7 research outputs found

    A Tool for the Automatic Generation and Analysis of Regular Analog Layout Modules

    Get PDF
    This paper describes the characteristics of a new CAD tool that enables the creation of layout libraries of selected analog modules. This Analog Modules Generator (AMG) automatically creates multiple layout versions of two commonly used analog structures: the differential pair and arrays of series-connected or stacked devices, for the subsequent generation of layout libraries. Based on the number of devices and rows defined by the user for the layout implementation, the tool validates all possible implementations, which are later saved in a database with their corresponding characteristics, such as area and parasitics information. Additionally, an extraction process can be optionally executed over all the layout views saved in the database. The AMG generates several reports with all the characteristics of the implemented layouts, including area and parasitic components, facilitating further statistical processing. We describe the features and capabilities of the proposed AMG tool, and several test cases are presented. Results show that optimal layout implementations can be achieved by layout and circuit designers in a reduced amount of time

    Practical placement and routing techniques for analog circuit designs

    Full text link

    Simultaneous Handling of Symmetry, Common Centroid, and General Placement Constraints

    Full text link

    A framework for fine-grain synthesis optimization of operational amplifiers

    Get PDF
    This thesis presents a cell-level framework for Operational Amplifiers Synthesis (OASYN) coupling both circuit design and layout. For circuit design, the tool applies a corner-driven optimization, accounting for on-chip performance variations. By exploring the process, voltage, and temperature variations space, the tool extracts design worst case solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve required specifications. For layout phase, OASYN generates a DRC proved automated layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant representation of block placement called sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during operation and keeps the information of the boundary modules as well as their relative positions in the representation. Block placement algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated annealing where generation of large number of sequence pairs are required. Therefore a fast algorithm is needed to generate sequence pairs after each solution perturbation. The thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of incremental update for cost evaluation. The algorithm integrates sequence pair and transitive closure graph advantages into TCG-S* a superior topology update scheme which facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is better than existing works in terms of area utilization and convergence speed. Routing-aware placement is implemented in OASYN, handling symmetry constraints, e.g., interdigitization, common centroid, along with congestion elimination and the enhancement of placement routability

    Analog Placement with Common Centroid and 1-D Symmetry Constraints

    No full text
    In this paper, we will present a placement method for analog circuits. We consider both common centroid and 1-D symmetry constraints, which are the two most common types of placement requirements in analog designs. The approach is based on a symmetric feasible condition on the sequence pair representation that can cover completely the set of all placements satisfying the common centroid and 1-D symmetry constraints. This condition is essential for a good searching process to solve the problem effectively. Symmetric placement is an important step to achieve matchings of other electrical properties like delay and temperature variation. We have compared our results with those presented in the most updated previous works. Significant improvements can be obtained by our approach in both common centroid and 1-D symmetry placements, and we are the first who can handle both constraints simultaneously

    Analog layout design automation: ILP-based analog routers

    Get PDF
    The shrinking design window and high parasitic sensitivity in the advanced technology have imposed special challenges on the analog and radio frequency (RF) integrated circuit design. In this thesis, we propose a new methodology to address such a deficiency based on integer linear programming (ILP) but without compromising the capability of handling any special constraints for the analog routing problems. Distinct from the conventional methods, our algorithm utilizes adaptive resolutions for various routing regions. For a more congested region, a routing grid with higher resolution is employed, whereas a lower-resolution grid is adopted to a less crowded routing region. Moreover, we strengthen its speciality in handling interconnect width control so as to route the electrical nets based on analog constraints while considering proper interconnect width to address the acute interconnect parasitics, mismatch minimization, and electromigration effects simultaneously. In addition, to tackle the performance degradation due to layout dependent effects (LDEs) and take advantage of optical proximity correction (OPC) for resolution enhancement of subwavelength lithography, in this thesis we have also proposed an innovative LDE-aware analog layout migration scheme, which is equipped with our special routing methodology. The LDE constraints are first identified with aid of a special sensitivity analysis and then satisfied during the layout migration process. Afterwards the electrical nets are routed by an extended OPC-inclusive ILP-based analog router to improve the final layout image fidelity while the routability and analog constraints are respected in the meantime. The experimental results demonstrate the effectiveness and efficiency of our proposed methods in terms of both circuit performance and image quality compared to the previous works

    Physical Planning and Uncore Power Management for Multi-Core Processors

    Get PDF
    For the microprocessor technology of today and the foreseeable future, multi-core is a key engine that drives performance growth under very tight power dissipation constraints. While previous research has been mostly focused on individual processor cores, there is a compelling need for studying how to efficiently manage shared resources among cores, including physical space, on-chip communication and on-chip storage. In managing physical space, floorplanning is the first and most critical step that largely affects communication efficiency and cost-effectiveness of chip designs. We consider floorplanning with regularity constraints that requires identical processing/memory cores to form an array. Such regularity can greatly facilitate design modularity and therefore shorten design turn-around time. Very little attention has been paid to automatic floorplanning considering regularity constraints because manual floorplanning has difficulty handling the complexity as chip core count increases. In this dissertation work, we investigate the regularity constraints in a simulated-annealing based floorplanner for multi/many core processor designs. A simple and effective technique is proposed to encode the regularity constraints in sequence-pair, which is a classic format of data representation in automatic floorplanning. To the best of our knowledge, this is the first work on regularity-constrained floorplanning in the context of multi/many core processor designs. On-chip communication and shared last level cache (LLC) play a role that is at least as equally important as processor cores in terms of chip performance and power. This dissertation research studies dynamic voltage and frequency scaling for on-chip network and LLC, which forms a single uncore domain of voltage and frequency. This is in contrast to most previous works where the network and LLC are partitioned and associated with processor cores based on physical proximity. The single shared domain can largely avoid the interfacing overhead across domain boundaries and is practical and very useful for industrial products. Our goal is to minimize uncore energy dissipation with little, e.g., 5% or less, performance degradation. The first part of this study is to identify a metric that can reflect the chip performance determined by uncore voltage/frequency. The second part is about how to monitor this metric with low overhead and high fidelity. The last part is the control policy that decides uncore voltage/frequency based on monitoring results. Our approach is validated through full system simulations on public architecture benchmarks
    corecore