19 research outputs found

    Semidefinite programming relaxations for quantum correlations

    Full text link
    Semidefinite programs are convex optimisation problems involving a linear objective function and a domain of positive semidefinite matrices. Over the last two decades, they have become an indispensable tool in quantum information science. Many otherwise intractable fundamental and applied problems can be successfully approached by means of relaxation to a semidefinite program. Here, we review such methodology in the context of quantum correlations. We discuss how the core idea of semidefinite relaxations can be adapted for a variety of research topics in quantum correlations, including nonlocality, quantum communication, quantum networks, entanglement, and quantum cryptography.Comment: To be submitted to Reviews of Modern Physic

    Exploiting path-polarization hyperentangled photons for multiqubit quantum information protocols

    Get PDF
    In this thesis we describe and exploit a photonic source of hyperentangled states which allows the creation of a four qubit entangled state using path and polarization of two photons; this will be the main resource for a series of experiments that are linked to the main goal of exploring the advantages that quantum correlations brings in the aforementioned tasks. In particular we will focus onto showing that the same correlations which define the \emph{quantumness} of a state can be interpreted in two very different ways: either as something that introduces \emph{non-locality} between qubits, or something which reduces the \emph{information entropy} between qubits. Both interpretations allow the definition and observation of quantum advantage but, as we will show, the two views are not completely equivalent. Our goal will be showing that quantum correlations can be seen as \emph{currency} that can be spent to perform tasks more efficiently than in the classical case

    Caracterización del entrelazamiento y no localidad cuánticos como recursos en sistemas multipartitos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 14-07-2021Quantum technologies are enjoying an unprecedented popularity, and some applicationsare already in the market. This thesis studies two phenomena that are behind a lot ofquantum technologies: entanglement and nonlocality. We focus on multipartite systems,and ask what con gurations of those systems are more useful than others. `Usefulness'takes on dierent meanings depending on the context, but, roughly speaking, we aim formore entanglement or more nonlocality.Chapter 2 is motivated by an important issue with traditional resource theories ofmultipartite entanglement: they give rise to isolated states and inequivalent forms ofentanglement. We propose two new resource theories that do not give rise to theseproblems: the resource theory of non-full-separability under full separability-preservingoperations, and the resource theory of genuine multipartite entanglement (GME) underbiseparability-preserving operations. Further, the latter theory gives rise to a uniquemaximally GME state...Las tecnologías cuánticas gozan actualmente de una popularidad sin precedentes, y ya tienen aplicaciones en el mercado. Esta tesis estudia dos fenómenos que están detrás de muchas de estas tecnologías: el entrelazamiento y la no localidad. Nos centramos en sistemas multipartitos, y tratamos de averiguar qué configuraciones de estos sistemas son mas útiles. La noción de utilidad varía según el contexto pero, en términos generales, aspiramos a conseguir más entrelazamiento o más no localidad. El capítulo 2 viene motivado por un problema importante en las teorías de recursos de entrelazamiento multipartito tradicionales: dan lugar a estados aislados y a formas de entrelazamiento no equivalentes. En este capítulo proponemos dos nuevas teorías de recursos que no generan estos problemas: la teoría de recursos de no-separabilidad completa bajo operaciones que preservan separabilidad completa, y la teoría de recursos de entrelazamiento multipartito genuino (GME, por sus siglas en ingles) bajo operaciones que preservan biseparabilidad. Además, esta ultima teoría da lugar a un estado maximamente GME único...Fac. de Ciencias MatemáticasTRUEunpu

    Quantum Nonlocality

    Get PDF
    This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as “spooky action at a distance” which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein–Podolsky–Rosen steering and quantum teleportation—a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solid-state quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations—from retrocausality to novel types of multiple-world theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein’s vision

    Nonlocal resources for quantum information tasks

    Get PDF
    This thesis focusses on the essential features of Quantum Theory that are systems in an entangled state and Bell nonlocal correlations. Here, we take the angle of a resource theory and are interested in understanding better how entanglement and nonlocality, first, relate to one another. Indeed, if entangled systems are necessary for the generation of nonlocal correlations, there nevertheless exist entangled systems that seem unable to do so. Quantitatively, it is also unclear whether "more" entanglement leads to "more" nonlocality and, related to that, which measures should be used as quantifiers. Second, entangled systems and nonlocal correlations have been identified as resources for information tasks with no classical equivalent such as the generation of true random numbers. It is then important to understand how the two quantum resources relate to other quantities generated in information tasks. First, we show that entangled quantum systems are unbounded resources for the generation of certified random numbers by making sequences of measurements on them. This certification is achieved through the successive near maximal violation of a particular Bell inequality for each measurement in the sequence. Moreover, even the simplest two-qubit systems in an almost separable (pure) state achieve this unbounded andomness certification. Second, we show that entanglement and nonlocality are seemingly put in a quantitative equivalence when using the nonlocal volume as measure. This measure is defined as the probability that a system in a given state generates nonlocal correlations when random measurements are performed on it. We prove that this measure satisfies natural properties for an operational measure of nonlocality. Then we show that, in all situations that we could explore, the most nonlocal state -- as measured by the nonlocal volume -- is always the maximally entangled state. Third, we consider multipartite scenarios in which quantum systems are distributed to numerous parties. Note that it is in general harder to generate a system that is entangled between many parties rather than more systems entangled between fewer parties. In that spirit, we develop a framework and tools for the study of correlation depth, i.e. the minimal size of the resource -- such as entangled systems -- that is needed for the (re)production of the correlations. Fourth, we study the equivalence between the multipartite notions of entanglement and of nonlocality. From an operational understanding of multipartite entanglement, we develop simple families of Bell inequalities that are very efficient for the detection of multipartite nonlocality of pure states. Last, we study the utility of multipartite quantum correlations for the design of information protocols. We also identify novel features characteristic of these correlations. The results of this thesis shed light on the interrelations in the triangle entanglementnonlocality- randomness in Quantum Theory. By going beyond the standard approaches -by considering sequences of measurements on the systems or by considering a novel measure of nonlocality- we obtain insight on the quantitative relations between these three essential quantities. Our study of the multipartite scenario also helps in characterising and identifying multipartite correlations in a simple way. Finally, we also deepened our understanding of how entangled systems and nonlocal correlations, in particular multipartite ones, serve as resources for the design of information tasks with no classical equivalent.La física cuántica es drásticamente distinta de su análogo clásico. Por ejemplo, en principio es posible conocer con certidumbre el resultado de cualquier proceso clásico, si uno tiene un conocimiento perfecto de las condiciones iniciales del proceso y sus interacciones. Sin embargo, la física cuántica es intrínsecamente aleatoria: incluso con un control perfecto, el resultado de un proceso cuántico es, en general, probabilístico. El rango de posibilidades en términos de procesamiento de información también cambia cuando se codifica información en el estado de sistemas cuánticos. El estudio de todas estas nuevas posibilidades es el objeto de la teoría de la información cuántica. Esta tesis se centra en dos fenómenos cuánticos responsables de parte del poder de la teoría de información cuántica: la existencia de sistemas físicos en estados entrelazados y de correlaciones de Bell no-locales. En primer lugar, y tomando el enfoque de una teoría de recursos, nuestro primer objetivo es comprender mejor cómo el entrelazamiento y la no-localidad se relacionan entre sí. De hecho, si bien es sabido que los sistemas entrelazados son necesarios para la generación de correlaciones no-locales, existen sin embargo sistemas entrelazados que parecen incapaces de hacerlo. Cuantitativamente, tampoco está claro si "más" entrelazamiento conduce a "más" no-localidad y qué medidas deben usarse como cuantificadores. En segundo lugar, los sistemas entrelazados y las correlaciones no-locales se han identificado como recursos para tareas de información sin ningún equivalente clásico, como por ejemplo la generación certificada de números aleatorios. Es por tanto importante comprender cómo los dos recursos cuánticos se relacionan con otras cantidades generadas en las tareas de información. El trabajo de la tesis, centrado alrededor de estas dos motivaciones, ha llevado a los resultados que se describen a continuación. Primero, mostramos que los sistemas cuánticos entrelazados son recursos ilimitados para la generación de números aleatorios certificados a través de secuencias de medidas. Esta certificación se logra mediante la sucesiva violación, casi máxima, de una desigualdad de Bell particular para cada medición en la secuencia. Además, incluso los sistemas de dos qubits más simples, en un estado puro casi separable, logran esta certificación de aleatoriedad ilimitada. En segundo lugar, mostramos que el entrelazamiento y la no-localidad se expresan, aparentemente, en una equivalencia cuantitativa cuando se utiliza el "volumen no-local" como cuantificador. El volumen no-local se define como la probabilidad de que un sistema en un estado dado genere correlaciones no-locales cuando se realizan mediciones aleatorias en él. Probamos que este cuantificador satisface las propiedades naturales de una medida operacional de no-localidad. Luego mostramos que, en todas las situaciones que podemos explorar, el estado más nolocal, medido por el volumen no-local, es siempre el más entrelazado. Finalmente, obtenemos varios resultados en escenarios multi-partitos en los que los sistemas cuánticos se distribuyen entre numerosos observadores. Desarrollamos un marco y herramientas para el estudio de la profundidad de correlación, es decir, el tamaño mínimo del recurso (por ejemplo, el entrelazamiento) que es necesario para la reproducción de las correlaciones. Además. estudiamos la equivalencia entre las nociones multi-partitas de entrelazamiento y de no-localidad, obteniendo familias sencillas de desigualdades de Bell que son muy eficientes para la detección de no-localidad multi-partita generada por sistemas en estados puros. Por último, estudiamos la utilidad de las correlaciones cuánticas multi-partitas para el diseño de protocolos de información. Los resultados de esta tesis arrojan luz sobre las interrelaciones en el triángulo entrelazamiento/no-localidad/aleatoriedad en la teoría cuántica. Al ir más allá de los enfoques estándar, al considerar secuencias de mediciones en los sistemas o al considerar una nueva medida de no-localidad, obtenemos información sobre las relaciones cuantitativas entre estas tres cantidades esenciales. Nuestro estudio del escenario multi-partito también ayuda a caracterizar e identificar las correlaciones multi-partitas de una manera simple. Finalmente, profundizamos nuestra comprensión de cómo los sistemas entrelazados y las correlaciones no-locales, en particular multi-partitas, sirven como recursos para el diseño de tareas de información sin análogo clásico.Postprint (published version

    Certification of many-body systems

    Get PDF
    Quantum physics is arguably both the most successful and the most counterintuitive physical theory of all times. Its extremely accurate predictions on the behaviour of microscopic particles have led to unprecedented technological advances in various fields and yet, many quantum phenomena defy our classical intuition. Starting from the 1980’s, however, a paradigm shift has gradually taken hold in the scientific community, consisting in studying quantum phenomena not as inexplicable conundrums but as useful resources. This shift marked the birth of the field of quantum information science, which has since then explored the advantages that quantum theory can bring to the way we process and transfer information. In this thesis, we introduce scalable certification tools that apply to various operational properties of many-body quantum systems. In the first three cases we consider, we base our certification protocols on the detection of nonlocal correlations. These kinds of non-classical correlations that can displayed by quantum states allow one to assess relevant properties in a device-independent manner, that is, without assuming anything about the specific functioning of the device producing the state of interest or the implemented measurements. In the first scenario we present an efficient method to detect multipartite entanglement in a device-independent way. We do so by introducing a numerical test for nonlocal correlations that involves computational and experimental resources that scale polynomially with the system number of particles. We show the range of applicability of the method by using it to detect entanglement in various families of multipartite systems. In multipartite systems, however, it is often more informative to provide quantitative statements. We address this problem in the second scenario by introducing scalable methods to quantify the nonlocality depth of a multipartite systems, that is, the number of particles sharing nonlocal correlations among each other. We show how to do that by making use of the knowledge of two-body correlations only and we apply the resulting techniques to experimental data from a system of a few hundreds of atoms. In the third scenario, we move to consider self-testing, which is the most informative certification method based on nonlocality. Indeed, in a self-testing task, one is interested in characterising the state of the system and the measurement performed on it, by simply looking at the resulting correlations. We introduce the first scalable self-testing method based on Bell inequalities and apply it to graph states, a well-known family of multipartite quantum states. Moreover, we show that the certification achieved with our method is robust against experimental imperfections. Lastly, we address the problem of certifying the result of quantum optimizers. They are quantum devices designed to estimate the groundstate energy of classical spin systems. We provide a way to efficiently compute a convergent series of upper and lower bounds to the minimum of interest, which at each step allows one to certify the output of any quantum optimizer.La física cuántica es posiblemente la teoría física más exitosa y la más contraintuitiva jamás desarollada. A pesar de que sus predicciones extremadamente precisas sobre el comportamiento de las partículas microscópicas han llevado a avances tecnológicos sin precedentes en varios campos, muchos fenómenos cuánticos desafían nuestra intuición basada en una concepción clásica de la física. Sin embargo, a partir de la década de 1980 tuvo lugar un cambio de paradigma en la comunidad científica, que se orientó en estudiar los fenómenos cuánticos no como enigmas inexplicables, sino como recursos útiles. Este cambio marcó el nacimiento del campo de la ciencia de la información cuántica, que desde entonces ha explorado las ventajas que la teoría cuántica puede aportar a la forma en que procesamos y transferimos la información. Hoy en día es un hecho bien establecido que la codificación de información en partículas cuánticas puede llevar, por ejemplo, a procesos de cálculo más eficientes, así como a comunicaciones extremadamente seguras. Además, debido a sus aplicaciones prácticas a la vida cotidiana, la ciencia de la información cuántica ha atraído un gran interés político y económico. Recientemente se han lanzado varias iniciativas con el propósito de cerrar la brecha entre la ciencia básica y la industria en este campo, tanto a nivel nacional como internacional. Al mismo tiempo, cada vez más empresas están incrementando sus esfuerzos para producir dispositivos cuánticos a nivel comercial. No hay duda de que hemos entrado en la era de la primera generación de dispositivos cuánticos, en la cual los sistemas cuánticos controlables compuestos de decenas o cientos de partículas son cada vez más accesibles. En tal escenario, el certificar que estos dispositivos exhiben sus atractivas propiedades cuánticas constituye un problema fundamental. Es importante destacar que, para que los métodos de certificación deseados sean aplicables en situaciones reales, éstos deben ser escalables con el tamaño del sistema. En otras palabras, tienen que basarse en requerimientos computacionales y experimentales que crezcan, a lo sumo,polinomialmente con el número de partículas en el sistema de interés. En esta tesis, introducimos herramientas de certificación escalables que se aplican a varias propiedades operativas de sistemas cuánticos de muchos cuerpos. En los primeros tres casos que consideramos, basamos nuestros protocolos de certificación en la detección de correlaciones no locales. Estos tipos de correlaciones no clásicas, que únicamente pueden ser producidas por sistemas cuánticos, permiten evaluar propiedades relevantes de forma independiente del dispositivo, es decir, sin realizar hipótesis acerca del funcionamiento específico del dispositivo que produce el estado de interés o las mediciones implementadas. En el primer escenario, presentamos un método eficiente para detectar entrelazamiento en sistemas multipartitos de forma independiente del dispositivo. Lo hacemos mediante la introducción de una prueba numérica para las correlaciones no locales que involucra recursos computacionales y experimentales que escalan polinomialmente con el número de partículas del sistema. Mostramos el rango de aplicabilidad de dicho método usándolo para detectar entrelazamiento en varias familias de sistemas multipartitos. Sin embargo, al tratar con sistemas de muchos cuerpos a menudo es más informativo proporcionar informaciones cuantitativas. Abordamos este problema en el segundo escenario mediante la introducción de métodos escalables para cuantificar la profundidad no local (non-locality depth) de un sistema multipartito, es decir, la cantidad de partículas que comparten correlaciones no locales entre sí. Mostramos cómo realizar dicha cuantificación a partir del conocimiento únicamente de los correladores de dos cuerpos, y aplicamos las técnicas resultantes a los datos experimentales de un sistema de unos pocos cientos de átomos. En el tercer escenario, pasamos a considerar el caso de self-testing, que es el método de certificación más informativo basado en la no localidad. De hecho, en una tarea de self-testing, el objetivo es caracterizar el estado del sistema y las mediciones realizadas en él, simplemente observando las correlaciones resultantes. Introducimos el primer método de self-testing escalable basado en las desigualdades de Bell y lo aplicamos a estados de grafo, una familia muy conocida de estados cuánticos multipartitos. Además, demostramos que la certificación lograda con nuestro método es robusta a imperfecciones experimentales. Por último, consideramos el problema de certificar el resultado de optimizadores cuánticos. Estos son dispositivos cuánticos diseñados para estimar la energía del estado fundamental de sistemas de espines clásicos. Desarollamos un método eficiente para calcular una serie convergente de límites superiores e inferiores al mínimo de interés, que en cada paso permite certificar el resultado de cualquier optimizador cuántic

    Certification of many-body systems

    Get PDF
    Quantum physics is arguably both the most successful and the most counterintuitive physical theory of all times. Its extremely accurate predictions on the behaviour of microscopic particles have led to unprecedented technological advances in various fields and yet, many quantum phenomena defy our classical intuition. Starting from the 1980’s, however, a paradigm shift has gradually taken hold in the scientific community, consisting in studying quantum phenomena not as inexplicable conundrums but as useful resources. This shift marked the birth of the field of quantum information science, which has since then explored the advantages that quantum theory can bring to the way we process and transfer information. In this thesis, we introduce scalable certification tools that apply to various operational properties of many-body quantum systems. In the first three cases we consider, we base our certification protocols on the detection of nonlocal correlations. These kinds of non-classical correlations that can displayed by quantum states allow one to assess relevant properties in a device-independent manner, that is, without assuming anything about the specific functioning of the device producing the state of interest or the implemented measurements. In the first scenario we present an efficient method to detect multipartite entanglement in a device-independent way. We do so by introducing a numerical test for nonlocal correlations that involves computational and experimental resources that scale polynomially with the system number of particles. We show the range of applicability of the method by using it to detect entanglement in various families of multipartite systems. In multipartite systems, however, it is often more informative to provide quantitative statements. We address this problem in the second scenario by introducing scalable methods to quantify the nonlocality depth of a multipartite systems, that is, the number of particles sharing nonlocal correlations among each other. We show how to do that by making use of the knowledge of two-body correlations only and we apply the resulting techniques to experimental data from a system of a few hundreds of atoms. In the third scenario, we move to consider self-testing, which is the most informative certification method based on nonlocality. Indeed, in a self-testing task, one is interested in characterising the state of the system and the measurement performed on it, by simply looking at the resulting correlations. We introduce the first scalable self-testing method based on Bell inequalities and apply it to graph states, a well-known family of multipartite quantum states. Moreover, we show that the certification achieved with our method is robust against experimental imperfections. Lastly, we address the problem of certifying the result of quantum optimizers. They are quantum devices designed to estimate the groundstate energy of classical spin systems. We provide a way to efficiently compute a convergent series of upper and lower bounds to the minimum of interest, which at each step allows one to certify the output of any quantum optimizer.La física cuántica es posiblemente la teoría física más exitosa y la más contraintuitiva jamás desarollada. A pesar de que sus predicciones extremadamente precisas sobre el comportamiento de las partículas microscópicas han llevado a avances tecnológicos sin precedentes en varios campos, muchos fenómenos cuánticos desafían nuestra intuición basada en una concepción clásica de la física. Sin embargo, a partir de la década de 1980 tuvo lugar un cambio de paradigma en la comunidad científica, que se orientó en estudiar los fenómenos cuánticos no como enigmas inexplicables, sino como recursos útiles. Este cambio marcó el nacimiento del campo de la ciencia de la información cuántica, que desde entonces ha explorado las ventajas que la teoría cuántica puede aportar a la forma en que procesamos y transferimos la información. Hoy en día es un hecho bien establecido que la codificación de información en partículas cuánticas puede llevar, por ejemplo, a procesos de cálculo más eficientes, así como a comunicaciones extremadamente seguras. Además, debido a sus aplicaciones prácticas a la vida cotidiana, la ciencia de la información cuántica ha atraído un gran interés político y económico. Recientemente se han lanzado varias iniciativas con el propósito de cerrar la brecha entre la ciencia básica y la industria en este campo, tanto a nivel nacional como internacional. Al mismo tiempo, cada vez más empresas están incrementando sus esfuerzos para producir dispositivos cuánticos a nivel comercial. No hay duda de que hemos entrado en la era de la primera generación de dispositivos cuánticos, en la cual los sistemas cuánticos controlables compuestos de decenas o cientos de partículas son cada vez más accesibles. En tal escenario, el certificar que estos dispositivos exhiben sus atractivas propiedades cuánticas constituye un problema fundamental. Es importante destacar que, para que los métodos de certificación deseados sean aplicables en situaciones reales, éstos deben ser escalables con el tamaño del sistema. En otras palabras, tienen que basarse en requerimientos computacionales y experimentales que crezcan, a lo sumo,polinomialmente con el número de partículas en el sistema de interés. En esta tesis, introducimos herramientas de certificación escalables que se aplican a varias propiedades operativas de sistemas cuánticos de muchos cuerpos. En los primeros tres casos que consideramos, basamos nuestros protocolos de certificación en la detección de correlaciones no locales. Estos tipos de correlaciones no clásicas, que únicamente pueden ser producidas por sistemas cuánticos, permiten evaluar propiedades relevantes de forma independiente del dispositivo, es decir, sin realizar hipótesis acerca del funcionamiento específico del dispositivo que produce el estado de interés o las mediciones implementadas. En el primer escenario, presentamos un método eficiente para detectar entrelazamiento en sistemas multipartitos de forma independiente del dispositivo. Lo hacemos mediante la introducción de una prueba numérica para las correlaciones no locales que involucra recursos computacionales y experimentales que escalan polinomialmente con el número de partículas del sistema. Mostramos el rango de aplicabilidad de dicho método usándolo para detectar entrelazamiento en varias familias de sistemas multipartitos. Sin embargo, al tratar con sistemas de muchos cuerpos a menudo es más informativo proporcionar informaciones cuantitativas. Abordamos este problema en el segundo escenario mediante la introducción de métodos escalables para cuantificar la profundidad no local (non-locality depth) de un sistema multipartito, es decir, la cantidad de partículas que comparten correlaciones no locales entre sí. Mostramos cómo realizar dicha cuantificación a partir del conocimiento únicamente de los correladores de dos cuerpos, y aplicamos las técnicas resultantes a los datos experimentales de un sistema de unos pocos cientos de átomos. En el tercer escenario, pasamos a considerar el caso de self-testing, que es el método de certificación más informativo basado en la no localidad. De hecho, en una tarea de self-testing, el objetivo es caracterizar el estado del sistema y las mediciones realizadas en él, simplemente observando las correlaciones resultantes. Introducimos el primer método de self-testing escalable basado en las desigualdades de Bell y lo aplicamos a estados de grafo, una familia muy conocida de estados cuánticos multipartitos. Además, demostramos que la certificación lograda con nuestro método es robusta a imperfecciones experimentales. Por último, consideramos el problema de certificar el resultado de optimizadores cuánticos. Estos son dispositivos cuánticos diseñados para estimar la energía del estado fundamental de sistemas de espines clásicos. Desarollamos un método eficiente para calcular una serie convergente de límites superiores e inferiores al mínimo de interés, que en cada paso permite certificar el resultado de cualquier optimizador cuánticoPostprint (published version
    corecore