
Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2) 1

Abstract— This paper describes the characteristics of a new
CAD tool that enables the creation of layout libraries of selected
analog modules. This Analog Modules Generator (AMG)
automatically creates multiple layout versions of two commonly
used analog structures: the differential pair and arrays of series-
connected or stacked devices, for the subsequent generation of
layout libraries. Based on the number of devices and rows defined
by the user for the layout implementation, the tool validates all
possible implementations, which are later saved in a database.
Additionally, an extraction process can be optionally executed
over all the layout views saved in the database. The AMG
generates several reports with all the characteristics of the
implemented layouts, including area and parasitic components,
facilitating further statistical processing. We describe the features
and capabilities of the proposed AMG tool, and several test cases
are presented. Results show that suitable layout implementations
can be achieved by layout and circuit designers in a very reduced
amount of time.

Index Terms— Analog layout automation, differential pair,
layout libraries, layout characterization, stacked devices.

1. INTRODUCTION

OME of the inherent limitations for the layout
implementation of analog devices and structures in current

CMOS subnanometric technologies (process technologies
below 32 nm) are addressed in [1]-[3]. Among these
limitations, the discrete values for the single transistor’s
diffusion width and fixed values for the transistor’s gate length
impose constraints for analog design; this has forced the
designers to implement new structures to get the correct analog
behavior. One solution is the use of stacked devices
(transistors connected in series, with a common gate terminal.
connecting the source terminal of one transistor with the drain
terminal of the next one), as described in [4] and [5], where
limitations given by discrete and fixed values are also
addressed. In this context, analog layout design is strongly
constrained by the transistor’s dimensions, connections, and
topologies used; therefore, a correct layout implementation
becomes critical to achieve the expected performance. To
implement and evaluate different layout placements and
analyze their tradeoffs while saving time and layout design
resources, it would be very desirable to have a CAD tool that
enables fast and efficient implementation of analog layouts
while providing useful information on their characteristics for

I. Lomelí-Illescas is funded through a CONACYT scholarship (Consejo
Nacional de Ciencia y Tecnología, Mexican Government).

its analysis; allowing designers to choose the alternative that
best meets their requirements.

A large number of CAD tools have been proposed to
automate the generation of analog layouts. The constructive
approach [6] implements its placement solution by selecting
one module (a transistor or a group of transistors) at a time and
placing it in the “best” possible location. The constructive
approach has the main drawback of being dependent on the
selection order of the modules. On the other hand, the
schematic-driven approach [7], [8] can be considered a tool for
initial positioning which eases the layout work by generating
[8] or comparing [7] a preliminary placement of the devices,
considering their position in the input schematic or considering
netlist indications. This approach requires significant user-tool
interaction.

Another common technique is based on constraints
definition [9], used either to define the location and placement
of the different devices [10] or to define the routing paths and,
in consequence, the location of the different components [11].
In general, most of these approaches require intensive user-
tool interaction, as well as significant user’s experience in
analog layout design.

Other effective layout CAD tools are template-driven. These
are built on template databases containing analog circuits
designed by experienced designers that guide the generation of
the new layout [12]. Another one employs the layout
retargeting technique, that consists of generating a new layout
from an existing one, typically used in the design migration
from one technology process to a new one [13]. Examples of
the layout retargeting technique are presented in [14], where
foundry Parametric Cells (pCells) are used; in [15], not only
layout geometries or building blocks are transferred, but also
different constraints from different sources. The retargeting
technique allows generating a new layout by acquiring and
keeping the design expertise from previous designs. However,
it is not very helpful when new layouts with different
characteristics are to be implemented, or when different
implementations must be compared.

The CAD tool presented in [16] is a layout automation
approach based on the concept of cellular automata: each
device is modeled as a so-called agent, which autonomously
moves, rotates and deforms itself depending on the actions of
its neighborhood. This approach leads to a self-organized
layout solution. Other related approaches base their placement

A Tool for the Automatic Generation and
Analysis of Regular Analog Layout Modules

Ismael Lomelí-Illescas1,2, Sergio A. Solis-Bustos1, and José E. Rayas-Sánchez2
1 Intel Corp., Zapopan, 45019 Mexico (ismael.lomeli@intel.com; sergio.solis@intel.com)

2 Department of Electronics, Systems, and Informatics, ITESO – The Jesuit University of Guadalajara,
Tlaquepaque, 45604 Mexico (erayas@iteso.mx)

S

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to
publication. The final version is available at http://dx.doi.org/10.1016/j.vlsi.2018.11.005

mailto:ismael.lomeli@intel.com
mailto:sergio.solis@intel.com
mailto:erayas@iteso.mx

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

2

solutions on symmetry constraints [17]-[18]. In those cases, it
is necessary to manually create a basic layout configuration
and structure/modules, from which the CAD tool can create
new ones.

The development of a CAD tool that helps to speed up the
layout implementation of basic analog modules or structures
focused on differential pairs and arrays of series-connected
transistors is described in [1]. That analog module generator
(AMG) tool provides different configurations and setting
options that allow the users to come up with a suitable layout
version. Each layout version is included in a database and used
for the generation of an analog layout library. Designers can
use the analog modules of this database to integrate them into
more complex designs. In this paper, the description of a
significantly enhanced layout automation tool is presented.
Our new approach is an extension of the work presented in [1].
Some of the main characteristics of both versions of the AMG
tool are the following:
a) Layout placement uses an internal database with different

topologies defined for the two previously mentioned
fundamental analog modules. The database uses
placement and routing pattern definition templates to
indicate the order and the location in which the devices
and the routing metals are drawn. By virtue of these
pattern definition templates, the user does not need to
write the location for every single device.

b) Users can define which metal layers must be included in
the layout.

c) Each transistor finger is automatically drawn individually
and then automatically replicated and allocated to create a
complete structure, instead of drawing a single large
object. Each of these devices has unique parameters and
location.

d) All the automatically implemented layouts are short-
circuit clean, and design rules check (DRC1) compliant,
according to the selected technology process. This implies
that no re-routing is needed.

e) Due to the modularity and independence of its scripts, our
tool can be migrated to other technology processes by
internally changing the technology process file and
adjusting the set of design rules (captured manually).

f) The scripts that form the proposed AMG are developed
using TCL language. AMG is intended to be a
complement of commercial layout tools; it can fit into
different commercial design suites by replacing the native
tool instructions for drawing the devices and geometries.

For this new version of the proposed AMG tool, some
additional features are included, namely:
a) It allows the automatic generation of multiple layout

versions for both fundamental modules, varying
parameters such as the number of transistors (for the case
of stacked devices), the finger’s width in discrete values
defined by the technology process, and the number of

1 The option to run DRC flow is not available for the user; however, all the

layouts created were verified for this flow, to guarantee their quality and the
correct functionality of the tool.

fingers of each component, etc., producing a layout
database or library.

b) The parasitic extraction is not a separate function; this can
be optionally executed over the layouts on the database.
This allows the statistical investigation of the parasitics of
many different implementation variants.

c) A list of valid and invalid layouts is automatically
generated.

d) A summary report that includes parasitic elements
information, total area, total number of devices and rows,
and layout versus schematic (LVS) test results, is also
automatically created.

One of the most important contributions of the proposed
AMG tool is that it helps the designers to reduce the time for
the characterization and analysis of analog structures when a
new project starts, or a technology process is introduced. The
information generated by the tool allows designers to make a
statistical analysis of the parasitic components of the layouts
included in the database, as well as comparisons between
different layouts to select the most suitable for their
implementations.

The list of invalid layouts helps designers to identify
structures that are not physically correct by construction even
though they are realizable at the circuit level.

The rest of our paper is organized as follows. In Section 2, a
general description of the AMG proposed tool, including its
main modules, is presented. Sections 3 to 6 describe the
characteristics and functionality of these modules. In Section
7, functional tests to illustrate the AMG’s capabilities for
automatic layout generation are presented. Finally, in Section
8, conclusions are given, including some possible future
research work.

2. AMG GENERAL DESCRIPTION
AMG allows the implementation of a single layout (SL-

mode) or multiple layout versions of the previously mentioned
analog modules with its corresponding layout database (DB-
mode). This database facilitates designers to obtain useful
information for the optimal implementation of their circuits.
This information includes the viability of the layout
implementation according to the number of devices and their
dimensions, the layout area, and the parasitics associated with
the layout.

The flow diagram of the AMG is shown in Fig. 1. It follows
that one in [1] but it was modified for new features such as a
loop for the creation of multiple layouts, the automated
execution of parasitics extraction and LVS flows, and the
generation of multiple reports.

The first section is the ENVIRONMENT SETTING, where
the specifications for the layout implementation are defined.
Here, the user defines if single or multiple implementations
will be created. In the SL-mode, users specify a netlist and the
names of the transistors that form the structure to be
implemented; the layout is created using the information from
the netlist. In the DB-mode, the user has to specify the
structure to be implemented and the termination criteria which
can include the area, the layout width, and the layout height, or

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

3

the maximum number of valid implementations; the schematic
cell and the netlist are created based on the layout to be
implemented.

The layout parameters (see Fig. 1) include the transistor
model (standard, high speed, low current leakage, low power,
etc.), the topology for the layout, the metal layers to be added,
the number of fingers and dummy transistors2, the number of
rows, and the insertion of substrate connections.

The second section, PLACEMENT IMPLEMENTATION,
performs the placement of the devices; here, the devices are
automatically drawn one by one to form the required module.
At this stage, only diffusion P or N and polysilicon layers
(base layers [1]) are included. Two new files are created: one
for a new schematic view and another one for the layout view.
An internal function block is responsible for determining the
number of rows required for the layout implementation based
on the total number of devices, which is updated in each
iteration by the “Variables increment” block (see Fig. 1). Then
the devices are created in the layout cell.

If a problem is detected during PLACEMENT
IMPLEMENTATION, this is registered in an error report file,
indicating the reason for this problem. If no errors are found,
the LAYOUT COMPLETION section is executed; if a
problem is found, this section is skipped, and a report
containing the list of errors is generated. If an error is detected
for a single layout case, the corresponding error message is
displayed, and the AMG stops its execution.

The LAYOUT COMPLETION section in Fig. 1 implements

2 All terminals of NMOS dummy devices are tied to VSS. Conversely, all

terminals of PMOS dummy devices are connected to VDD; the exceptions
are the shared drains of the dummy and active transistors.

the rest of the layout elements, such as metals, contacts, and
special identification layers3. Once these layout elements are
included, the module is named, and its characteristics are
saved in a list of valid layouts. If the completion criteria are
satisfied, a report containing all the information related to the
implemented layouts is generated, along with a summary file.
If the termination criteria are not yet met, then the “Variables
increment” block updates the information to start a new
placement.

In the AMG, the parasitics extraction is no longer a separate
function as it is in [1]. This process can be now executed
automatically for all the different layouts implemented and
saved in the database. Similarly, the AMG can run an LVS test
over all the created layouts.

In the following sections, a more detailed description of the
main blocks from the flow diagram in Fig. 1 is presented.

3. ENVIRONMENT SETTING
As in [1], in this block, the user-defined specifications and

parameters for the single or multiple (library) layout
implementation are captured using a graphical user interface
(GUI).

The GUI employed in [1] was modified to add the new
options. Through this GUI, the user can select the SL-Mode or
the DB-mode. In the case of the SL-mode, the user can load a
netlist to select the transistors that form the module to be
implemented or can select the module to be implemented
(differential pair or an array of stacked devices). When a
netlist is used, a dedicated function reads it and analyses the
connections of the selected transistors, to validate if they form
one of the two available modules. From the netlist, the number
of fingers, the finger’s width and length, as well as the
transistor’s type and model are obtained. When a netlist is not
required, the user has to define those parameters manually. In
both cases, only one layout that meets the indicated
specifications is created.

In the DB-mode, the user defines the structure to be
implemented as well as the termination criteria for the creation
of a database. Termination criteria include the maximum
number of layout implementations, the maximum layout width,
and the maximum layout height. The maximum layout width
delimits the maximum number of transistors in a single row,
while the maximum layout height delimits the maximum
number of rows. The AMG creates all possible layouts that fit
into these criteria.

Using the GUI, users can also define if the algorithm of
parasitics extraction and the LVS verification flow will be run
over the generated database. The rest of the parameters and
specifications for the layout implementation are defined either
through selection boxes or captured manually. The GUI is
shown in Fig. 2.

3 Special identification layers are placed over the transistors and are used to

indicate some specific properties of them, such as low leakage, low power
consumption, etc. They are required for the fabrication process and to
accomplish the LVS verification flow.

Variables
increment

start

ENVIRONMENT
SETTING

Valid
implementation

?

no

PLACEMENT
IMPLEMENTATION

LAYOUT
COMPLETION

List of
valid

layouts

no

yes

yes

Run extra
flows

?

end

LVS
summary

Parasitics
& area

Termination
criteria

?

yes
no

LVS flow

Design rules

One or multiple layouts

Summary

Extraction flow

Single
layout

?
List of
errors

no

Report generation

Error message

yes

Layout parametersNetlist

Termination criteria

Fig. 1. Flow diagram of the automatic layout generation tool.

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

4

4. PLACEMENT IMPLEMENTATION
Once the different settings and layout parameters are

defined, the next step is the creation of the required layout
versions. In our approach, the PLACEMENT
IMPLEMENTATION algorithm, shown in Fig. 3, is executed
without interruption until the termination criteria are satisfied.
The process to generate the layout is described below.

4.1 Cell Creation and Cleaning
As in [1], two files are created: one for a new schematic

view and another one for the layout view. The schematic view
includes only the devices and their connections.

4.2 Parameters Modification
The parameters that our AMG tool modifies for the

generation of layouts are the number of fingers and their
widths. In the case of the stacked devices module, the number
of transistors that form the array is also modified. The AMG
increases the number of fingers and finger’s width, as long as
the layout can fit in the available area (termination criteria),
using discrete values defined by the technology process; in all
the cases, the same transistor’s length is used, which is also
defined by the technology process.it also distributes the
devices into different rows as necessary. The maximum
number of fingers and the maximum finger’s width value
depend on the available area.

Since the AMG modifies the number of fingers and the
finger’s width, it is possible that different implementations
have the same effective width, defined as Weff = transistor’s
finger width × number of fingers, but a different number of
fingers and a different layout placement, this is illustrated in
Fig. 4. In Fig. 4a the transistor A is W wide. In Figure 4b the

transistor A is broken into four smaller transistors with a width
of ¼W. Another option is to split the transistor A in two
smaller transistors of ½W and combine them as in Fig. 4c;
finally, we can use two transistors of two fingers of ¼W width
but placed in two different rows as in Fig. 4d. If the terminals
of all the devices are correctly connected, the three
implementations will have the same Weff width.

4.3 Row Calculation and Placement Generation
For the placement implementation, the scripts used by the

AMG are based on those used in [1]; however, a newly added
function is the “Row calculation” one (see Fig. 3), which is
used in the DB-mode, and it calculates the number of rows that
are required for the layout implementation. This calculation is
based on the number of fingers needed, and the number of
transistors (in the case of an array of stacked devices), which
are updated in each iteration; it also depends on the maximum
layout width and height allowed (or layout area). This function
is not used in the SL-mode since in this option the user directly
defines the desired number of rows.

Once the information about the number of rows and devices
has been updated, the rest of the scripts that form the

D
ra

in

So
ur

ce D
ra

in

D
ra

in

D
ra

in

So
ur

ce

So
ur

ce

D
ra

in

D
ra

in

So
ur

ce

So
ur

ce
So

ur
ce

D
ra

in

D
ra

in
D

ra
in

D
ra

in

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

e

G
at

eW

 1/4W

1/4W

1/4W

1/2W

a) b) c) d)

Fig. 4 Example of transistors finger: a) Transistor A is W wide and
uses one finger; b) Transistor A is divided into 4 fingers with a width
of ¼W; c) Transistor A can be divided into 2 fingers with a width of
½W; d) Transistor A is split into two transistors of two fingers of
¼W width but placed in two different rows.
.

Fig. 2 Sample image of the AMG with a generated layout.

Valid
implementation

?

noList of
errors

PLACEMENT
IMPLEMENTATION

Row calculation

Placement drawing

Design rules

LAYOUT
COMPLETION

Validation of
number of transistors

Topology setting
Variables
increment

Fig. 3 Flow diagram for the PLACEMENT IMPLEMENTATION
section.

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

5

placement process are executed (see Fig. 3):
a) Validation of the number of transistors: here, the layout is

validated for its proper implementation, which is based on
the number of rows and the number of transistors (the
number of rows should be divisible by the number of
transistors). If it is not possible to draw the layout, an error
is flagged, the topology is reported as invalid, and the rest
of the scripts are executed. An implementation is
considered invalid when the devices cannot be distributed
uniformly among the calculated number of rows or when
the number of fingers in which the transistor is divided
does not allow the use of a specific topology.

b) Topology setting: this function uses the pattern definition
templates to define the order in which the devices are laid
out. The template is replicated, as needed, to cover the total
number of transistors of the layout to be implemented.
With this template, a list that indicates the order in which
each device should be placed is created. This order
depends on the module, the topology, the total number of
transistors, and the number of rows (determined by the
“Row calculation” function).

c) Placement drawing: this function creates individually each
device following the order defined in the previous block.
This function also names, rotates and flips4 the devices.
The Transistor Generator [1] algorithm creates every single
transistor by drawing it on a specific location. The
Placement Drawing Control sub-function dictates where to
draw each device. The AMG draws transistor by transistor
and row by row, following the order defined by the
Topology Setting function.

4.4 Errors Report
Once all the above scripts are executed, the next step checks

if an invalid layout is obtained, in which case, errors are
reported (see Fig. 1). Errors can be found by the “Validation
of number of transistors” function and by the “placement
drawing” function; in both cases, a detailed errors report file is
generated (see Fig. 3). In SL-mode, errors are displayed on a
message window, while in the DB-mode are sent to a filed list
of errors. If no error is found in the layout, the LAYOUT
COMPLETION section is executed and the layout is included
in a document with the list of valid layouts.

5. LAYOUT COMPLETION
This process is the same as that one presented in [1]. Here,

all the metal routes and contacts are added, depending on the
layers selected through the GUI.

5.1 Metal Routing Process
Pattern templates guide this metal routing. Each of the main

structures and their topologies have their own pattern template
and are based on predefined routing grids and the
corresponding technology process design rules. In the DB-
mode, it is recommended to include the base layers and the
metals for interconnections. The tool is still limited to M2 for

4 Rotation and flipping is automatically realized by the algorithm as needed to

correctly complete the structure.

horizontal routing and M3 for vertical routing. In future work,
if more complex modules or structures are included, and thus
require the use of more (higher) metal layers, these can be
easily implemented. Once the layout is completed, the module
name with its corresponding characteristics are saved in a list
of valid layouts (see Fig. 1). Two examples of layouts
(differential pair) using different numbers of fingers and
different finger’s widths are shown in Fig. 5. In Fig. 5a) the
differential pair’s transistors are formed by two fingers, the
finger’s width is 2Wmin, and the layout is placed in one row. In
Fig. 5b, the layout is placed in two rows, the transistors are
formed by 24 fingers, and the finger’s width is Wmin, The
layouts are fully connected (no opens) and DRC clean for
spacing rules. Each row has two dummy devices at each side.

5.2 Termination Criteria and Report Generation
Once the layout is completed, it is necessary to verify if the

tool has reached the termination criteria (in the SL-mode this
is not needed). If it is the case, the next step is the generation
of a report (library) identifying the layouts created and their
characteristics, which are saved in a document that summarizes
this information. In SL-mode, this information is also
presented in a message window.

If the termination criteria are not yet satisfied, the “Variables
increment” block updates the values for creating a new layout,
starting from the number of fingers of each device and then the
transistors’ sizes and in the case of an array of stacked devices,
the number of devices.

6. EXTRA FLOWS
Once the termination criteria are satisfied, and the reports

du
m

m
y

du
m

m
y

A A

du
m

m
y

du
m

m
y

B B A A B B

a)

du
m

m
y

du
m

m
y

du
m

m
y

du
m

m
yA A A A A A A A A A A AB B B B B B B B B B B B

A A A A A A A A A A A AB B B B B B B B B B B Bdu
m

m
y

du
m

m
y

du
m

m
y

du
m

m
y

b)

Fig. 5 Layout examples of a differential pair using different number
of fingers rows and finger’s widths: a) transistors are formed by two
fingers, the finger’s width is 2Wmin, and the layout is placed in one
row; b) transistors are formed by 24 fingers, the finger’s width is
Wmin, and the layout is placed in two rows.

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

6

mentioned above are generated, the parasitics extraction
algorithm and the LVS flow can be optionally executed over
all the elements saved in the database following the list of
valid layouts.

6.1 Parasitics Extraction and Area Calculation
The parasitics extraction algorithm mentioned in [1], which

was available as a separate tool, has now been fully
incorporated in the AMG. All the information related to the
parasitic elements (restricted to parasitic resistance and
capacitance in the current version) is obtained from the report
files that the extraction algorithm generates. In the SL-mode,
the user can directly read the complete report. However, when
multiple layouts are generated, the manual analysis of all the
reports can be time-consuming and error-prone. AMG filters
out the data of these reports to obtain the information related
to some specific parameter. For instance, the AMG can
automatically obtain from these files the total input
capacitance and the cross capacitance, as well as the sum of
capacitances for particular nodes to the VSS (substrate) node.
As part of the extraction flow (see Fig. 1), AMG calculates the
required area for the implementation of each of the layouts
contained in the generated library. Once the extraction flow is
finished for all the layouts, a report is generated indicating the
topology, the capacitance values, and the required area.

6.2 LVS Flow
In the DB-mode, this flow runs over all of the layouts

created to detect any possible problem with the layout
implementation. It only verifies that the layouts are open and
short-circuit clean; since the netlists are based on the created
layouts, this ensures they are LVS compliant. Once the LVS
flow checked all the created layouts a file with the results is
generated, indicating which layouts are clean and which are
not; in this second case, the cause of the errors is also reported.
For our current version, only LVS flow is included; the options
for the users to run other flows can be added to the tool such as
DRC or density checkers;

Once this flow is finished, and all the reports are generated,
the AMG stops, and the user can review the results.

7. TEST AND RESULTS
The AMG is now tested by generating one library for each

of the two common analog modules mentioned before.

7.1 Database Creation
To create the database, the termination criteria are set up to

enable the creation of the layouts using from one to three rows
for each layout implementation. Another termination criterion
is defined by using a layout width value such that the
maximum number of devices in a row is thirty (including the
dummy devices, which are two at each side of the array). The
selection of these values has the intention to test the different
capabilities of the proposed AMG, including its capacity to
distribute the transistors uniformly among a different number
of rows, addressing those cases where a given distribution is
not possible.

Other considerations for the AMG test are the transistors

finger’s widths and the topologies for each module. Given the
nanometric technologies considered, the dimensions used for
the transistor are discrete values: the finger’s widths used for
the transistors’ implementation are two, four, and six times
Wmin (the minimal feasible value for transistor’s width for a
given technology). Only one topology is used for each module:
for the case of the differential pair, the AMG uses the
interdigitated layout implementation; in consequence, the total
number of fingers is an even number. For the case of the array
of stacked devices, the topology used is the shared diffusion,
and for this topology, the number of fingers of each transistor
must be an odd number [1].

For each database generated during these tests, a report of
valid and invalid layouts (based on the number of transistors
and rows) is automatically produced, as well as the
corresponding summary report of other quantitative features.
For all the valid layouts, extraction and LVS flows are
executed (see Section VI).

Table I presents the results for the generation of both
libraries, including the total number of valid and invalid
implementations. It is seen that there are much more valid
implementations for the library of stacked devices than for the
library of differential pairs; this is due to the extra variable
used in their implementation (the number of devices on the
array). However, the proportion of invalid implementations is
larger in the case of stacked devices since it is more difficult to
distribute all the elements of the array between the different
rows and accordingly to the selected topology.

It is also seen in Table I that the total capacitance to the VSS
node is larger for the case of stacked devices since the
complexity of the routing is higher (a deeper analysis is
presented in the next subsection). Regarding the average
implementation time per layout, we can notice that for both
cases it is shorter than two minutes. This allows the generation
of a complete library of approximately 100 elements, including
parasitics, in less than two hours.

7.2 Parasitics Analysis
An analysis of different layout implementations of an array

of stacked transistors is presented in [4], comparing the
tradeoffs between different topologies and different layout
parameters in term of their parasitic elements. The layout
implementations used for that analysis are generated using the
automatic synthesis tool in [1]. A similar procedure is

TABLE I
SUMMARY OF RESULTS FOR THE GENERATED LIBRARIES

Parameter Evaluated Differential
Pair

Stacked
Array

Number of valid layouts 38 98
Number of invalid layouts 7 29
Percentage of valid layouts 84% 77%
Maximum capacitance to VSS 7.34 pF 9.35 pF
Maxim number of devices 90 77
Maximum number of rows 3 3
Maximum required area: 9.0521 µm2 9.978 µm2

Average implementation time per layout 98 seconds 113 seconds

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

7

performed here to show the benefits of using the new proposed
AMG. The algorithm for parasitics extraction is now executed
over all the valid layouts generated. The sum of the
capacitances from all the nodes of each circuit to VSS node
(Cvss) [4] is obtained, as well as the required areas for the
implementation of each layout. These data are automatically
organized in the parasitics report and can be used for a

systematic comparison between all the different layouts, which
illustrates the information that our CAD tool can provide to the
designers.

To demonstrate the above mentioned capabilities, Fig. 6
shows three graphs that depict a comparison of Cvss values for
both fundamental analog structures, considering different
values for the number of fingers/devices, finger’s widths, and
the number of transistors in the arrays. In all these cases, the
Cvss values are expressed in terms of Cmin (the Cvss capacitance
for a single transistor using minimal dimensions).

Figure 6a shows Cvss values for the differential pair module
when different effective widths are used. For this example, and
for illustration purposes, we parsed from the report file the
cases for finger’s widths equal to 2Wmin, 4Wmin, and 6Wmin.
Naturally, as Weff increases, Cvss increases as well. However,
in Fig. 6a it is observed that for large Weff (in this example
larger than 14Wmin) the capacitance value tends to be smaller
when the finger’s width is larger (or when less fingers are
used).

This indicates that for a large Weff if we aim at reducing Cvss,
it is better using wider transistor’s values than increasing the
total number of devices/fingers. Increasing the number of
devices increases the total diffusion area used for the devices,
which increases the capacitance between all of them; also as
we use more fingers, more rows are required for their
placement, which increases the number of interconnections
and their length, as well as the capacitance associated to them.

Figure 6b shows Cvss values when a different number of
stacked devices and finger’s widths are used on an array, but
keeping Weff = 24Wmin for all cases. The cases parsed from the
reports are for a finger’s width equal to 2Wmin, 3Wmin, and
6Wmin (which correspond to 12, 8 and 3 fingers respectively).
As in the previous case, when larger finger’s widths are used,
the Cvss values are smaller than when more fingers are used.
Additionally, when more devices are added to the layout, more
rows may be required for their placement, and more
interconnections are needed, which increases the number of
metallic wires required. In consequence, the required area for
layout implementation is larger when transistors are divided
into fingers than when large finger’s widths are used, as it was
confirmed in [4].

In this example, reducing the number of fingers, help to
reduce the generation of parasitic elements, something
designer should consider for the implementation of their
circuits. Other aspects designers should also consider are, for
example, the fact that when a transistor is divided its switching
speed can increase; the use of multiple fingers allows a better
matching and help to reduce current density in the gate.

Fig. 6b also shows the slope values, which represent the
output resistance of the transistor. It is seen that, as the number
of stacked devices increases, the improvement on the output
resistance is less significant, but the total capacitance increases
almost linearly (as it was also found in [4]). In summary, Fig.
5b illustrates the combined effects that different layout
implementations have over total parasitic values and output
impedance.

Finally, Fig. 6c shows Cvss values and the required layout

a)

b)

c)

Fig. 6 Comparison of the Cvss capacitance value for: a) differential
pair using different Weff and varying the finger’s width; b) array of
stacked devices using a different number of transistors and varying
the number of fingers; c) array of stacked devices using two different
topologies: the interdigitated layout (IL) and the one shared diffusion
(OSD).

Manuscript accepted for publication at Elsevier Integration, the VLSI Journal (Ref: VLSI_2018_142_R2)

8

area varying the number of stacked devices on the array
module and considering two topologies: the Interdigitated
Layout (IL) and the One Shared Diffusion (OSD) [1]. For both
topologies, the finger’s width is 2Wmin, and the number of
fingers is 3. Naturally, the topology determines the length and
location of the metals used for interconnection of the devices,
and the different metals’ lengths affect the values of the
parasitic elements, as it is confirmed in Fig. 5c. Since the OSD
topology requires less and shorter metal wires, the values of its
parasitic elements are smaller than for the IL topology (see
Fig. 6c). Similarly, since the OSD topology employs fewer
wires than the IL topology, it requires smaller layout
implementation areas (see Fig. 6c).

The above graphical examples illustrate some of the features
and capabilities of the proposed AMG. These examples also
show the main two advantages of the proposed AMG tool, as
compared with other approaches. Firstly, the automatic
generation of numerical data related to different layout
properties, such as parasitic components and area, useful for
further statistical analysis. Secondly, the capability of
generating analog layouts, comparable in quality to those
manually done by layout experts, but in a much faster manner
(a few minutes instead of several hours).

8. CONCLUSIONS
In this work, we described the general features of an analog

modules generator (AMG) tool intended to accelerate the
layout implementation of fundamental analog circuits and
enable the generation of layout databases.

The tests presented show the efficiency and utility of the
proposed AMG for generating multiple versions of common
analog modules integrated into libraries. The results of the
parasitics extraction process, executed over all the layout
libraries created, were also presented, illustrating the
information that the reports generated by the AMG can
provide to the designer. These experimental results show that
this new layout tool is capable of producing many layout
versions of the same structure. In contrast to other approaches,
the proposed AMG is capable of identifying problems in the
implementation of the layouts, and generating reports with
information related to their area and parasitics components in a
very short amount of time. Users can process this information
straightforwardly, and develop a statistical analysis to make
performance comparisons and select the alternative that best
meets their requirements. Results show that all these features
will help to reduce the design effort for analog circuits.

This work offers the possibility of some future research
opportunities. In its current version, our tool creates all
possible valid layouts in a database for a specific constraint:
the available area. However, the tool can be enhanced by
incorporating other constraints, such as the maximum Cvss
parasitic capacitance, or the maximum number of metal layers,
etc. Another relevant future work consists of using numerical
optimization techniques to find the best layout implementation
according to some user-defined design specifications.

ACKNOWLEDGMENT
Authors thank Víctor H. Martínez-Sánchez, from Intel

Corp., Zapopan, Mexico, who greatly assisted this research.

REFERENCES

[1] I. Lomelí-Illescas, S. A. Solis-Bustos, V. H. Martínez-Sánchez, and J. E.

Rayas-Sánchez, “Synthesis tool for automatic layout generation of
analog structures,” in IEEE ANDESCON Proc., Arequipa, Peru, Oct.
2016, pp. 1-4.

[2] Y. Ender and D. Günhan, “Analog layout generator for CMOS circuits,”
IEEE Trans. Computer-Aided Design Integrated Circuits Systems, vol.
28, no. 1, pp. 32-45, Jan 2009.

[3] C. Pacha et al., “Circuit design issues in multi-gate FET CMOS
technologies,” in IEEE Int. Solid State Circuits Conf. - Digest of
Technical Papers, San Francisco, CA, 2006, pp. 1656-1665.

[4] I. Lomelí-Illescas, S. A. Solis-Bustos, and J. E. Rayas-Sánchez,
“Analysis of the implications of stacked devices in nano-scale
technologies for analog applications,” in IEEE Latin American Test
Symp. (LATS-2017), Bogota, Colombia, Mar. 2017, pp. 1-4.

[5] D. H. Saari and D. G. Nairn, “Analog integrated circuit design using
fixed-length devices,” in IEEE Int. Symp. on Circuits and Systems
(ISCAS-2016), Montreal, QC, May 2016, pp. 1798-1801.

[6] F. Balasa and K. Lampaert, “Module placement for analog layout using
the sequence-pair representation,” in Proc. Design Automation Conf.,
New Orleans, LA, Jun. 1999, pp. 274-279.

[7] S. W. Mehranfar, “STAT: a schematic to artwork translator for custom
analog cells,” in IEEE Proc. of the Custom Integrated Circuits Conf.,
Boston, MA, May 1990, pp. 30.2/1-30.2/4.

[8] J. Canaris, “Schematic driven layout for the custom VLSI design
environment,” in Proc. First Great Lakes Symp. VLSI, Kalamazoo, MI,
Mar. 1991, pp. 302-306.

[9] H. Graeb, F. Balasa, R. Castro-Lopez, Y. Chang, F. Fernandez, Po-hung
Lin, and M. Strasser, “Analog layout synthesis -recent advances in
topological approaches,” in Conf. Design, Automation and Test in
Europe, Belgium, 2009.

[10] Q. Ma, L. Xiao, Y. C. Tam, and E. F. Y. Young, “Simultaneous
handling of symmetry, common centroid, and general placement
constraints,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 1, pp. 85-95, Jan. 2011.

[11] P. H. Wu et al., “Performance-driven analog placement considering
monotonic current paths,” in IEEE/ACM Int. Conf. on Computer-Aided
Design (ICCAD-2012), San Jose, CA, Nov. 2012, pp. 613-619.

[12] N. Lourenco, M. Vianello, J. Guilherme, and N. Horta, “LAYGEN—
automatic layout generation of analog ICs from hierarchical template
descriptions,” Ph.D. Research in Microelectronics and Electronics,
Otranto, Italy, Sep. 2006, pp. 213-216.

[13] R. Martins, N. Lourenço, and N. Horta, “LAYGEN II—automatic layout
generation of analog integrated circuits,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 11, pp.
1641-1654, Nov. 2013.

[14] A. Mohamed, M. Dessouky, and S. M. Saif, “Analog layout placement
retargeting using satisfiability modulo theories,” in Int. Conf. on
Synthesis, Modeling, Analysis and Simulation Methods and Applic. to
Circuit Design (SMACD), Giardini Naxos, Italy, Jun. 2017, pp. 1-4.

[15] P. H. Wu, M. P. H. Lin, T. C. Chen, C. F. Yeh, X. Li and T. Y. Ho, “A
novel analog physical synthesis methodology integrating existent design
expertise,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 2, pp. 199-212, Feb. 2015.

[16] D. Marolt, J. Scheible, G. Jerke, and V. Marolt, “Analog layout
automation via self-organization: enhancing the novel SWARM
approach,” in IEEE 7th Latin American Symp. on Circuits & Systems
(LASCAS), Florianopolis, Mar. 2016, pp. 55-58.

[17] M. Strasser, M. Eick, H. Grab, U. Schlichtmann, and F. M. Johannes,
“Deterministic analog circuit placement using hierarchically bounded
enumeration and enhanced shape functions,” in IEEE/ACM Int. Conf.
on Computer-Aided Design, San Jose, CA, Nov. 2008, pp. 306-313.

[18] L. Xiao and E. F. Y. Young, “Analog placement with common centroid
and 1-D symmetry constraints,” in Asia and South Pacific Design
Automation Conf., Yokohama, Japan, Jan. 2009, pp. 353-360.

