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Abstract— This paper describes the characteristics of a new 
CAD tool that enables the creation of layout libraries of selected 
analog modules. This Analog Modules Generator (AMG) 
automatically creates multiple layout versions of two commonly 
used analog structures: the differential pair and arrays of series-
connected or stacked devices, for the subsequent generation of 
layout libraries. Based on the number of devices and rows defined 
by the user for the layout implementation, the tool validates all 
possible implementations, which are later saved in a database. 
Additionally, an extraction process can be optionally executed 
over all the layout views saved in the database. The AMG 
generates several reports with all the characteristics of the 
implemented layouts, including area and parasitic components, 
facilitating further statistical processing. We describe the features 
and capabilities of the proposed AMG tool, and several test cases 
are presented. Results show that suitable layout implementations 
can be achieved by layout and circuit designers in a very reduced 
amount of time. 

Index Terms— Analog layout automation, differential pair, 
layout libraries, layout characterization, stacked devices. 

1. INTRODUCTION

OME of the inherent limitations for the layout 
implementation of analog devices and structures in current 

CMOS subnanometric technologies (process technologies 
below 32 nm) are addressed in [1]-[3]. Among these 
limitations, the discrete values for the single transistor’s 
diffusion width and fixed values for the transistor’s gate length 
impose constraints for analog design; this has forced the 
designers to implement new structures to get the correct analog 
behavior. One solution is the use of stacked devices 
(transistors connected in series, with a common gate terminal. 
connecting the source terminal of one transistor with the drain 
terminal of the next one), as described in [4] and [5], where 
limitations given by discrete and fixed values are also 
addressed. In this context, analog layout design is strongly 
constrained by the transistor’s dimensions, connections, and 
topologies used; therefore, a correct layout implementation 
becomes critical to achieve the expected performance. To 
implement and evaluate different layout placements and 
analyze their tradeoffs while saving time and layout design 
resources, it would be very desirable to have a CAD tool that 
enables fast and efficient implementation of analog layouts 
while providing useful information on their characteristics for 
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its analysis; allowing designers to choose the alternative that 
best meets their requirements.  

A large number of CAD tools have been proposed to 
automate the generation of analog layouts. The constructive 
approach [6] implements its placement solution by selecting 
one module (a transistor or a group of transistors) at a time and 
placing it in the “best” possible location. The constructive 
approach has the main drawback of being dependent on the 
selection order of the modules. On the other hand, the 
schematic-driven approach [7], [8] can be considered a tool for 
initial positioning which eases the layout work by generating 
[8] or comparing [7] a preliminary placement of the devices,
considering their position in the input schematic or considering
netlist indications. This approach requires significant user-tool
interaction.

Another common technique is based on constraints 
definition [9], used either to define the location and placement 
of the different devices [10] or to define the routing paths and, 
in consequence, the location of the different components [11]. 
In general, most of these approaches require intensive user-
tool interaction, as well as significant user’s experience in 
analog layout design.  

Other effective layout CAD tools are template-driven. These 
are built on template databases containing analog circuits 
designed by experienced designers that guide the generation of 
the new layout [12]. Another one employs the layout 
retargeting technique, that consists of generating a new layout 
from an existing one, typically used in the design migration 
from one technology process to a new one [13]. Examples of 
the layout retargeting technique are presented in [14], where 
foundry Parametric Cells (pCells) are used; in [15], not only 
layout geometries or building blocks are transferred, but also 
different constraints from different sources. The retargeting 
technique allows generating a new layout by acquiring and 
keeping the design expertise from previous designs. However, 
it is not very helpful when new layouts with different 
characteristics are to be implemented, or when different 
implementations must be compared. 

The CAD tool presented in [16] is a layout automation 
approach based on the concept of cellular automata: each 
device is modeled as a so-called agent, which autonomously 
moves, rotates and deforms itself depending on the actions of 
its neighborhood. This approach leads to a self-organized 
layout solution. Other related approaches base their placement 
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solutions on symmetry constraints [17]-[18]. In those cases, it 
is necessary to manually create a basic layout configuration 
and structure/modules, from which the CAD tool can create 
new ones. 

The development of a CAD tool that helps to speed up the 
layout implementation of basic analog modules or structures 
focused on differential pairs and arrays of series-connected 
transistors is described in [1]. That analog module generator 
(AMG) tool provides different configurations and setting 
options that allow the users to come up with a suitable layout 
version. Each layout version is included in a database and used 
for the generation of an analog layout library. Designers can 
use the analog modules of this database to integrate them into 
more complex designs. In this paper, the description of a 
significantly enhanced layout automation tool is presented. 
Our new approach is an extension of the work presented in [1]. 
Some of the main characteristics of both versions of the AMG 
tool are the following: 
a) Layout placement uses an internal database with different 

topologies defined for the two previously mentioned 
fundamental analog modules. The database uses 
placement and routing pattern definition templates to 
indicate the order and the location in which the devices 
and the routing metals are drawn. By virtue of these 
pattern definition templates, the user does not need to 
write the location for every single device. 

b)  Users can define which metal layers must be included in 
the layout. 

c) Each transistor finger is automatically drawn individually 
and then automatically replicated and allocated to create a 
complete structure, instead of drawing a single large 
object. Each of these devices has unique parameters and 
location. 

d) All the automatically implemented layouts are short-
circuit clean, and design rules check (DRC1) compliant, 
according to the selected technology process. This implies 
that no re-routing is needed. 

e)  Due to the modularity and independence of its scripts, our 
tool can be migrated to other technology processes by 
internally changing the technology process file and 
adjusting the set of design rules (captured manually).  

f) The scripts that form the proposed AMG are developed 
using TCL language. AMG is intended to be a 
complement of commercial layout tools; it can fit into 
different commercial design suites by replacing the native 
tool instructions for drawing the devices and geometries. 

For this new version of the proposed AMG tool, some 
additional features are included, namely: 
a) It allows the automatic generation of multiple layout 

versions for both fundamental modules, varying 
parameters such as the number of transistors (for the case 
of stacked devices), the finger’s width in discrete values 
defined by the technology process, and the number of 

 
1 The option to run DRC flow is not available for the user; however, all the 

layouts created were verified for this flow, to guarantee their quality and the 
correct functionality of the tool.  

fingers of each component, etc., producing a layout 
database or library. 

b) The parasitic extraction is not a separate function; this can 
be optionally executed over the layouts on the database. 
This allows the statistical investigation of the parasitics of 
many different implementation variants. 

c) A list of valid and invalid layouts is automatically 
generated. 

d) A summary report that includes parasitic elements 
information, total area, total number of devices and rows, 
and layout versus schematic (LVS) test results, is also 
automatically created. 

One of the most important contributions of the proposed 
AMG tool is that it helps the designers to reduce the time for 
the characterization and analysis of analog structures when a 
new project starts, or a technology process is introduced. The 
information generated by the tool allows designers to make a 
statistical analysis of the parasitic components of the layouts 
included in the database, as well as comparisons between 
different layouts to select the most suitable for their 
implementations. 

The list of invalid layouts helps designers to identify 
structures that are not physically correct by construction even 
though they are realizable at the circuit level.  

The rest of our paper is organized as follows. In Section 2, a 
general description of the AMG proposed tool, including its 
main modules, is presented. Sections 3 to 6 describe the 
characteristics and functionality of these modules. In Section 
7, functional tests to illustrate the AMG’s capabilities for 
automatic layout generation are presented. Finally, in Section 
8, conclusions are given, including some possible future 
research work. 

2. AMG GENERAL DESCRIPTION 
AMG allows the implementation of a single layout (SL-

mode) or multiple layout versions of the previously mentioned 
analog modules with its corresponding layout database (DB-
mode). This database facilitates designers to obtain useful 
information for the optimal implementation of their circuits. 
This information includes the viability of the layout 
implementation according to the number of devices and their 
dimensions, the layout area, and the parasitics associated with 
the layout. 

The flow diagram of the AMG is shown in Fig. 1. It follows 
that one in [1] but it was modified for new features such as a 
loop for the creation of multiple layouts, the automated 
execution of parasitics extraction and LVS flows, and the 
generation of multiple reports. 

The first section is the ENVIRONMENT SETTING, where 
the specifications for the layout implementation are defined. 
Here, the user defines if single or multiple implementations 
will be created. In the SL-mode, users specify a netlist and the 
names of the transistors that form the structure to be 
implemented; the layout is created using the information from 
the netlist. In the DB-mode, the user has to specify the 
structure to be implemented and the termination criteria which 
can include the area, the layout width, and the layout height, or 
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the maximum number of valid implementations; the schematic 
cell and the netlist are created based on the layout to be 
implemented. 

The layout parameters (see Fig. 1) include the transistor 
model (standard, high speed, low current leakage, low power, 
etc.), the topology for the layout, the metal layers to be added, 
the number of fingers and dummy transistors2, the number of 
rows, and the insertion of substrate connections. 

The second section, PLACEMENT IMPLEMENTATION, 
performs the placement of the devices; here, the devices are 
automatically drawn one by one to form the required module. 
At this stage, only diffusion P or N and polysilicon layers 
(base layers [1]) are included. Two new files are created: one 
for a new schematic view and another one for the layout view. 
An internal function block is responsible for determining the 
number of rows required for the layout implementation based 
on the total number of devices, which is updated in each 
iteration by the “Variables increment” block (see Fig. 1). Then 
the devices are created in the layout cell.  

If a problem is detected during PLACEMENT 
IMPLEMENTATION, this is registered in an error report file, 
indicating the reason for this problem. If no errors are found, 
the LAYOUT COMPLETION section is executed; if a 
problem is found, this section is skipped, and a report 
containing the list of errors is generated. If an error is detected 
for a single layout case, the corresponding error message is 
displayed, and the AMG stops its execution. 

The LAYOUT COMPLETION section in Fig. 1 implements 
 
2 All terminals of NMOS dummy devices are tied to VSS. Conversely, all 

terminals of PMOS dummy devices are connected to VDD; the exceptions 
are the shared drains of the dummy and active transistors. 

the rest of the layout elements, such as metals, contacts, and 
special identification layers3. Once these layout elements are 
included, the module is named, and its characteristics are 
saved in a list of valid layouts. If the completion criteria are 
satisfied, a report containing all the information related to the 
implemented layouts is generated, along with a summary file. 
If the termination criteria are not yet met, then the “Variables 
increment” block updates the information to start a new 
placement. 

In the AMG, the parasitics extraction is no longer a separate 
function as it is in [1]. This process can be now executed 
automatically for all the different layouts implemented and 
saved in the database. Similarly, the AMG can run an LVS test 
over all the created layouts. 

In the following sections, a more detailed description of the 
main blocks from the flow diagram in Fig. 1 is presented. 

3. ENVIRONMENT SETTING 
As in [1], in this block, the user-defined specifications and 

parameters for the single or multiple (library) layout 
implementation are captured using a graphical user interface 
(GUI). 

The GUI employed in [1] was modified to add the new 
options. Through this GUI, the user can select the SL-Mode or 
the DB-mode. In the case of the SL-mode, the user can load a 
netlist to select the transistors that form the module to be 
implemented or can select the module to be implemented 
(differential pair or an array of stacked devices). When a 
netlist is used, a dedicated function reads it and analyses the 
connections of the selected transistors, to validate if they form 
one of the two available modules. From the netlist, the number 
of fingers, the finger’s width and length, as well as the 
transistor’s type and model are obtained. When a netlist is not 
required, the user has to define those parameters manually. In 
both cases, only one layout that meets the indicated 
specifications is created. 

In the DB-mode, the user defines the structure to be 
implemented as well as the termination criteria for the creation 
of a database. Termination criteria include the maximum 
number of layout implementations, the maximum layout width, 
and the maximum layout height. The maximum layout width 
delimits the maximum number of transistors in a single row, 
while the maximum layout height delimits the maximum 
number of rows. The AMG creates all possible layouts that fit 
into these criteria. 

Using the GUI, users can also define if the algorithm of 
parasitics extraction and the LVS verification flow will be run 
over the generated database. The rest of the parameters and 
specifications for the layout implementation are defined either 
through selection boxes or captured manually. The GUI is 
shown in Fig. 2. 

 
3 Special identification layers are placed over the transistors and are used to 

indicate some specific properties of them, such as low leakage, low power 
consumption, etc. They are required for the fabrication process and to 
accomplish the LVS verification flow. 
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Fig. 1.  Flow diagram of the automatic layout generation tool.  
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4. PLACEMENT IMPLEMENTATION 
Once the different settings and layout parameters are 

defined, the next step is the creation of the required layout 
versions. In our approach, the PLACEMENT 
IMPLEMENTATION algorithm, shown in Fig. 3, is executed 
without interruption until the termination criteria are satisfied. 
The process to generate the layout is described below. 

4.1 Cell Creation and Cleaning 
As in [1], two files are created: one for a new schematic 

view and another one for the layout view. The schematic view 
includes only the devices and their connections. 

4.2 Parameters Modification 
The parameters that our AMG tool modifies for the 

generation of layouts are the number of fingers and their 
widths. In the case of the stacked devices module, the number 
of transistors that form the array is also modified. The AMG 
increases the number of fingers and finger’s width, as long as 
the layout can fit in the available area (termination criteria), 
using discrete values defined by the technology process; in all 
the cases, the same transistor’s length is used, which is also 
defined by the technology process.it also distributes the 
devices into different rows as necessary. The maximum 
number of fingers and the maximum finger’s width value 
depend on the available area. 

Since the AMG modifies the number of fingers and the 
finger’s width, it is possible that different implementations 
have the same effective width, defined as Weff = transistor’s 
finger width × number of fingers, but a different number of 
fingers and a different layout placement, this is illustrated in 
Fig. 4. In Fig. 4a the transistor A is W wide. In Figure 4b the 

transistor A is broken into four smaller transistors with a width 
of ¼W. Another option is to split the transistor A in two 
smaller transistors of ½W and combine them as in Fig. 4c; 
finally, we can use two transistors of two fingers of ¼W width 
but placed in two different rows as in Fig. 4d. If the terminals 
of all the devices are correctly connected, the three 
implementations will have the same Weff width. 

4.3 Row Calculation and Placement Generation 
For the placement implementation, the scripts used by the 

AMG are based on those used in [1]; however, a newly added 
function is the “Row calculation” one (see Fig. 3), which is 
used in the DB-mode, and it calculates the number of rows that 
are required for the layout implementation. This calculation is 
based on the number of fingers needed, and the number of 
transistors (in the case of an array of stacked devices), which 
are updated in each iteration; it also depends on the maximum 
layout width and height allowed (or layout area). This function 
is not used in the SL-mode since in this option the user directly 
defines the desired number of rows.  

Once the information about the number of rows and devices 
has been updated, the rest of the scripts that form the 
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Fig. 4 Example of transistors finger: a) Transistor A is W wide and 
uses one finger; b) Transistor A is divided into 4 fingers with a width 
of ¼W; c) Transistor A can be divided into 2 fingers with a width of 
½W; d) Transistor A is split into two transistors of two fingers of 
¼W width but placed in two different rows. 
. 

 
Fig. 2 Sample image of the AMG with a generated layout. 
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Fig. 3 Flow diagram for the PLACEMENT IMPLEMENTATION 
section. 
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placement process are executed (see Fig. 3): 
a) Validation of the number of transistors: here, the layout is 

validated for its proper implementation, which is based on 
the number of rows and the number of transistors (the 
number of rows should be divisible by the number of 
transistors). If it is not possible to draw the layout, an error 
is flagged, the topology is reported as invalid, and the rest 
of the scripts are executed. An implementation is 
considered invalid when the devices cannot be distributed 
uniformly among the calculated number of rows or when 
the number of fingers in which the transistor is divided 
does not allow the use of a specific topology. 

b) Topology setting: this function uses the pattern definition 
templates to define the order in which the devices are laid 
out. The template is replicated, as needed, to cover the total 
number of transistors of the layout to be implemented. 
With this template, a list that indicates the order in which 
each device should be placed is created. This order 
depends on the module, the topology, the total number of 
transistors, and the number of rows (determined by the 
“Row calculation” function). 

c) Placement drawing: this function creates individually each 
device following the order defined in the previous block. 
This function also names, rotates and flips4 the devices. 
The Transistor Generator [1] algorithm creates every single 
transistor by drawing it on a specific location. The 
Placement Drawing Control sub-function dictates where to 
draw each device. The AMG draws transistor by transistor 
and row by row, following the order defined by the 
Topology Setting function. 

4.4  Errors Report 
Once all the above scripts are executed, the next step checks 

if an invalid layout is obtained, in which case, errors are 
reported (see Fig. 1). Errors can be found by the “Validation 
of number of transistors” function and by the “placement 
drawing” function; in both cases, a detailed errors report file is 
generated (see Fig. 3). In SL-mode, errors are displayed on a 
message window, while in the DB-mode are sent to a filed list 
of errors. If no error is found in the layout, the LAYOUT 
COMPLETION section is executed and the layout is included 
in a document with the list of valid layouts. 

5. LAYOUT COMPLETION 
This process is the same as that one presented in [1]. Here, 

all the metal routes and contacts are added, depending on the 
layers selected through the GUI. 

5.1 Metal Routing Process  
Pattern templates guide this metal routing. Each of the main 

structures and their topologies have their own pattern template 
and are based on predefined routing grids and the 
corresponding technology process design rules. In the DB-
mode, it is recommended to include the base layers and the 
metals for interconnections. The tool is still limited to M2 for 

 
4 Rotation and flipping is automatically realized by the algorithm as needed to 

correctly complete the structure. 

horizontal routing and M3 for vertical routing. In future work, 
if more complex modules or structures are included, and thus 
require the use of more (higher) metal layers, these can be 
easily implemented. Once the layout is completed, the module 
name with its corresponding characteristics are saved in a list 
of valid layouts (see Fig. 1). Two examples of layouts 
(differential pair) using different numbers of fingers and 
different finger’s widths are shown in Fig. 5. In Fig. 5a) the 
differential pair’s transistors are formed by two fingers, the 
finger’s width is 2Wmin, and the layout is placed in one row. In 
Fig. 5b, the layout is placed in two rows, the transistors are 
formed by 24 fingers, and the finger’s width is Wmin, The 
layouts are fully connected (no opens) and DRC clean for 
spacing rules. Each row has two dummy devices at each side. 

5.2 Termination Criteria and Report Generation 
Once the layout is completed, it is necessary to verify if the 

tool has reached the termination criteria (in the SL-mode this 
is not needed). If it is the case, the next step is the generation 
of a report (library) identifying the layouts created and their 
characteristics, which are saved in a document that summarizes 
this information. In SL-mode, this information is also 
presented in a message window.  

If the termination criteria are not yet satisfied, the “Variables 
increment” block updates the values for creating a new layout, 
starting from the number of fingers of each device and then the 
transistors’ sizes and in the case of an array of stacked devices, 
the number of devices.  

6. EXTRA FLOWS 
Once the termination criteria are satisfied, and the reports 
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Fig. 5 Layout examples of a differential pair using different number 
of fingers rows and finger’s widths: a) transistors are formed by two 
fingers, the finger’s width is 2Wmin, and the layout is placed in one 
row; b) transistors are formed by 24 fingers, the finger’s width is 
Wmin, and the layout is placed in two rows. 
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mentioned above are generated, the parasitics extraction 
algorithm and the LVS flow can be optionally executed over 
all the elements saved in the database following the list of 
valid layouts.  

6.1 Parasitics Extraction and Area Calculation 
The parasitics extraction algorithm mentioned in [1], which 

was available as a separate tool, has now been fully 
incorporated in the AMG. All the information related to the 
parasitic elements (restricted to parasitic resistance and 
capacitance in the current version) is obtained from the report 
files that the extraction algorithm generates. In the SL-mode, 
the user can directly read the complete report. However, when 
multiple layouts are generated, the manual analysis of all the 
reports can be time-consuming and error-prone. AMG filters 
out the data of these reports to obtain the information related 
to some specific parameter. For instance, the AMG can 
automatically obtain from these files the total input 
capacitance and the cross capacitance, as well as the sum of 
capacitances for particular nodes to the VSS (substrate) node. 
As part of the extraction flow (see Fig. 1), AMG calculates the 
required area for the implementation of each of the layouts 
contained in the generated library. Once the extraction flow is 
finished for all the layouts, a report is generated indicating the 
topology, the capacitance values, and the required area. 

6.2  LVS Flow 
In the DB-mode, this flow runs over all of the layouts 

created to detect any possible problem with the layout 
implementation. It only verifies that the layouts are open and 
short-circuit clean; since the netlists are based on the created 
layouts, this ensures they are LVS compliant. Once the LVS 
flow checked all the created layouts a file with the results is 
generated, indicating which layouts are clean and which are 
not; in this second case, the cause of the errors is also reported. 
For our current version, only LVS flow is included; the options 
for the users to run other flows can be added to the tool such as 
DRC or density checkers;  

Once this flow is finished, and all the reports are generated, 
the AMG stops, and the user can review the results. 

7. TEST AND RESULTS 
The AMG is now tested by generating one library for each 

of the two common analog modules mentioned before.  

7.1 Database Creation 
To create the database, the termination criteria are set up to 

enable the creation of the layouts using from one to three rows 
for each layout implementation. Another termination criterion 
is defined by using a layout width value such that the 
maximum number of devices in a row is thirty (including the 
dummy devices, which are two at each side of the array). The 
selection of these values has the intention to test the different 
capabilities of the proposed AMG, including its capacity to 
distribute the transistors uniformly among a different number 
of rows, addressing those cases where a given distribution is 
not possible.  

Other considerations for the AMG test are the transistors 

finger’s widths and the topologies for each module. Given the 
nanometric technologies considered, the dimensions used for 
the transistor are discrete values: the finger’s widths used for 
the transistors’ implementation are two, four, and six times 
Wmin (the minimal feasible value for transistor’s width for a 
given technology). Only one topology is used for each module: 
for the case of the differential pair, the AMG uses the 
interdigitated layout implementation; in consequence, the total 
number of fingers is an even number. For the case of the array 
of stacked devices, the topology used is the shared diffusion, 
and for this topology, the number of fingers of each transistor 
must be an odd number [1]. 

For each database generated during these tests, a report of 
valid and invalid layouts (based on the number of transistors 
and rows) is automatically produced, as well as the 
corresponding summary report of other quantitative features. 
For all the valid layouts, extraction and LVS flows are 
executed (see Section VI). 

Table I presents the results for the generation of both 
libraries, including the total number of valid and invalid 
implementations. It is seen that there are much more valid 
implementations for the library of stacked devices than for the 
library of differential pairs; this is due to the extra variable 
used in their implementation (the number of devices on the 
array). However, the proportion of invalid implementations is 
larger in the case of stacked devices since it is more difficult to 
distribute all the elements of the array between the different 
rows and accordingly to the selected topology.  

It is also seen in Table I that the total capacitance to the VSS 
node is larger for the case of stacked devices since the 
complexity of the routing is higher (a deeper analysis is 
presented in the next subsection). Regarding the average 
implementation time per layout, we can notice that for both 
cases it is shorter than two minutes. This allows the generation 
of a complete library of approximately 100 elements, including 
parasitics, in less than two hours. 

7.2 Parasitics Analysis  
An analysis of different layout implementations of an array 

of stacked transistors is presented in [4], comparing the 
tradeoffs between different topologies and different layout 
parameters in term of their parasitic elements. The layout 
implementations used for that analysis are generated using the 
automatic synthesis tool in [1]. A similar procedure is 

TABLE I 
SUMMARY OF RESULTS FOR THE GENERATED LIBRARIES 

Parameter Evaluated Differential 
Pair 

Stacked 
Array 

Number of valid layouts 38 98 
Number of invalid layouts 7 29 
Percentage of valid layouts 84% 77% 
Maximum capacitance to VSS 7.34 pF 9.35 pF 
Maxim number of devices 90 77 
Maximum number of rows 3 3 
Maximum required area: 9.0521 µm2 9.978 µm2 

Average implementation time per layout 98 seconds 113 seconds 
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performed here to show the benefits of using the new proposed 
AMG. The algorithm for parasitics extraction is now executed 
over all the valid layouts generated. The sum of the 
capacitances from all the nodes of each circuit to VSS node 
(Cvss) [4] is obtained, as well as the required areas for the 
implementation of each layout. These data are automatically 
organized in the parasitics report and can be used for a 

systematic comparison between all the different layouts, which 
illustrates the information that our CAD tool can provide to the 
designers.  

To demonstrate the above mentioned capabilities, Fig. 6 
shows three graphs that depict a comparison of Cvss values for 
both fundamental analog structures, considering different 
values for the number of fingers/devices, finger’s widths, and 
the number of transistors in the arrays. In all these cases, the 
Cvss values are expressed in terms of Cmin (the Cvss capacitance 
for a single transistor using minimal dimensions).  

Figure 6a shows Cvss values for the differential pair module 
when different effective widths are used. For this example, and 
for illustration purposes, we parsed from the report file the 
cases for finger’s widths equal to 2Wmin, 4Wmin, and 6Wmin. 
Naturally, as Weff increases, Cvss increases as well. However, 
in Fig. 6a it is observed that for large Weff (in this example 
larger than 14Wmin) the capacitance value tends to be smaller 
when the finger’s width is larger (or when less fingers are 
used).  

This indicates that for a large Weff if we aim at reducing Cvss, 
it is better using wider transistor’s values than increasing the 
total number of devices/fingers. Increasing the number of 
devices increases the total diffusion area used for the devices, 
which increases the capacitance between all of them; also as 
we use more fingers, more rows are required for their 
placement, which increases the number of interconnections 
and their length, as well as the capacitance associated to them. 

Figure 6b shows Cvss values when a different number of 
stacked devices and finger’s widths are used on an array, but 
keeping Weff = 24Wmin for all cases. The cases parsed from the 
reports are for a finger’s width equal to 2Wmin, 3Wmin, and 
6Wmin (which correspond to 12, 8 and 3 fingers respectively). 
As in the previous case, when larger finger’s widths are used, 
the Cvss values are smaller than when more fingers are used. 
Additionally, when more devices are added to the layout, more 
rows may be required for their placement, and more 
interconnections are needed, which increases the number of 
metallic wires required. In consequence, the required area for 
layout implementation is larger when transistors are divided 
into fingers than when large finger’s widths are used, as it was 
confirmed in [4]. 

In this example, reducing the number of fingers, help to 
reduce the generation of parasitic elements, something 
designer should consider for the implementation of their 
circuits. Other aspects designers should also consider are, for 
example, the fact that when a transistor is divided its switching 
speed can increase; the use of multiple fingers allows a better 
matching and help to reduce current density in the gate. 

Fig. 6b also shows the slope values, which represent the 
output resistance of the transistor. It is seen that, as the number 
of stacked devices increases, the improvement on the output 
resistance is less significant, but the total capacitance increases 
almost linearly (as it was also found in [4]). In summary, Fig. 
5b illustrates the combined effects that different layout 
implementations have over total parasitic values and output 
impedance. 

Finally, Fig. 6c shows Cvss values and the required layout 

 

 
a) 

 

 
b) 

 
c) 

Fig. 6 Comparison of the Cvss capacitance value for: a) differential 
pair using different Weff and varying the finger’s width; b) array of 
stacked devices using a different number of transistors and varying 
the number of fingers; c) array of stacked devices using two different 
topologies: the interdigitated layout (IL) and the one shared diffusion 
(OSD). 



Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2) 
 

8 

area varying the number of stacked devices on the array 
module and considering two topologies: the Interdigitated 
Layout (IL) and the One Shared Diffusion (OSD) [1]. For both 
topologies, the finger’s width is 2Wmin, and the number of 
fingers is 3. Naturally, the topology determines the length and 
location of the metals used for interconnection of the devices, 
and the different metals’ lengths affect the values of the 
parasitic elements, as it is confirmed in Fig. 5c. Since the OSD 
topology requires less and shorter metal wires, the values of its 
parasitic elements are smaller than for the IL topology (see 
Fig. 6c). Similarly, since the OSD topology employs fewer 
wires than the IL topology, it requires smaller layout 
implementation areas (see Fig. 6c).  

The above graphical examples illustrate some of the features 
and capabilities of the proposed AMG. These examples also 
show the main two advantages of the proposed AMG tool, as 
compared with other approaches. Firstly, the automatic 
generation of numerical data related to different layout 
properties, such as parasitic components and area, useful for 
further statistical analysis. Secondly, the capability of 
generating analog layouts, comparable in quality to those 
manually done by layout experts, but in a much faster manner 
(a few minutes instead of several hours). 

8. CONCLUSIONS 
In this work, we described the general features of an analog 

modules generator (AMG) tool intended to accelerate the 
layout implementation of fundamental analog circuits and 
enable the generation of layout databases. 

The tests presented show the efficiency and utility of the 
proposed AMG for generating multiple versions of common 
analog modules integrated into libraries. The results of the 
parasitics extraction process, executed over all the layout 
libraries created, were also presented, illustrating the 
information that the reports generated by the AMG can 
provide to the designer. These experimental results show that 
this new layout tool is capable of producing many layout 
versions of the same structure. In contrast to other approaches, 
the proposed AMG is capable of identifying problems in the 
implementation of the layouts, and generating reports with 
information related to their area and parasitics components in a 
very short amount of time. Users can process this information 
straightforwardly, and develop a statistical analysis to make 
performance comparisons and select the alternative that best 
meets their requirements. Results show that all these features 
will help to reduce the design effort for analog circuits. 

This work offers the possibility of some future research 
opportunities. In its current version, our tool creates all 
possible valid layouts in a database for a specific constraint: 
the available area. However, the tool can be enhanced by 
incorporating other constraints, such as the maximum Cvss 
parasitic capacitance, or the maximum number of metal layers, 
etc. Another relevant future work consists of using numerical 
optimization techniques to find the best layout implementation 
according to some user-defined design specifications. 
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