep under a noisy fMRI scanner [6-8].  The general 

EEG headset has no more than 64 electrodes which results in 

that the nodes of the corresponding SCNs are less than 64. The 

limited number of the SCN degree makes the distribution 

results a weak persuasion. It is rare to see the reports of the 

clustering distributions from different sleep stages, especially 

the network models based on ECG signals.  

    In regard to the age factor, most SCN-based research 

reveals that there is a decayed SWN in the older adults based 

on EEG signals. Both clustering and path were found lower in 

older people group than those in the younger group [10]. 

Decreased and increased connection in beta and gamma band 

were found in older adults in the eye opening status [11].  A 

shorter path length was found in alpha bands in older group 

compared with the younger group [12].  However, it is 

difficult to construct the SCNs only from a single biomedical 

signal channel, such as those from Polysomnography (PSG) 

which is a routine measurement for sleep quality and usually 

contains two EEG signals, one ECG and/or one EMG. The 

typical duration of sleep EEG segments captured using a PSG 

device in hospital is 30 secs which (assuming the sampling 

rate is 1000 Hz)  only produce a SCN with one node (i.e., one 

channel used).  Thus, the node number of a SCN model with 

signal from PSG is small and it would also be difficult for the 

model to process long-term records. In addition, SCNs with 

different size of nodes have different network properties 

which cause matter in the consistency of the brain function 

analysis[1]. Recently, there is a study using complex networks 

method to study the cardiorespiratory interaction during 

sleeping, which provides evidence that cardiorespiratory 

activity contains different characteristics across sleep stages 

due to the manifestation of autonomic (sympathetic and vagal) 

nervous activity [28]. However, as far as we know, no research 

has been done about the age-relevant complex networks 

properties based on the ECG signals. Also whether there is 

SWN properties of the sleeping ECG signal  in relating to 

brain function is still unknown.   

To fill these gaps, this paper leverages the difference 

visibility graphs (DVGs) to evaluate sleep patterns difference 

in four sleep stages based on ECG signals. The aim is to 

investigate relationships between aging and sleep functions. 

The SWN is applied to measure the network changes of the 

younger group compared to the older group during four sleep 

stages: wakefulness, light sleep (LS), deep sleep (DS) and 

REM.  By probing the local network topologies (such as mean 

degree d  and c ), a global network measurement ( l ) may 

provide new sights on brain function across four sleep stages 

and different ages. The DVGs of the ECGs associated with 

sleep functions are necessary to understand the critical 

differences from the wakeful stage to the deep sleep stage 

during the whole night. In our analysis, the ECG signals of 

two database from 35 subjects are used to extract the network 

topologies.  Statistical results examine the changes of graph 

topologies: d , c  and l  of the deep sleep or rapid eye 

movement (REM) stage of the ECG signals. Then the SWN is 

evaluated among four sleep stages and the topologies are 

compared between two age groups.  

2. Method 

The experimental data is obtained from two public Sleep 

databases [14, 15].  The data from these two databases were 

both acquired from PSG devices.  In this study, the algorithm 

for extracting graph topologies is implemented using C++ 

programming language. The statistical analysis is conducted 

with R scripts.  

2.1 Data sets1- UCDDB Database 

UCDDB sleep database [14] contains 25 full overnight 

PSG from adult subjects (21 male, 4 female) with suspected 

sleep-disordered breathing. The data was recorded from St. 

Vincent’s University Hospital/ University College Dublin. All 

subjects were selected randomly over six months period from 

those patients with suspected sleep-disordered breathing. The 

ECG sampling rate is 128 Hz and with a resolution of 11-bit. 

The apnea annotations were scored offline by experienced 

sleep physicians. In this study, 21 male subjects were selected 

for analysis.  

The original sleep stages in this database were labeled with 

one of these classes:  0(wakefulness), 1 (REM), 2 (sleep stage 

1), 3 (sleep stage 2), 4 (sleep stage 3), 5 (sleep stage 4) etc..  

2.2 Data sets2- Slpdb Database 

The second EEG database is a collection of recordings for 

chronic obstructive sleep apnea syndrome in Boston’s Beth 

Israel Hospital Sleep Laboratory [15]. It was denoted as Slpdb 

in this paper. It contains 16 male subjects and encoded as slp01 

to slp67x (the data has 18 recordings in total because two 

subjects have recorded twice). The sampling frequency is 250 

Hz. These recordings always contain two EEG channels, one 

ECG signals annotated beat-by-beat, and a respiration signals. 

Similar to UCDDB, the sleep stage was coded as one of six 

classes: W(wake), 1-4, (sleep stages 1 to 4), and R(REM).  In 

this study, 15 recordings were selected from 15 male subjects 

(the slp67x was excluded because there is no age information 

for that subject). 
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2.3 Difference Visibility Graph 

An difference visibility graph (DVG) is a network in which 

a node is directly mapped from a point of a time series. It is 

proposed by Zhu et al. [16]. The edges between two points can 

obliquely see each but cannot see each in a  horizontal angle, 

which can be named as oblique visiblity graph (OVG) as well. 

Mathematically, given a ECG time series xt=1,…,n  , it is mapped 

to a graph G (V, E) by following steps, a data point xi is 

mapped into a node vi in  G.  An edge between vi and vj (i<j) 

from two points xi and xj extists if and only if:  

 
   

   , ; 1
j k j i

k i k j

x x x x
k i j x x x x j i

j k j i

 
         

         (1) 

Fig. 1 shows how a time series X is transferred into an 

DVG, the X comes from 1312th epoch of the ECG signals in 

a subject slp03 from the slpdb database.  For example, in Fig 

2, the 1st point can obliquely see the 4th point but cannot 

obliquly see the 45th point.  

    It is noted that the graph in Fig. 1 is a spare graph, such as 

the nodes 2, 3, 5 etc . are isolated nodes, which implies that 

those isolated nodes could be ignored later when graph 

features are processed.  Thus, the DVG can be efficient to 

process the long-term time series. 

 
Fig 1. An example (subject slp03 from the slpdb database) of 

the ECG signal transferring into the DVG 

 

    A time series can be characterized with the network 

topology, such as mean degree, clustering coefficient, average 

path etc. [17].  A node degree is one of the basic characteristics 

of a graph. The degree di of node vi is the number of edges 

from vi. For example, in Fig. 1 (b), d1=1 and d30=3 . The 

average degree  d   of a graph G with n nodes is defined as: 

 

1

n

j

j

d d


                                    (2) 

    Clustering coefficient (c) is another typical property of 

complex network. The coefficient index  Ci of node Vi is the 

number of existing edges between the nodes’ neighbours 

divided by all their possible edges. The average c of a graph 

which includes n nodes is defined as: 

1

1 n

i

i

c c
n 

                                   (3) 

    Numerous brain function connectivity, transport networks 

or internet have been exhibited a power-law distributions or 

exponential-law distributions [13, 18-20]. Current research 

believes that the degree distribution of  EEG signals in sleep 

satisfy the power-law distributions [16, 21], which can be 

expressed as follows :    

( ) kp x x                                    (4) 

where x is a number of  degree,  and β is a constant of 

proportionality and k is the scaling exponent.  In this paper, 

p(x) is the distribution of the C over the respectively degree x 

as shown in Fig. 1. A graph having power-law degree 

distributions is named a scale-free network.  A new node 

attached a scale-free network has high possibility to connect 

to a large degree node or be isolated. 

   In general, shortest paths play an important role in the 

transport and communication within a graph. The average path 

length (L) is defined by the average of geodesic lengths lij over 

all pairs of nodes.  

1

1 n

ij

i

l l
n 

                                    (5) 

where lij is the length of the shortest path from time point j to 

time point i in this study. 

 

2.5 Small-world index 

Most of complex brain networks are claimed as small-world 

networks [2, 4, 6, 11, 22, 23]. To measure whether a network 

satisfies small-world properties, a popular method is to 

compare the proposal networks with the random graphs [4, 22, 

23]. However, an DVG is constructed from a time series, thus 

we define the relative path length lr and the relative clustering 

coefficient cr in DVG which are normalized from a random 

signals. 

r r

r

r

c

c cl

l c l

l

  
                                (6) 
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This definition requires comparison the DVG of an ECG 

signals with those of a same length of random signal. Similar 

existed criteria for small-worldness of SCN, the small-world 

property from DVGs can be hold with the following condition. 

σ≫1                                         (7) 

2.6 Pre-procession of Sleep databases 

    Before ECG analysis, the database individual variation is 

studied. There is no significant age difference between two 

sleep databases (results shown in Table 1).  

Table 1   Two databases information (only male subjects) 

Databases 

Young Old 

Subjects Ages Subjects Ages 

UCDDB 4 33.8±4.2 17 51.8±4.4 

Slpdb 7 36.5±2.9 8 47.3±5.4 

Before two database ECG signals were transferred into 

graphs, the sleep scores in both databases were transferred into 

the Awa, LS, DS, REM, where the LS includes sleep stages 1 

to 2 and the DS includes stages 3 and 4. Both hypnogram were 

in 30s, the ECG points in each epoch are either 3840 or 7500 

based on the sampling rate of  128Hz and 250Hz respectively. 

The sampling rate difference was solved by taking an average 

point of each two adjacent numbers for the 250Hz sampling 

rate time series.  Fig. 2 shows five epochs: 25th, 30rd, 245th , 

and 300th   in four stages of sleep ECG signals from a subject  

slp03 in the Slpdb. The recordings in two  databases were also 

divided into two groups according to the ages based on the 

previous study of the age effect on sleep stages and disorder 

[27]: younger group (age<=40) and older group (age>40) as 

shown in Table 1. The subject detail information can be found 

from supplied Tables 1 and 2.  

 

Fig.2 the ECG signal from foure different sleep stages 

including the W, LS, DS, REM. 

3. Results 

3.1 Scale-free network properties 

    To evaluate the network topology changes between two age 

groups among four sleep stages, experiment was conducted 

and the results consist of the analysis of mean degree, the 

clustering coefficient with its distributions and the average 

shortest path length. The feature extracted tool was 

implemented with C programming language, which can be 

download from http://uadi.project.uq.edu.au/UADI/sleep/.    

3.1.1 Mean degree of the DVG in sleep ECG 

The mean degree d  of the DVG in four sleep stages from 

two sleep ECG datasets are shown in Fig 3. Generally, the d   

of the UCDDB database has a higher value than that of the 

Slpdb database. The wakeful stages of both age groups prone 

to have the lowest d  which is significantly lower than the DS 

stage (Wilcoxon rank-sum test, p-values are shown in Table 

2). In Table 2, where “W<D” means in wilcoxon test, the 

alternative hypothesis ‘mean degree of Wake is less than that 

of DS’.  “R<>L” means in wilcoxon test, the alternative 

hypothesis ‘mean degree of REM is not equal to that of LS’, 

and others are so on. 

 

 

Fig. 3 Aged-related degree from two databases across four 

sleep stages 

One difficulty for analysing EEG signal by visual 

inspection is to distinguish the REM stage and the LS 

stage[24]. Our results showed that there is significant 

difference (Wilcoxon rank-sum test, p-values are shown in 

Table 2) in d  between the REM stage and the LS stage though 

in the younger group which could also be potentially used for 

age classification. Similar to degree features from the LS and 

the REM stages of the EEG signals in our previous study [16], 

only with the d  information of the ECG is not enough for 

separating the REM from the LS because the significance only 

exists in the younger group.   
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Table 2  The degree d  analysis between the Wake (W) vs  

DS (D) and the REM (R) vs LS (L) stages 

 UCDDB Slpdb 

Age Young Old Young Old 

Stage W<D R<L W<D R<>L W<D R<L W<D R<>L 

p-
value 

<2.2e-
16 

0.009 
<2.2e-

16 
6.23e-6 2.06e-6 0.0002 

2.54e-
11 

0.0007 

 

3.1.2 Mean local cluster coefficient of the DVG in sleep 

ECG 

The mean local cluster coefficient c  of the DVG of four 

sleep stages from two sleep ECG datasets are shown in Fig 4. 

Similar with the mean degree d  of the DVG, the c  of the 

DVG shows a significant increasing from wakefulness to the 

DS stage in both age groups (p-value shown in Table 3). 

However, the comparison between the REM stage and LS 

stage from these two databases is not consistent. Therefore, 

the c  of the DVG is not an optimal candidate for the REM 

and LS stages classification.  

 

 

Fig. 4 Aged-related clustering coefficient from two databases 

across four sleep stages 

 

We also compared the c  of the younger group with the 

older group. Results show that the younger group has higher 

c  than the older group in both the wakeful stage (p=0.0001 

in UCDDB and p=5.72e-07 in Slpdb) and the DS  

stage(p=2.25e-11 in UCDDB and p=3.05e-10 in Slpdb). 

These agree with previous study that health subjects have 

higher c  of the ECG in than those of Apnea patients [25].       

 

Table 3  The clustering coefficient c  analysis between the 

Wake (W) vs  DS (D) and the REM (R) vs LS (L) stages 

 UCDDB Slpdb 

Age Young Old Young Old 

Stage W<D R<L W<D R<>L W<D R<>L W<D R<>L 

p-

value 

<2.2e-

16 
0.015 

<2.2e-

16 
0.809 2.06e-5 0.881 0.0007 0.334 

 

 

Fig. 5 demonstrates the clustering coefficient distribution 

of the ECG signals in different sleep stages of two age groups 

from two sleep databases. Different colour lines represent 

different sleep stages and age groups.  

 

Fig.5   Distribution of c in Sleep ECGs from two databases 

 

 

Among all the sleep stages and all the age groups, the c

exhibits power-law distributions. Most slopes (k) of scale-free 

networks has 2 3k  [26]. In our results, the slope of the 

wakeful stage in the younger group is smaller than 2 while the 

slope of the DS stage is above 2, indicating that the network 

brain tends to form a more stable status when healthy young 

people fall into the deep sleep stage. Unlike the younger 

group, the older group shows more abnormal slopes. The 

pattern changes from the wakeful stage to the DS stage from 

two databases are not consistent. To be more specific, the k 

value shows decreasing form the wakeful stage to the DS stage 

in UCDDB database while it is the opposite in the Slpdb 

database which indicates that the brain function of the older 
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people are quite chaotic. Table 4 shows the slope of the 

distribution in details.     

Table 4    The slope (k) of clustering coefficient distribution 

 UCDDB Slpdb 

Age Young Old Young Old 

Stage Wake DS Wake DS Wake DS Wake DS 

k 1.994 2.248 1.917 1.765 1.911 2.05 1.562 2.196 

KS.p 0.982 0.924 0.937 0.812 0.980 0.999 0.555 0.933 

 

3.1.3 Mean average path of the DVG in sleep ECG 

The average shortest path length l  of the DVG of four sleep 

stages from two sleep ECG datasets are shown in Fig. 6.  

 

 

Fig. 6 Aged-related average path from two databases across 

four sleep stages 

 

    Generally, the l  in the UCDDB  is longer than those in the 

Slpdb which we believe that could be caused by the difference 

in sampling rate. Similarly, the l  of the DVG showed 

significant difference from the wakeful stage to the DS stage 

in younger group and the trend of the l  of the DVG prone to 

have larger value in the wakeful stage which suggesting the 

connectivity distance of the ECG signal networks is higher in 

the wakeful stage. On the other hand, the changing tendency 

of the l  in the older group seems to be chaotic. However, the 

l  difference is only significant in the older group when it 

comes to the comparison of the REM and LS stages. And in 

the older group, the l  in the LS stage is higher than that in the 

REM stage.  Therefore, the l  is more applicable in REM and 

LS stages classificaiton in the older group.  

 

   

 

Table 5   The path length l  analysis between the Wake (W) 

vs  DS (D) and the REM (R) vs LS (L) stages 

 UCDDB Slpdb 

Age Young Old Young Old 

Stage W>R R<>L W>R R<L W>R R<L W<R R<L 

p-

value 

<2.2e-

16 
0.2528 

<2.2e-

16 
0.00058 0.0095 

3.77e-

09 
0.015 4.38e-05 

 

3.2 Small-world network properties 

    Regarding to the SWN criteria, the topologies in general 

graphs are always compared with the random graphs. In this 

study, we compared the networks of the sleep ECG signals in 

the general graphs and random graphs. 

From Fig 7, we can see that small-world index σ across all 

sleep stages are large than 200, which satisfies the equation 

(7) σ≫1. Thus the brain function always exhibits a SWN in 

both the wakeful and the sleep status.  

 

Fig. 7 Aged-related small-world index from two databases 

across four sleep stages 

SWN has been studied in light sleep stages [6, 8].  Studies 

has shown that the  l   significantly increased in sleep stage 1 

compared with the wakeful state, while c  has no significant 

difference [6].  However, the authors in [6] cannot reveal the 

changes in sleep stage 2, REM and DS because they used the 

fMRI signals in which the subjects cannot generate long-term 

sleep.  

Our results confirm that the l  in the light sleep stage is 

shorter than the wakeful stage only in the younger group as 

shown in Table 5. However, this may not be the case for the 

older group. In addition, the study can show that the c  

actually has significant difference between the wakeful stage 

and the LS stage of ECG signals.  

Page 6 of 8AUTHOR SUBMITTED MANUSCRIPT - PMEA-102612.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX Author et al  

 7  
 

There are studies showing that the small-world index 

decreased with age in the wakeful state [22].  Our results in 

Table 6 compare σ across different sleep stages between 

younger and older groups. The comparison results show that 

the small-world index decreased with age only in the REM 

and the LS stages. It suggests the brain function in the REM 

and LS stages forming a small-world networks only in 

younger subjects but not in the elderly and chronical apnea 

patients.  

Table 6 the small-world index  analysis between the 

younger and older groups 

 UCDDB Slpdb 

Stage Wake REM LS DS Wake REM LS DS 

p-

value 
0.736 

0.4.35e-

05 

4.51e-

14 
0.999 0.986 0.0439 0.0006 0.001 

4. Discussion 

In this paper, we explored the sleep ECG signal’s network 

topologies of the scale-free and the small-world properties in 

different age groups. The sleep stage is further divided into 

four distinctive stages and has a comparison of younger and 

older. We found that the younger subjects and older subjects 

showed distinctive feature patterns of the ECG signal across 

sleep stages. 

For the scale-free networks, our results show that the 

distribution of clustering coefficient of the ECG signals are 

power-law tails in both the younger and older groups across 

wakeful and sleep status, which exhibits the similar results as 

existing brain networks of EEG [20] or fMRI [23].  

Uehara et al. [6] have studied whether the decreased 

shortest path is only specific feature to classify from the 

wakeful stage to the sleep stage 1 or if the decay also occurs 

in deep NREM sleep. According to Fig.6 and Table 5, we have 

found that, the decreased shortest path pattern only appeared 

in the REM stage in the younger group but not happened in 

the older group. 

The clustering coefficient distribution exponent of the 

younger group in the wakeful stage is significantly lower than 

that in the deep sleep stage. More specific, the exponent of 

distribution increased from about 1.9 of the wakeful stage to 

about 2.1 to 2.2 of the deep sleep in the younger group, which 

implies that the sleep ECG signals are less random and more 

robust in the DS stage than during the wakefulness. In the 

future, further exploration of relationship among the light 

sheep, deep sleep and age will be undertaken to investigate the 

reasons of the network differences between the EEG and ECG 

signals. 

    In addition, this is the first time to investigate the small-

world property of the sleep ECG signal as far as we know. 

Similar to most existing results based on fMRI [6] or multi-

channel EEG signals [2], the networks of the sleep ECG signal 

tend to show small-world properties across all sleep stages 

among different ages. On the other hand, there is a decreasing 

trend of the small-world index with age is only occurring in 

light sleep stage and REM but not during the wakefulness or 

deep sleep. It suggests the brain function in the REM and LS 

stages forming a small-world networks only in younger 

subjects but not in the older and chronical apnea patients.  

Over all, this paper used the sleep ECG signal as the source 

for sleep stage analysis and classification which provide 

another accessible approach with high accuracy. Also it takes 

the age factor into consideration for the network topologies 

study and the results showed the distinctive patterns among 

different which shed light on the diagnosis and treatment of 

the aged-related sleep disorder. 
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