524,528 research outputs found

    Quantum theta functions and Gabor frames for modulation spaces

    Get PDF
    Representations of the celebrated Heisenberg commutation relations in quantum mechanics and their exponentiated versions form the starting point for a number of basic constructions, both in mathematics and mathematical physics (geometric quantization, quantum tori, classical and quantum theta functions) and signal analysis (Gabor analysis). In this paper we try to bridge the two communities, represented by the two co--authors: that of noncommutative geometry and that of signal analysis. After providing a brief comparative dictionary of the two languages, we will show e.g. that the Janssen representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a natural way quantum theta functions, and that the Rieffel scalar product and associativity relations underlie both the functional equations for quantum thetas and the Fundamental Identity of Gabor analysis.Comment: 38 pages, typos corrected, MSC class change

    Dynamical correlations and quantum phase transition in the quantum Potts model

    Get PDF
    We present a detailed study of the finite temperature dynamical properties of the quantum Potts model in one dimension.Quasiparticle excitations in this model have internal quantum numbers, and their scattering matrix {\gf deep} in the gapped phases is shown to take a simple {\gf exchange} form in the perturbative regimes. The finite temperature correlation functions in the quantum critical regime are determined using conformal invariance, while {\gf far from the quantum critical point} we compute the decay functions analytically within a semiclassical approach of Sachdev and Damle [K. Damle and S. Sachdev, Phys. Rev. B \textbf{57}, 8307 (1998)]. As a consequence, decay functions exhibit a {\em diffusive character}. {\gf We also provide robust arguments that our semiclassical analysis carries over to very low temperatures even in the vicinity of the quantum phase transition.} Our results are also relevant for quantum rotor models, antiferromagnetic chains, and some spin ladder systems.Comment: 18 PRB pages added correction

    Scale invariant distribution functions in quantum systems with few degrees of freedom

    Full text link
    Scale invariance usually occurs in extended systems where correlation functions decay algebraically in space and/or time. Here we introduce a new type of scale invariance, occurring in the distribution functions of physical observables. At equilibrium these functions decay over a typical scale set by the temperature, but they can become scale invariant in a sudden quantum quench. We exemplify this effect through the analysis of linear and non-linear quantum oscillators. We find that their distribution functions generically diverge logarithmically close to the stable points of the classical dynamics. Our study opens the possibility to address integrability and its breaking in distribution functions, with immediate applications to matter-wave interferometers.Comment: 8+10 pages. Scipost Submissio

    Scale invariant distribution functions in quantum systems with few degrees of freedom

    Full text link
    Scale invariance usually occurs in extended systems where correlation functions decay algebraically in space and/or time. Here we introduce a new type of scale invariance, occurring in the distribution functions of physical observables. At equilibrium these functions decay over a typical scale set by the temperature, but they can become scale invariant in a sudden quantum quench. We exemplify this effect through the analysis of linear and non-linear quantum oscillators. We find that their distribution functions generically diverge logarithmically close to the stable points of the classical dynamics. Our study opens the possibility to address integrability and its breaking in distribution functions, with immediate applications to matter-wave interferometers.Comment: 8+10 pages. Scipost Submissio
    corecore