2,004 research outputs found

    Beyond correlation: optimal transport metrics for characterizing representational stability and remapping in neurons encoding spatial memory

    Get PDF
    IntroductionSpatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to cognitive functions like navigation and memory. These representations, embodied in spatial field maps, dynamically remap in response to environmental changes. However, current methods, such as Pearson's correlation coefficient, struggle to capture the complexity of these remapping events, especially when fields do not overlap, or transformations are non-linear. This limitation hinders our understanding and quantification of remapping, a key aspect of spatial memory function.MethodsWe propose a family of metrics based on the Earth Mover's Distance (EMD) as a versatile framework for characterizing remapping.ResultsThe EMD provides a granular, noise-resistant, and rate-robust description of remapping. This approach enables the identification of specific cell types and the characterization of remapping in various scenarios, including disease models. Furthermore, the EMD's properties can be manipulated to identify spatially tuned cell types and to explore remapping as it relates to alternate information forms such as spatiotemporal coding.DiscussionWe present a feasible, lightweight approach that complements traditional methods. Our findings underscore the potential of the EMD as a powerful tool for enhancing our understanding of remapping in the brain and its implications for spatial navigation, memory studies and beyond

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    The Development of Microdosimetric Instrumentation for Quality Assurance in Heavy Ion Therapy, Boron Neutron Capture Therapy and Fast Neutron Therapy

    Get PDF
    This thesis presents research for the development of new microdosimetric instrumentation for use with solid-state microdosimeters in order to improve their portability for radioprotection purposes and for QA in various hadron therapy modalities. Monte Carlo simulation applications are developed and benchmarked, pertaining to the context of the relevant therapies considered. The simulation and experimental findings provide optimisation recommendations relating to microdosimeter performance and possible radioprotection risks by activated materials. The first part of this thesis is continuing research into the development of novel Silicon-on-Insulator (SOI) microdosimeters in the application of hadron therapy QA. This relates specifically to the optimisation of current microdosimeters, development of Monte Carlo applications for experimental validation, assessment of radioprotection risks during experiments and advanced Monte Carlo modelling of various accelerator beamlines. Geant4 and MCNP6 Monte Carlo codes are used extensively in this thesis, with rigorous benchmarking completed in the context of experimental verification, and evaluation of the similarities and differences when simulating relevant hadron therapy facilities. The second part of this thesis focuses on the development of a novel wireless microdosimetry system - the Radiodosimeter, to improve the operation efficiency and minimise any radioprotection risks. The successful implementation of the wireless Radiodosimeter is considered as an important milestone in the development of a microdosimetry system that can be operated by an end-user with no prior knowledge

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    A reduced order modeling methodology for the parametric estimation and optimization of aviation noise

    Get PDF
    The successful mitigation of aviation noise is one of the key enablers of sustainable aviation growth. Technological improvements for noise reduction at the source have been countered by increasing number of operations at most airports. There are several consequences of aviation noise including direct health effects, effects on human and non-human environments, and economic costs. Several mitigation strategies exist including reduction of noise at source, land-use planning and management, noise abatement operational procedures, and operating restrictions. Most noise management programs at airports use a combination of such mitigation measures. To assess the efficacy of noise mitigation measures, a robust modeling and simulation capability is required. Due to the large number of factors which can influence aviation noise metrics, current state-of-the-art tools rely on physics-based and semi-empirical models. These models help in accurately predicting noise metrics in a wide range of scenarios; however, they are computationally expensive to evaluate. Therefore, current noise mitigation studies are limited to singular applications such as annual average day noise quantification. Many-query applications such as parametric trade-off analyses and optimization remain elusive with the current generation of tools and methods. There are several efforts documented in literature which attempt to speed up the process using surrogate models. Techniques include the use of pre-computed noise grids with calibration models for non-standard conditions. These techniques are typically predicated on simplifying assumptions which greatly limit the applicability of such models. Simplifying assumptions are needed to downsize the number influencing factors to be modeled and make the problem tractable. Existing efforts also suffer due to the inclusion of categorical variables for operational profiles which are not conducive to surrogate modeling. In this research, a methodology is developed to address the inherent complexities of the noise quantification process, and thus enable rapid noise modeling capabilities which can facilitate parametric trade-off analysis and optimization efforts. To achieve this objective, a research plan is developed and executed to address two major gaps in literature. First, a parametric representation of operational profiles is proposed to replace existing categorical descriptions. A technique is developed to allow real-world flight data to be efficiently mapped onto this parametric definition. A trajectory clustering method is used to group similar flights and representative flights are parametrized using an inverse-map of an aircraft performance model. Next, a field surrogate modeling method is developed based on Model Order Reduction techniques to reduce the high dimensionality of computed noise metric results. This greatly reduces the complexity of data to be modeled, and thus enables rapid noise quantification. With these two gaps addressed, the overall methodology is developed for rapid noise quantification and optimization. This methodology is demonstrated on a case study where a large number of real-world flight trajectories are efficiently modeled for their noise results. As each such flight trajectory has a unique representation, and typically lacks thrust information, such noise modeling is not computationally feasible with existing methods and tools. The developed parametric representations and field surrogate modeling capabilities enable such an application.Ph.D

    Radio Frequency InGaAs MOSFETs

    Get PDF
    III-V-based Indium gallium arsenide is a promising channel material for high-frequency applications due to its superior electron mobility property. In this thesis, InGaAs/InP heterostructure radio frequency MOSFETs are designed, fabricated, and characterized. Various spacer technologies, from high dielectric spacers to air spacers, are implemented to reduce parasitic capacitances, and fT/fmax are evaluated. Three types of RF MOSFETs with different spacer technologies are fabricated in this work.InP ∧-ridge spacers are integrated on InGaAs Nanowire MOSFET in an attempt to decrease parasitic capacitances; however, due to a high-dielectric constant of the spacers and smaller transistors transconductance, the fT/fmax are limited to 75/100 GHz. InGaAs quantum well MOSFETs with a sacrificial amorphous silicon spacer are fabricated, and they have capacitances of a similar magnitude to other existing high-performing RF InGaAs FETs. An 80 nm InGaAs MOSFET has fT/fmax = 243/147 GHz is demonstrated, and further optimization of the channel and layout would improve the performance. Next, InGaAs MOSFETs with nitride spacer are fabricated in a top-down approach, where the heterostructure is designed to reduce contact resistance and thus improve transconductance. In the first attempt, from the electrical characterization, it is concluded that the ON resistance of these MOSFETs is comparable to state-of-the-art HEMTs. Complete non-quasi-static small-signal modeling is performed on these transistors, and the discrepancy in the magnitude of fmax is discussed. InGaAs/InP 3D-nanosheet/nanowire FETs' high-frequency performance is studied by combining intrinsic analytical and extrinsic numerical models to estimate fT/fmax. 3D vertical stacking results in smaller parasitic capacitances due to electric field perturbance because of screening.An 8-band k⋅p model is implemented to calculate the electronic parameters of strained InxGa1-xAs/InP heterostructure-based quantum wells and nanowires. Bandgap, conduction band energy levels, and their effective masses and non-parabolicity factors are studied for various indium compositions and channel dimensions. These calculated parameters are used to model the long channel quantum well InGaAs MOSFET at cryogenic temperatures, and the importance of band tails limiting the subthreshold slope is discussed

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    • …
    corecore