6 research outputs found

    Open Bar - a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle

    Get PDF
    One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible to decide whether or not some knowledge will ever be acquired. This paper demonstrates that, nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic type theory along with a Beth-like model for it that provide some middle ground. On one hand they incorporate a notion of progressing time and include evolving mathematical entities in the form of choice sequences, and on the other hand they are consistent with a variant of the classical LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian intuitionistic type theory

    The Creating Subject, the Brouwer-Kripke Schema, and infinite proofs

    Get PDF
    Kripke's Schema (better the Brouwer-Kripke Schema) and the Kreisel-Troelstra Theory of the Creating Subject were introduced around the same time for the same purpose, that of analysing Brouwer's 'Creating Subject arguments'; other applications have been found since. I first look in detail at a representative choice of Brouwer's arguments. Then I discuss the original use of the Schema and the Theory, their justification from a Brouwerian perspective, and instances of the Schema that can in fact be found in Brouwer's own writings. Finally, I defend the Schema and the Theory against a number of objections that have been made

    Realizability and recursive mathematics

    Get PDF
    Section 1: Philosophy, logic and constructivityPhilosophy, formal logic and the theory of computation all bear on problems in the foundations of constructive mathematics. There are few places where these, often competing, disciplines converge more neatly than in the theory of realizability structures. Uealizability applies recursion-theoretic concepts to give interpretations of constructivism along lines suggested originally by Heyting and Kleene. The research reported in the dissertation revives the original insights of Kleene—by which realizability structures are viewed as models rather than proof-theoretic interpretations—to solve a major problem of classification and to draw mathematical consequences from its solution.Section 2: Intuitionism and recursion: the problem of classificationThe internal structure of constructivism presents an interesting problem. Mathematically, it is a problem of classification; for philosophy, it is one of conceptual organization. Within the past seventy years, constructive mathematics has grown into a jungle of fullydeveloped "constructivities," approaches to the mathematics of the calculable which range from strict finitism through hyperarithmetic model theory. The problem we address is taxonomic: to sort through the jungle, set standards for classification and determine those features which run through everything that is properly "constructive."There are two notable approaches to constructivity; these must appear prominently in any proposed classification. The most famous is Brouwer's intuitioniam. Intuitionism relies on a complete constructivization of the basic mathematical objects and logical operations. The other is classical recursive mathematics, as represented by the work of Dekker, Myhill, and Nerode. Classical constructivists use standard logic in a mathematical universe restricted to coded objects and recursive operations.The theorems of the dissertation give a precise answer to the classification problem for intuitionism and classical constructivism. Between these realms arc connected semantically through a model of intuitionistic set theory. The intuitionistic set theory IZF encompasses all of the intuitionistic mathematics that does not involve choice sequences. (This includes all the work of the Bishop school.) IZF has as a model a recursion-theoretic structure, V(A7), based on Kleene realizability. Since realizability takes set variables to range over "effective" objects, large parts of classical constructivism appear over the model as inter¬ preted subsystems of intuitionistic set theory. For example, the entire first-order classical theory of recursive cardinals and ordinals comes out as an intuitionistic theory of cardinals and ordinals under realizability. In brief, we prove that a satisfactory partial solution to the classification problem exists; theories in classical recursive constructivism are identical, under a natural interpretation, to intuitionistic theories. The interpretation is especially satisfactory because it is not a Godel-style translation; the interpretation can be developed so that it leaves the classical logical forms unchanged.Section 3: Mathematical applications of the translation:The solution to the classification problem is a bridge capable of carrying two-way mathematical traffic. In one direction, an identification of classical constructivism with intuitionism yields a certain elimination of recursion theory from the standard mathematical theory of effective structures, leaving pure set theory and a bit of model theory. Not only are the theorems of classical effective mathematics faithfully represented in intuitionistic set theory, but also the arguments that provide proofs of those theorems. Via realizability, one can find set-theoretic proofs of many effective results, and the set-theoretic proofs are often more straightforward than their recursion-theoretic counterparts. The new proofs are also more transparent, because they involve, rather than recursion theory plus set theory, at most the set-theoretic "axioms" of effective mathematics.Working the other way, many of the negative ("cannot be obtained recursively") results of classical constructivism carry over immediately into strong independence results from intuitionism. The theorems of Kalantari and Retzlaff on effective topology, for instance, turn into independence proofs concerning the structure of the usual topology on the intuitionistic reals.The realizability methods that shed so much light over recursive set theory can be applied to "recursive theories" generally. We devote a chapter to verifying that the realizability techniques can be used to good effect in the semantical foundations of computer science. The classical theory of effectively given computational domains a la Scott can be subsumed into the Kleene realizability universe as a species of countable noneffective domains. In this way, the theory of effective domains becomes a chapter (under interpre¬ tation) in an intuitionistic study of denotational semantics. We then show how the "extra information" captured in the logical signs under realizability can be used to give proofs of classical theorems about effective domains.Section 4: Solutions to metamathematical problems:The realizability model for set theory is very tractible; in many ways, it resembles a Boolean-valued universe. The tractibility is apparent in the solutions it offers to a number of open problems in the metamathematics of constructivity. First, there is the perennial problem of finding and delimiting in the wide constructive universe those features that correspond to structures familiar from classical mathematics. In the realizability model, it is easy to locate the collection of classical ordinals and to show that they form, intuitionistically, a set rather than a proper class. Also, one interprets an argument of Dekker and Myhill to prove that the classical powerset of the natural numbers contains at least continuum-many distinct cardinals.Second, a major tenet of Bishop's program for constructivity has been that constructive mathematics is "numerical:" all the properties of constructive objects, including the real numbers, can be represented as properties of the natural numbers. The realizability model shows that Bishop's numericalization of mathematics can, in principle, be accomplished. Every set over the model with decidable equality and every metric space is enumerated by a collection of natural numbers

    Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic

    Get PDF
    Hilbert’s choice operators τ and Δ, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the foundations of mathematics and in relation to philosophical motivations leading to the development of intuitionistic logic. This sets the stage for a brief description of the relevant part of Dummett’s program to recast debates in metaphysics, and in particular disputes about realism and anti-realism, as closely intertwined with issues in philosophical logic, with the acceptance of classical logic for a domain reflecting a commitment to realism for that domain. Then I review extant results about what is provable and what is not when one adds epsilon to intuitionistic logic, largely due to Bell and DeVidi, and I give several new proofs of intermediate logics from intuitionistic logic+Δ without identity. With all this in hand, I turn to a discussion of the philosophical significance of choice operators. Among the conclusions I defend are that these results provide a finer-grained basis for Dummett’s contention that commitment to classically valid but intuitionistically invalid principles reflect metaphysical commitments by showing those principles to be derivable from certain existence assumptions; that Dummett’s framework is improved by these results as they show that questions of realism and anti-realism are not an “all or nothing” matter, but that there are plausibly metaphysical stances between the poles of anti-realism (corresponding to acceptance just of intutionistic logic) and realism (corresponding to acceptance of classical logic), because different sorts of ontological assumptions yield intermediate rather than classical logic; and that these intermediate positions between classical and intuitionistic logic link up in interesting ways with our intuitions about issues of objectivity and reality, and do so usefully by linking to questions around intriguing everyday concepts such as “is smart,” which I suggest involve a number of distinct dimensions which might themselves be objective, but because of their multivalent structure are themselves intermediate between being objective and not. Finally, I discuss the implications of these results for ongoing debates about the status of arbitrary and ideal objects in the foundations of logic, showing among other things that much of the discussion is flawed because it does not recognize the degree to which the claims being made depend on the presumption that one is working with a very strong (i.e., classical) logic
    corecore