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ABSTRACT

For the microprocessor technology of today and the foreseeable future, multi-core

is a key engine that drives performance growth under very tight power dissipation

constraints. While previous research has been mostly focused on individual proces-

sor cores, there is a compelling need for studying how to efficiently manage shared

resources among cores, including physical space, on-chip communication and on-chip

storage.

In managing physical space, floorplanning is the first and most critical step that

largely affects communication efficiency and cost-effectiveness of chip designs. We

consider floorplanning with regularity constraints that requires identical process-

ing/memory cores to form an array. Such regularity can greatly facilitate design

modularity and therefore shorten design turn-around time. Very little attention has

been paid to automatic floorplanning considering regularity constraints because man-

ual floorplanning has difficulty handling the complexity as chip core count increases.

In this dissertation work, we investigate the regularity constraints in a simulated-

annealing based floorplanner for multi/many core processor designs. A simple and

effective technique is proposed to encode the regularity constraints in sequence-pair,

which is a classic format of data representation in automatic floorplanning. To the

best of our knowledge, this is the first work on regularity-constrained floorplanning

in the context of multi/many core processor designs.

On-chip communication and shared last level cache (LLC) play a role that is at

least as equally important as processor cores in terms of chip performance and power.

This dissertation research studies dynamic voltage and frequency scaling for on-chip

network and LLC, which forms a single uncore domain of voltage and frequency.
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This is in contrast to most previous works where the network and LLC are parti-

tioned and associated with processor cores based on physical proximity. The single

shared domain can largely avoid the interfacing overhead across domain boundaries

and is practical and very useful for industrial products. Our goal is to minimize

uncore energy dissipation with little, e.g., 5% or less, performance degradation. The

first part of this study is to identify a metric that can reflect the chip performance

determined by uncore voltage/frequency. The second part is about how to monitor

this metric with low overhead and high fidelity. The last part is the control policy

that decides uncore voltage/frequency based on monitoring results. Our approach is

validated through full system simulations on public architecture benchmarks.
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NOMENCLATURE

WL Wire Length

DVFS Dynamic Voltage Frequency Scaling

V/F Voltage/Frequency

NoCs Network-on-Chips

LLC Last Level Cache

CMP Chip Multi-Processor

AMAT Average Memory Access Time

PID Proportional Integral Derivative

APHL Average Per-Hop Latency

APRL Average Per-Request Latency
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1. INTRODUCTION

1.1 Research Motivation

Due to the increasingly stringent chip power budget, the semiconductor industry

has changed its development strategy from improving single core performance to the

multi-core technology. Indeed, multi-core technology becomes the new engine that

drives chip performance growth under tight power budget. How to efficiently manage

all kinds of resources in a multi-core chip design is not a well-solved problem yet. For

physical resources, multi-core chip floorplanning considering regularity constraints

has received little attention before. How to manage power for shared resources, such

as on-chip network and last level caches, is another problem that deserves deep study.

1.2 Contribution

1.2.1 Regularity-Constrained Floorplanning

In physical design, floorplanning is the first primary step that decisively affects

chip layout, on-chip communication, power, performance and various design con-

cerns [59]. When the core count is keeping increase, manually design will be very

difficult to quickly and thoroughly explore different options. Therefore, there is a

strong need for automatic floorplanning [19] [57] techniques for many-core CMP

designs.

In multi-core chip designs, processcing units and cache blocks are usually placed

in arrays. However, such regularity constraint is rarely considered in the conventional

floorplanning. In Chapter 2, the work on floorplanning with regularity constraint,

which is oriented toward multi-core processor designs is presented. The key contri-

butions are on how to encode the regularity constraint in sequence-pair and how to
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achieve the regularity in packing procedure. In this work, the proposed approach

is compared with a naive method that manually tries multiple placements for array

blocks, each of which is followed by conventional floorplanning for non-array blocks

while the array blocks are fixed. The experimental results indicate that the proposed

approach can achieve an average of 12% less wirelength than the semi-automatic

method. At the same time, the proposed approach usually leads to smaller area.

1.2.2 Uncore Power Management for Multi-Core Processors

In Chip-Multiprocessor (CMP) designs, uncore usually refers to on-chip com-

munication fabrics and the shared last level cache (LLC), both of which account

for a large portion of chip estate. On-chip communication and LLC are both chip

performance bottlenecks as well as large power consumers. This thesis research fo-

cuses on Dynamic Voltage and Frequency Scaling (DVFS) of on-chip network and

LLC, with attempt to substantially reduce uncore power dissipation with very small

performance degradation.

In previous reseach, people usually put core and associated LLC in same volt-

age/clock domain. However in our work, we argue that placing the shared LLC in one

clock domain across the chip is also logical because it is a one large, partitioned struc-

ture. Contrary to the individual cores which are running different threads/programs,

the LLC banks have a mostly homogeneous load due to the interleaving of cache lines

in the system; in this case, voltage/frequency domain partitioning should be more

reasonable if placing LLC and interconnect networks in the same V/F domain.

In this work, A new method is proposed and investigated to measure the system

performance and effectively transport information in network. Meanwhile, PI con-

troller with a dynamic reference point based on the new metric is adopted to control

the whole uncore system. These methods are evaluated in full system simulation on

2



the PARSEC benchmarks [3].

In Chapter 3, the whole power management problem will be addressed. The key

contributions of this chapter are as follows: 1.Introducing several new uncore status

metrics to predict the impact of DVFS policy on system performance. 2.Proposing a

novel, extremely low overhead, uncore status monitoring technique. This technique

is composed of the following: 1) Per-node metric sampling, 2) Passive in-network

status encoding, no extra packets needed, 3) Metric extrapolation to properly scale

value weights. 3.A PI controller with a dynamic reference point is described.
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2. REGULARITY-CONSTRAINED FLOORPLANNING FOR MULTI-CORE

PROCESSORS

2.1 Introduction

When the Moore’s law is near its end, continuing chip performance growth will

inevitably rely on the improvement of system level integration. This is evidenced

by the popularity of multi-core technology for both microprocessors and embedded

processors. In a foreseeable future, current multi-core processors will advance to

many-core processors, which allow hundreds of cores on a chip. This trend presents

new challenges to the design and design automation technologies. This paper dis-

cusses floorplanning problem for multi-core and many-core processors and proposes

an algorithmic solution to this problem.

Floorplanning is the first primary physical design step that decisively affects chip

layout, on-chip communication, power, performance and various design concerns [59].

When the number of cores on a chip is small, the floorplanning can be managed by

manual designs, especially for CMP (Chip Multiprocessors). For instance, a 4-core

processor can be manually placed in a 2 by 2 array. When the core count exceeds

one hundred, the options of floorplans increase dramatically. Then, it would be very

difficult for manual design to quickly and thoroughly explore these options. Besides

processing cores, a processor chip usually contains cache, I/O blocks and communica-

tion fabrics. Further, CMP technology will move from homogeneous to heterogeneous

cores [27] like IBM Cell processor. These facts imply heterogeneous entities, which

make manual floorplanning even more difficult. Therefore, there is a strong need for

automatic floorplanning [19] [57] techniques for many-core CMP designs. Multi-core

technology is also widely adopted in SoC (System-on-Chip) designs and leads to the

4



so called MPSoC (Multi-Processor SoC). SoC designs are often targeted to embedded

computing and require much shorter design turn-around time than microprocessors.

Although conventional floorplanning techniques are applicable to current MPSoC

designs, there is a new problem as the system grows from multi-core to many-core.

That is, if multiple identical cores are adopted, usually they are preferred to be

placed in a regular array. If ever possible, regularity is desired in chip layout for the

sake of design simplicity, modularity and easy management of physical resources.

The regularity issue is rarely considered in the conventional floorplanning. One

similar case is analog circuit layout [30] [32] [2] [56] [39] [9] where components are

often placed in a symmetric fashion. One may want to fulfill the regularity constraint

by enforcing the symmetry constraints. Even though symmetry and regularity are

related, regularity is actually more complex than symmetry and often more difficult

to achieve. A chip with m cores can be placed in a p by q array and there are

often multiple ways for the factorization of m = p * q, e.g., m = 30 = 1 * 30

=2 * 15 = 3 * 10 = 5 * 6 =6 * 5 .̇. 30 * 1. Even for a specific factorization,

symmetries to different axes need to be maintained to obtain a regular array. The

work of [39] addressed the array-type constraint for analog placement. However, there

is a key difference between the array constraint in analog placement and regularity

constraint in multi-core processor floorplanning. In analog placement, array blocks

of the same type of device are compacted together in order to reduce the effect of

spatially-dependent variations. In multi-core processor floorplanning, in contrast,

non-array blocks can be placed between array blocks and one group of array blocks

can be placed inside of another group of array blocks. By allowing such option, one

may have an opportunity to further reduce interconnect delay and congestion. For

example, placing the memory controller in the center of an array of processing cores

conceivably causes less interconnect congestion than placing it at peripheral regions.

5



In this chapter, I will present the work on floorplanning with regularity con-

straint, which is oriented toward multi-core processor designs. This floorplanner is a

simulated annealing algorithm using sequence-pair representation. The key contri-

butions are on how to encode the regularity constraint in sequence-pair and how to

achieve the regularity in packing procedure. To the best of our knowledge, this is the

first work studying regularity-constrained floorplanning for multi-core processors. I

compared the proposed approach with a naive method that manually tries multiple

placements for array blocks, each of which is followed by conventional floorplanning

for non-array blocks while the array blocks are fixed. The experimental results indi-

cate that the proposed approach can achieve an average of 12% less wirelength than

the semi-automatic method. At the same time, the proposed approach usually leads

to smaller area.
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2.2 Preliminaries

Among previous works on floorplanning, those for analog integrated circuits have

the closest problem formulation as the regularity-constrained floorplanning work.

Since an analog circuit typically has a small number of elements, its placement is

often equivalent to the floorplanning of a digital integrated circuit. In analog circuit

designs, one important requirement is to place blocks or devices symmetrically with

respect to one common axis so as to improve the tolerance to common-mode noise [9].

There are many analog circuit layout works [30, 32, 2, 56, 39, 9, 50, 24, 33, 31, 41]

focusing on the symmetry constraints. In [30], TCG-S is used as placement rep-

resentation to do analog layout under symmetry constraint. In [32], in the con-

text of Silicon on Insulator (SOI), mismatch analysis for analog layout is proposed

and tested. In [2], a symmetry-constrained analog block placement method is pro-

posed. This work is based on a typical floorplanning approach – simulated annealing

with sequence-pair representation. The symmetry constraint is described through

sequence-pairs. For a sequence-pair (α, β), α−1A denotes the position of block A in

sequence. Consider a group of blocks G that must be placed symmetrically around

a vertical axis. A sequence-pair (α, β) is symmetric-feasible for G if for any blocks

A and B in G

α−1A < α−1B ⇔ β−1σ (B) < β−1σ A (2.1)

where σ(A) is the block symmetric to A. However, it is pointed out in [24] that condi-

tion (2.1) is sufficient but not necessary. More recently, the work of [56] [33] presented

another sequence-pair based approach for simultaneously satisfying symmetry and

centroid constraints. Another method based on B*-tree is proposed in [31] for han-

dling both 1-D and 2-D symmetry constraints. The other symmetry constrained

7



analog placement work [41] uses O-tree representation. In [60], a symmetry-aware

placement work is proposed based on Transitive Closure Graphs (TCG) data struc-

ture. To certain extent, regularity constraint can be treated as an extension to the

symmetry constraints. However, the extension is not trivial as the number of im-

plicit symmetry constraints embedded in a regularity constraint can be quite large.

More specifically, every spatially contiguous subset of an array group needs to follow

its own symmetry. Figure 2.1 is a simple example and it has 4 blocks that need to

satisfy the regularity array constraint in (a) and symmetry constraint in (b). In (a),

all spatially contiguous subsets {1,2}, {2,3}, {3,4}, {1,2,3} and {2,3,4} need to sat-

isfy their own symmetry constraints. Hence, the regularity array constraint implies

significantly more symmetry constraints than the case of analog circuit layout like in

(b). In [39], the array-type constraint is considered for analog circuit placement. In

order to mitigate the effect of PVT (Process, Voltage and Temperature) variations,

which are usually spatially correlated, the work of [39] packs array blocks of the

same type right next to each other. In multi-core processor designs, however, the

problem granularity level and concerns are different. By allowing non-array blocks

to be embedded between array blocks, chip interconnects performance and cost can

be reduced. Figure 2.2 shows an industrial design where non-array blocks SIU and

CCX are placed in between the 2*4 array of L2T blocks and the L2T blocks are

placed in between the 2*8 L2D blocks.

8



(a) Regularity constraint for digital pro-
cessors.

(b) Symmetry constraint for analog cir-
cuit.

Figure 2.1: Comparison between regularity and symmetry constraint.

Figure 2.2: Floorplan of SUN Niagara-3 processor.
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2.3 Floorplanning with Regularity Constraint

2.3.1 Problem Formulation

The input to floorplanning includes a set of n blocks, each with area Ai where

i = 1, 2, ... n, a set of l nets N1, N2, ..., Nl among the n blocks, a set of k array

groups G1, G2, ...,Gk. Each array group is a subset of the given blocks that must be

placed in a regular array. If a block is in an array group, it is called an array block;

otherwise, it is called a nonarray block. The problem is to construct a floorplan F

that satisfies non-overlapping and the regularity constraint, and minimizes the target

cost function

cost(F ) = (1− λ) ∗ area(F ) + λ ∗ wirelength(F ) (2.2)

where λ is a weighting factor, area(F) is the total area of F and wirelength(F)

is the total wire length of F. In this work, the half-perimeter model (HPWL) for

wirelength estimation and outer chip area for area estimation are adopted. The

main difference of this work from the conventional floorplanning is the regularity

constraint. An array group is composed of blocks with identical size and shape,

which are usually processor cores or memory cores in reality. Although the cores

are required to be placed in an array, the shape of the array, which is decided by

the number of rows and columns, is flexible. For example, for an array group of m

blocks, any array of p*q = m is allowed and considered in the floorplanning as long

as aspect ratio constraint is satisfied. Moreover, the blocks in an array group do not

have to be placed next to each other. The floorplan of SUN Niagara-3 processor in

Figure 2.2 demonstrates such example. It contains 16 SPARC processor cores, which

are placed in a 2*8 array. However, the two rows are not adjacent to each other and

allow other blocks like CCX, CTU to be placed in between.
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2.3.2 Regularity in Relative Order

Floorplanning representation is critical to the efficiency of a floorplanning method,

especially for the popular simulated-annealing approach. There are two main cate-

gories of floorplanning representations: absolute representation and topological rep-

resentation. In an absolute representation, every block is specified in terms of its

absolute coordinates. The solution search in the absolute representations tends to

be complex and difficult. Therefore, topological representations become more pop-

ular and lead to many research results including sequence-pair [38], O-tree [15], B*-

tree [6], Corner Block List (CBL) [16] and Transitive Closure Graphs (TCG) [29]. In

this work, focus is placed on sequence-pair based floorplanning as sequence-pair is one

of the most known floorplanning representations and has been successfully applied

in handling symmetry constraints [2] [56]. In section 3.5, the regularity constraint

in other floorplanning representations will be briefly discussed. For a set of blocks,

a sequence-pair consists of two sequences of block IDs corresponding to the orders

along two diagonal directions. A sequence-pair like (<... i ... j ...>, <... i ... j ...>)

implies that block i (j)is to the left (right) of block j (i). Similarly, (<... i ... j ...>,

<... j ... i ...>) means that block i (j) is above (below) block j (i). A sequence-pair

for 6 blocks (<1 2 4 5 3 6>, <3 6 2 1 4 5>) is demonstrated in Figure 2.3.

The regularity constraint to an array group of m blocks implies that these blocks

must be placed in a p*q array, where p*q is a factorization of m. The q blocks in

one row must appear as a common subsequence [51] in the sequence-pair.

Definition 1: Alien blocks. For one array block group, all the other blocks

that do not belong to this group are called alien blocks of this group. Please note an

alien block can be either a non-array block or an array block of another array group.

Definition 2: Common subsequence. A set of q blocks b1, b2, ..., bq form

11



Figure 2.3: Floorplan for the sequence-pair(<1 2 4 5 3 6>,<3 6 2 1 4 5>).

a common subsequence in a sequence-pair (α, β) if α−11 < α−12 < ... < α−1q and

β−11 < β−12 < ... < β−1q where α−1i (β−1i ) indicates the position of block bi in sequence

α(β). For example, the floorplan of Figure 2.4 can be specified by sequence-pair (<0

1 2 3 4 5>, <2 1 0 5 4 3>), which contains 3 common subsequences (0, 3), (1, 4) and

(2, 5) for the 3 rows. This concept of common subsequence is similar to H-alignment

in [52].

Likewise, the blocks in a column must appear as a reversely common subsequence

in the sequence-pair.

Definition 3: Reversely common subsequence. A set of p blocks b1, b2 ...

bp form a reversely common subsequence in a sequence-pair (α, β) if α−11 < α−12 <

... < α−1q and β−11 > β−12 > ... > β−1q where α−1i (β−1i ) indicates the position of block

bi in sequence α(β).

For the example in Figure 2.4 , block 0, 1 and 2 form a reversely common subse-

quence (<0 1 2>, <2 1 0>) and (<3 4 5>, <5 4 3>).

Lemma 1: The necessary condition that m blocks lead to a p*q array floorplan:

the m blocks constitute p common subsequences of length q and q reversely common

12



Figure 2.4: An array group placed in a 3*2 array.

subsequences of length p in the sequencepair.

Proof: m blocks can lead to more than one sequencepair representations but a

p common subsequences of length q or q reversely common subsequences of length

p can only lead to one floorplanning as long as the packing procedure maintains

the same. Figure 2.4 is an example, for the total 6 blocks, the floorplanning can

be translated into either (<0 1 2 3 4 5>, <2 1 0 5 4 3>) which has 3 common

subsequences of length 2 or (<0 3 1 4 2 5>, <2 5 1 4 0 3>) that has 2 common

subsequences of length 3. While (<0 1 2 3 4 5>, <2 1 0 5 4 3>) can only be mapped

to the floorplanning as Figure 2.4 shows. Thus the above condition is necessary but

not sufficient because a sequence-pair specifies only a relative order. Generation of an

array-type floorplan also depends on the packing procedure, which will be discussed

in Section 2.3.3 .

Definition 4: Regularity subsequence-pair (RSP). A contiguous subse-

quence of length m that satisfies Lemma 1 in a sequence-pair is called regularity

subsequence-pair. In Figure 2.4, there are no other blocks in the middle of 3*2 array

and the corresponding sequence-pair is a RSP. In fact, the mapping from an array

13



Figure 2.5: Block 8 is placed in the middle of the regularity subsequency(<0 1 2 8 3
4 5>, <2 1 0 8 5 4 3>.

floorplan to sequence-pair is not unique. For instance, the floorplan in Figure 2.4 can

be alternatively specified by sequence-pair (<0 3 1 4 2 5>, <2 5 1 4 0 3>), where

each row is in a contiguous subsequence. This is in contrast to (<0 1 2 3 4 5>, <2

1 0 5 4 3>) where each column is a contiguous subsequence.

Definition 5: Row (column) based regularity subsequence-pair is a reg-

ularity subsequence-pair where each (reversely) common subsequence corresponding

a row (column) is contiguous. In the regularity subsequence-pair, alien blocks are

allowed in the middle of an array, their block ID can be embedded within the corre-

sponding RSP as long as complying with the following 2 rules. One such example is

given in Figure 2.5 where block 8 is inside of both subsequence of the RSP.

Rule 1: An alien block can be inside both or neither of α and β sequences of a

RSP. An alien block cannot be inside one of α and β sequences but outside of the

other for a RSP. In the example of Figure 2.6, for sequence-pair (α,β), we do not

allow (<0 1 2 8 3 4 5>, <8 2 1 0 5 4 3>). Here alien block 8 is outside the α part of

RSP (0 1 2 3 4 5), but inside the β part. This is a violation of Rule 1 as it will lead

14



Figure 2.6: Misalignment due to violation of Rule 1.

to misalignment in later packing procedure. A packing result of this sequence-pair

is depicted in Figure 2.6. We can see that α−18 and β−18 is ” < ” than both α−15 and

β−15 which means that block 8 is always on the left of block 5. But α−18 is ” > ” than

α−12 and β−18 is ” < ” than β−12 which also implies that block 8 is under the block

2. Ideally, we hope to make block 2 and block 5 symmetrical about vertical axis,

however failing to obey rule 1 causes the result unexpected.

Rule 2: An alien block can be inside both or neither of α and β part of a

contiguous (reversely) common subsequence in a row (column) based RSP and it

must be between the same array blocks when it is in both α and β sequence. An alien

block cannot be inside one of α and β part but outside of the other for a contiguous

(reversely) common subsequence in a row (column) based RSP. For example, (<0 1

2 8 3 4 5>, < 2 8 1 0 5 4 3>) is not allowed as alien block 8 is outside the α part of

the reversely common subsequence (0 1 2), but inside its β part. Another example

(<0 a 1 2 3 4 5>, <2 a 1 0 5 4 3>) is also not allowed, because even ”a” is between

(0 1 2) in both parts, it is not between the same array blocks. In α part, ”a” is

between block 0 and 1, while in β part, ”a” is between block 2 and 1.
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The reason of rule 2 is the same as rule 1 that it may cause the misplacement

during the packing procedure. Rule 1 and rule 2 are enforced in the floorplanning

algorithm in order to avoid ambiguity for subsequent packing that may lead to mis-

alignment.

The enforcement of rule 2 implies that an alien block cannot be placed between

two columns (rows) for a row (column) based RSP. Consequently, row-based and

column-based RSPs may lead to different floorplan if alien blocks are allowed between

array blocks. Figure 2.7 is an example. In Figure 2.7a, block 8 lies between row 1

(block 0,3), and row 2 (block 1,4), it is hard to represent the floorplanning with

column-based RSP, thus row-based representation (<0 3 8 1 4 2 5>, <2 5 1 4 8 0

3>) is necessary. On the contrary, in Figure 2.7b, block 8 is placed between 2 array

columns (block 0 1 2 and block 3 4 5), so it is almost impossible to represent with

row-based representation without violating rule 2 above, column-based RSP (<0 1

2 8 3 4 5>, <2 1 0 8 5 4 3>) is necessary under this situation.

In order to explore the complete space, both rowbased and column-based RSP

need to be separately examined during the annealing process.

2.3.3 Regularity in Packing

In floorplanning, a sequence-pair only specifies a relative order for the blocks and

the absolute locations for the blocks need to be further decided through a packing

procedure. In [38], horizontal and vertical constraint graphs are constructed for a

sequence-pair. Then, the packing is obtained by performing the longest path algo-

rithm on the graphs. Later, a faster packing algorithm based on longest common

sequence (LCS) is proposed in [51]. In this work, the packing approach of [51] is

adopted. Regularity in the packing implies the alignment and spacing constraints.

Array blocks of each row (column) must be horizontally (vertically) aligned. Some-
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(a) Row-based RSP.

0 3

1 4

2 5

8

(b) Column-based RSP.

Figure 2.7: Row-based and column-based RSP

times, one may additionally prefer identical spacing between rows (columns). This

is illustrated in Figure 2.8 . The alignment and spacing constraints can be expressed

according to the block locations. For example,

Xi,j −Xi,j−1 = Xi,j+1 −Xi,j (2.3)

Yi,j − Yi−1,j = Yi+1,j − Yi,j (2.4)

where X, Y are x coordinate and y coordinate of the lower-left corner of an array

block, and i(j) represents row (column) index.

During the packing process, if there is no alien block inside an array, i.e., no

alien block is inside a RSP, then the array can be pre-packed into a single object,

with or without spacing. Then, the LCS (Longest Common Subsequence) packing

algorithm [51] can be applied directly by treating pre-packed array blocks as one big

block.

If there is any alien block inside an array, then the minimum uniform spacing
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Figure 2.8: Alignment and uniform spacing.

between array blocks is decided by the maximum height of all alien blocks embedded

within the array group and the maximum width of all alien blocks embedded within

the array group except the rightmost ones. Before calling the LCS engine, a pre-

processing that temporarily expands the dimensions of the alien blocks is performed.

Consider the example in Figure 2.9 which illustrates the entire packing procedure.

First, there are 3 alien blocks: 6, 7, 8 and 6 array blocks in Figure 2.9a , and the

sequence pair is (<0 3 6 8 1 4 7 2 5>, <2 5 7 1 4 6 8 0 3>). Then, there is one

space between two regular array blocks 4 and 5. Therefore, a virtual block (block

9) is placed between array blocks 4 and 5, so the sequence pair becomes (<0 3 6 8

1 4 7 9 2 5>, <2 5 7 9 1 4 6 8 0 3>). Next, the heights of 4 alien blocks (6 7 8 9)

are expanded to the largest height of all 3 alien blocks (6 7 8), which is the height

of block 6. This height is called virtual height. Then the next step is to expand the

width to the largest width (virtual width) of all 2 alien blocks 6 and 7 (excluding the

rightmost column alien blocks), which is the width of block 6, as Figure 2.9b shows.

Notice that there is no need to expand the width of block 8 and 9 as they are in

the rightmost column of the array. An expansion of these two blocks is unnecessary
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Figure 2.9: Packing Procedure

and may affect blocks outside of this array. If there is no alien block between two

adjacent array blocks, this method can still work by imaging a virtual block there,

which has the virtual height and width. After the expansion is finished, the LCS

algorithm is performed to do the packing. Once the packing result is obtained, the

alien blocks are restored to their original dimensions. Finally, the result is shown in

Figure 2.9c with the sequence pair (<0 3 6 8 1 4 7 2 5>, <2 5 7 1 4 6 8 0 3>).

Currently, the proposed method allows at most one alien block between two

adjacent array blocks. The scenarios of allowing multiple alien blocks can be very

complex and will be studied in the future research.

LCS-Regularity Packing Pseudo Code

1. LCS-REGULARITY(X, Y, Position, array blocks)

2. If (no alien blocks among array blocks)

3. Packing array blocks into one object;

4. Else

5. Begin
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6. If (a space between two array-blocks is empty)

7. One virtual block is generated and filled in;

8. If (Row-based RSP)

9. Begin

10. Find the max height of all alien blocks in between array blocks;

11. Find the max width of all alien blocks except those in the rightmost column

between array blocks;

12. Expand all alien blocks among array blocks to virtual height;

13. Expand all alien blocks within array blocks except those in the rightmost column

to virtual width;

14. End

15. If (Column-based RSP)

16. Begin

17. Find the max width of all alien blocks in between array blocks;

18. Find the max height of all alien blocks except those in the lowest row between

array blocks;

19. Expand all alien blocks among array blocks to virtual width;

20. Expand all alien blocks within array blocks except those in the lowest row to

virtual height;

21. End

22. End

23. Start normal LCS packing procedure;

24. Restore expanded alien blocks to their original dimensions and delete virtual

block;
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2.3.4 The Floorplanning Algorithm

Once the regularity constraint is encoded in sequence-pairs, the floorplanning

algorithm is a straightforward extension of conventional simulated annealing based

approach. Initially, a sequence-pair that satisfies Lemma 1 for each array group is

generaged. For each array group with m blocks, a random factorization m = p*q

is generated first. Then, the m cores are randomly allocated to p subgroups. Each

subgroup, which corresponds to a row/column, is arranged as a common subsequence

in the initial sequence-pair. Next, the p common subsequences are arranged in a

reversely common order so that a regularity subsequence-pair is obtained for the

array group. After the initial sequence-pair is obtained, a packing procedure (as

described in Section 2.3.3) is performed. The result is evaluated according to the

cost function cost(F)=(1-λ) * area(F) + λ * wirelength(F) , which is defined in

Section 2.3.1 .

The initial solution is then iteratively improved by simulated annealing with the

following moves.

• Changing the factorization of an array group. For example, a 2*3 array can be

changed to a 3*2 array (Figure 2.10) or other factorizations.

• Changing the RSP for an array group between row-based and column-based.

• Moving an alien block into (or outside) a RSP (Regularity Subsequence-pair).

• Moving smaller RSP into larger RSP.

• Swapping two alien blocks.

• Rotating an alien block.
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Figure 2.10: Factorization change(<0 1 2 3 4 5>,<4 5 2 3 0 1>)=⇒(<0 1 2 3 4
5>,<3 4 5 0 1 2>).

• Rotating all blocks in an array group.

• Swapping two blocks in the same array group.

The proposed method can simultaneously handle multiple array groups and per-

mits one group to be interleaved with another under certain conditions. When the

sequence pair is row-based, alien blocks of another array can be placed between two

array block rows. Thus, when the factorization of the small size array group has

less number of rows than that of the larger size array group, our method allows the

smaller size group to be interleaved with the larger size group. Figure 2.13 is an ex-

ample where the smaller regularity group (5*2=10 blocks) is embedded in the larger

regularity group (6*6=36 blocks). Likewise, when the sequence pair is column-based,

alien blocks of another array can be placed between two array blocks column. Over-

all, only when both row and column counts of an array group are less than another

array group, the smaller size group to be interleaved within the larger size group is

allowed. This condition guarantees that the interleaving is feasible.

During the annealing process, when array blocks need to change their factoriza-

tions, all alien blocks are moved out of the array blocks and randomly put around.
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Figure 2.11: Swapping array blocks.

After the array blocks change their factorization, the algorithm can decide randomly

whether to put alien blocks back or not.

Most of the moves are first performed on the sequence-pair and then the packing

is performed. The cost function for each packing result is evaluated after pack-

ing procedure. The last type of move, which swaps two blocks in the same array

group, needs further discussion. Since any two array blocks in the same array group

have the same dimension and orientation, swapping them does not affect area and

non-overlapping constraint, but sometimes may reduce wirelength as Figure 2.11 in-

dicates. This swap affects only wirelength and therefore can be skipped if λ =0,

i.e., the floorplanning is only for area minimization. Since the interconnect within

an array group is typically symmetric, this swap affects more on wires between the

array group and blocks outside this group.

2.3.5 Other Floorplan Representations

Besides sequence-pair, there are numerous other floorplan representations: B*-

Tree, O-Tree, Corner Block List (CBL) and Transitive Closure Graph (TCG), to

name a few. Many of them, including B*- Tree, O-Tree and CBL, are for com-

pacted floorplanning. The compacting nature of these representations often conflicts
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Figure 2.12: Floorplan compaction from B*-Tree and sequence-pair.

with the alignment requirement for multi-core processor designs. On the left of Fig-

ure 2.12, B*-Tree forces block 3 right next to block 1. Consequently, block 3 is not

aligned with block 4 and 5 like the sequence-pair result on the right. If moving the

whole block 3 and its offspring to left node of block 2, then all blocks (3,4,5,6,7,8,9)

will be above block 1, which increases area of floorplanning. Of course, one can

redo the compaction but this nullifies a main advantage of these representations,

compaction. TCG is not a compacted floorplan representation and is similar to

sequence-pair in nature.
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2.4 Experimental Results

To the best of our knowledge, there is no previous work on regularity-constrained

floorplanning for multi-core processors. The most-related works are the analog place-

ment methods considering certain symmetry constraints. A direct comparison with

the analog placement methods can hardly lead to conclusive observations. First, the

problem formulations on symmetry constraints and regularity constraints are signif-

icantly different. Second, it is not obvious how to set analog-layout-like symmetry

constraints for multi-core processors in a way that is fair for comparison.

Here attemptption is made to emulate what a designer might do his/her best

with existing EDA tools. More specifically, the proposed approach is compared with

a semimanual/ semi-automatic method, called multi-prefix method. The multi-prefix

method tries multiple manual placements of the array blocks in order to satisfy the

regularity constraints. Each of the placements is followed by a conventional simulated

annealing based floorplanning for the alien blocks while the array blocks stay to follow

maintain their regularity. The best result among the multiple attempts is selected

as the final solution. The manual First, multiple different array factorizations are

explored and the one that leads to the best result is selected in the manual prefix

method. Second, the relative position between an array and the other blocks can be

changed during the simulated annealing part of the manual prefix method. Moreover,

the manual prefix method allows blocks within an array to be swapped.

The input to both methods includes a set of blocks containing preidentified array

groups. The blocks in the same array group should have the same size and shape.

In the multi-prefix method, different factorization options of an array group are

explored. For instance, if a chip has an array group of 16 blocks (like Figure 2.2),

the multi-prefix approach is performed 5 times with arrays of 1*16, 2*8, 4*4, 8*2 and
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16*1, respectively. Then each array group can be treated as a single big block which

maintains regularity during the floorplanning process. In the multi-prefix method,

blocks in the same array group can be swapped to get smaller wirelength if necessary.

The best result among these options is selected to be compared with our approach.

When the runtime of the multi-prefix method is reported, it is the total runtime of

the multiple runs.

Existing public domain benchmarks are mostly from old designs and do not have

cases for multi-core processors. Therefore, slightly modifications are made to the

MCNC and GSRC floorplanning benchmark by converting a subset of blocks into

array groups. In the benchmarks, I randomly choose those blocks with similar di-

mensions and modify their width and length to be the same. Those large or small

blocks are kept unchanged so that the change to the benchmarks is limited.

The floorplanning algorithms are implemented in C++ and the experiments are

performed on a Windows based machine with a 2.5GHz Intel Core 2 Duo processor

and 2GB memory.

The main results on the MCNC benchmark circuits are reported in Table 2.1.

Here, the value of λ is 0.5, i.e., the weighting factors for the area and wirelength

are the same. In this experiment, the aim is to find an optimized result with the

balance between area and wirelength. Each circuit has one array group. The second

column lists the array factorization that leads to the minimum cost among multi-

prefix methods. The third and fourth column lists the final area and total wirelength

of the best prefixed method. The fifth column ”CPU(s)” is the aggregation running

time of the all prefixed method. The proposed approach can reduce wirelength by

12% on average. At the same time, our approach achieves the same or less area and

mostly faster runtime.
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Circuit
# of Multi-Prefix Our Approach

BlocksMin Cost ArrayArea WL CPU(s)AreaArea Reduction WL WL ReductionCPU(s)

Apte 9 4*1 48 486 38 48 0% 472 2.9% 22
Hp 10 1*4 10 300 47 9 9.2% 279 7.0% 27

Xerox 11 1*4 25 1016 293 25 1.1% 687 32.3% 102
Ami33 33 4*2 1 83 1572 1 2.5% 77 7% 474
Ami49 49 4*4 50 1763 4960 49 2.6% 1559 11.6% 1354

Table 2.1: Experimental results of multi-prefix and our approach on MCNC circuits,
with λ=0.5.

Comparison of the two approaches for only area-driven formulation is made. The

results are summarized in Table 2.2. The third column lists the number of blocks in

each array group. The GSRC cases are relatively large and each case has two array

groups. Except Apte, the proposed approach always results in better area usage (or

less dead-space). The area advantage from the proposed approach is more obvious

for the larger cases from GSRC benchmark. In Figure 2.13, visualization on the

floorplanning result on GSRC circuit n100 is provided. Figure 2.13a indicates that

the proposed floorplanning approach allows alien blocks inside an array. Further, the

proposed approach allows one array to be embedded in another array.

Circuit No. of Blocks No. of Arrays
Multi-Prefix Our Approach

Min Area Arrays Area Usage CPU(s) Area Usage CPU(s)

Apte 9 1(4) 4*1 95.56 32 96.56 3
Hp 10 1(4) 2*2 90.63 22 90.64 16

Xerox 11 1(4) 1*4 96.71 14 97.13 29
Ami33 33 1(8) 2*4 94.63 379 95.42 331
Ami49 49 1(16) 8*2 93.69 713 93.80 231

n50 50 2(16,12) 4*4, 4*3 88.06 71 93.05 42
n70 70 2(49,9) 4*6, 3*3 87.02 149 90.53 465
n100 100 2(36,10) 6*6, 2*5 90.16 461 92.20 259
n200 200 2(56,21) 7*8, 7*3 84.11 3016 92.89 5007
n300 300 2(81,40) 9*9, 10*4 86.25 5429 89.82 6380

Table 2.2: Area-driven floorplanning results on MCNC and GSRC circuits.

The methods for wirelength-driven floorplanning is also tested and the results are
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(a) our approach.

(b) the manual prefix method.

Figure 2.13: Floorplan of n100

shown in Table 2.3. For the multi-prefix method, the results of all different array

factorizations are listed. Compared to the multiprefix method, the proposed method

achieves the same or less wirelength and usually costs less runtime.

Circuit No. of Blocks No. of Arrays
Multi-Prefix Our Approach
WL CPU(s) WL CPU(s)

Apte 9 1(4) 473 72 437 65
Hp 10 1(4) 192 39 191 104

Xerox 11 1(4) 442 81 439 445
Ami33 33 1(8) 68 724 68 831
Ami49 49 1(16) 1264 1316 1247 2679

Table 2.3: Wirelength-driven result on MCNC circuits.

At last, an experiment is conducted to see the effect of allowing alien blocks to

be embedded between array blocks. This experiment is performed on the GSRC

benchmark circuits as they have larger sizes than the MCNC benchmarks. The

results are summarized in Table 2.4. One can see that allowing alien blocks among

an array often leads to significant area usage improvement. This benefit can also be

seen in Figure 2.13.
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Circuit No. of Blocks No. of Arrays
Disallowing Other Blocks in Array Blocks Our approach
Area Usage CPU(s) Area Usage CPU(s)

n50 50 2(16,12) 87.83 35 93.05 42
n70 70 2(24,9) 80.93 202 90.53 465
n100 100 2(36,10) 86.62 132 92.20 259
n200 200 2(56,21) 80.56 3496 92.89 5007
n300 300 2(81,40) 88.27 5739 89.82 6370

Table 2.4: Comparison between allowing and disallowing other blocks in between
array blocks.
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3. UNCORE DYNAMIC VOLTAGE AND FREQUENCY SCALING FOR

MULTI-CORE PROCESSORS∗

3.1 Introduction

The progress of chip design technology faces two related challenges: power and

on-chip communication [35]. A recent study by Google [1] shows that, as power-

efficiency improves for server processors, the interconnection network is becoming

a major power consumer in the datacenter. Likewise, on-chip communication now

forms a power bottleneck in chip multiprocessors (CMPs) given the considerable

progress on processor core power-efficiency. Recent designs have resorted to increas-

ing cache size to circumvent the off-chip memory bottleneck. A large cache in turn

demands an increase of on-chip communication bandwidth. Indeed, on-chip commu-

nication fabrics and shared, last-level caches (LLCs) have grown to occupy a large

portion of the overall die area, as much as 30% of chip area in recent Intel chip

multiprocessors [25]. Such growth inevitably exacerbates the power challenge. In his

speech at International Conference on Computer-Aided Design 2011, Chris Mala-

chowsky, a co-founder of Nvidia, pointed out that the energy expended delivering

data on chip has far exceeded the energy in computation operations. Dynamic volt-

age and frequency scaling (DVFS) is an effective and popular low-power technique.

This chapter presents techniques that facilitate efficient DVFS for NoC (Networks-

on-Chip).

Networks-on-Chip (NOC) are recognized as a scalable approach to addressing

the increasing demand for on-chip communication bandwidth. One study shows

∗Reprint with permission from “Dynamic voltage and Frequency Scaling for Shared Resources
in Multicore Processor Design” by Xi Chen, DAC 2013, Austin, Copyright 2013 by ACM Digital
Library
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that NOCs can achieve 82% energy savings compared to conventional bus design

in a 16-core system [23]. Nonetheless, the NOC still accounts for a considerable

portion of total chip power, e.g., 36% in MIT RAW architecture [54]. When the

workload is small, some cores can be shut down to save leakage power. However,

NOC and LLC need to stay active for serving the small workload and therefore their

power proportion is even greater. The power-efficiency of NOC and LLC can be

improved by Dynamic Voltage and Frequency Scaling (DVFS), with the rationale

that power should be provided based on dynamic need instead of a constant level.

DVFS has been intensively studied for individual microprocessor cores as well as

the NOC [46, 28, 49, 40, 14, 36, 43, 5, 7]. Much of this prior work assumes a core-

centric voltage/frequency (V/F) domain partitioning. The shared resources (NOC

and/or LLC) are then divided and allocated to the core-based partitions according to

physical proximity. While such configuration allows a large freedom of V/F tunings,

the inter-domain interfacing overhead can be quite large. Furthermore, as these

shared resources are utilized as a whole, with cache line interleaving homogenizing

traffic and cache slice occupancy, per-slice V/F tunings makes little sense.

In this chapter, focus will be placed on DVFS for NoCs of CMPs. Previous

work in DVFS for NoCs and CMPs have focused on per-core or per-router DVFS

policies, as shown in Figure 3.1a. Unlike much prior work, we consider a realistic

scenario wherein the entire NoC and shared last-level cache (LLC) forms a single

voltage/frequency domain, separate from the domains of the cores (see Figure 3.1b).

We argue placing the shared LLC in one clock domain across the chip is logical

because it is, in fact, one large, partitioned structure. Allowing some portions of the

address space to see a penalty in performance due to a given LLC bank being clocked

slower relative to other portions would impact performance determinism and could

make the performance of active threads hostage to the DVFS state of idle threads.
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Figure 3.1: Logical CMP diagrams highlighting Voltage/Frequency domain parti-
tions.

Unlike the individual cores which are running different threads/programs, the LLC

banks have a mostly homogeneous load due to the interleaving of cache lines in the

system; in this case, the voltage/frequency domain partitioning like Figure 3.1a can

be inefficient. For example, if one core is active and makes many LLC requests while

the other cores are idle, then, according to the partition in Figure 3.1a, only the V/F

domain for the active core is in high V/F mode. However, this is not sufficient as its

data travels in other domains which are in low V/F modes. Therefore, Figure 3.1b is

a more reasonable V/F domain partitioning for a CMP with shared LLC. Latency is

a critical characteristic in CMP NoCs [13, 12]. Synchronizing across clock domains is

expensive in cycles per hop; placing many clock domain crossings in the interconnect

makes the design unscalable by imposing a high cost in latency per hop [44].

Performing DVFS on an entire NoC system is, however, more difficult than doing

it partially as in previous work such as DVFS for each link [46] or each core [55]. In
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these cases, voltage/frequency levels are determined by local information (e.g. link

congestion [46] or core workload [55]). In contrast, sharing V/F level over the entire

network requires information on the load/activity of many different entities. There-

fore, an efficient network monitoring technique which accurately collects information

from each tile without impacting performance of the network by flooding it with

status information messages is required.

This work focuses on a realistic scenario where the entire NOC and LLC belong to

a single V/F domain. As such, the interfacing overhead can be largely prevented and

there is a coherent policy covering the whole of these shared resources. To the best of

our knowledge, only two works [28, 7] have addressed DVFS for such scenario. Liang

and Jantsch propose a rule-based control scheme, using network load as the measured

system performance metric [28]. Although Liang et al.’s work demonstrates the

benefit of DVFS, there are two critical hurdles that have not been well solved. First,

the impact of the NOC/LLC V/F level on the chip energy-performance tradeoff is not

straightforward. These prior works shy away from this problem by evaluating only

parts of the chip system. Second, the chip energy-performance tradeoff is dynamic

at runtime while the controls of these prior approaches are based on fixed reference

points.

In this paper, we present remarkable progress on overcoming these hurdles. New

methods are proposed and investigated. First, a throughput driven controller with

dynamic reference point is examined. Second is a model assisted PI controller based

on a new metric that bridges the gap between the NOC/LLC V/F level and the

chip energy-performance tradeoff. The last one is a PI controller with a dynamic

reference point based on the new metric.

In this chapter we address these questions. The key contributions of this work

are as follows:
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• We introduce several new uncore status metrics to predict the impact of DVFS

policy on system performance.

• We propose a novel, extremely low overhead, uncore status monitoring tech-

nique. This technique is composed of the following: 1) Per-node metric sam-

pling, 2) Passive in-network status encoding, no extra packets needed, 3) Metric

extrapolation to properly scale value weights.

• We introduce an uncore DVFS policy based upon PID (Proportional-Integral-

Derivative) control with a dynamic reference point based on the new metric.

These methods are evaluated in full system simulation on the PARSEC bench-

marks [3]. The experimental results show that our techniques can reduce NOC/LLC

energy by ∼ 80% and ∼ 50% compared to a baseline fixed V/F level (no power

management) and the state-of-the-art prior work [7], respectively. Simultaneously,

we achieve our target of ≤ 5% performance loss. Compared to the static reference

point design [7], the energy-delay product is reduced by 56%.
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3.2 Preliminaries

This section introduces the basics of shared, distributed, last-level caches and

their NoC interconnect in CMPs (which we collectively describe as the “uncore”).

We then introduce the basic concepts in NoC performance monitoring and discuss

the power and performance constraints on the uncore. Finally we discuss power

management using DVFS in the uncore.

3.2.1 Related Work

Shang et al. present a pioneering work on dynamic voltage scaling in NOCs [46].

They tune voltage levels for individual links separately according to their utilization

history. Mishra et al. propose DVFS techniques for NOC routers [36]. They monitor

input queue occupancy of a router, based on which the upstream router changes its

V/F level. Son et al. perform DVFS on both CPUs and network links [49]. They

target to parallel linear system solving and the V/F levels are decided according to

task criticality. Guang et al. propose a voltage island based approach [14], where

router queue occupancies are monitored and island V/F levels are tuned accordingly.

Rahimi et al. take a similar rule-based approach according to link utilization and

queue occupancy [43]. Ogras et al. propose a formal state-space control approach

also for voltage island based designs [40]. Bogdan et al. introduce an optimal control

method using a fractional state model [5]. In drowsy caches, dynamic voltage scaling

is applied at certain cache lines at a time for reducing leakage power [10]. To the

best of our knowledge, there is no published work on DVFS which focuses on shared

caches in multicore chips.

Liang and Jantsch present a DVFS controller that attempts to maintain the net-

work load near its saturation point, where the load is the number of flits in the

network [28]. At each control interval, its policy is to increase (decrease) network
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V/F level by one step if the network load is significantly greater (less) than the sat-

uration point. This method neglects the fact that chip performance also depends

on the distribution besides the amount of network load. A non-uniform distribu-

tion may imply certain congestion hot-spots, which may significantly degrade chip

performance. Even with consideration of the distribution, network load does not

always matter. For example, many store operations induce large network load but

they are not critical to the overall chip performance. Liang and Jantsch’s method

may respond slowly for bursty traffic as only one step V/F change is allowed in each

control interval.

In this chapter, we will first introduce a PI controller based on AMAT [7]. AMAT,

as we formulate it, including the effects of the private caches, NOC, LLC and off-chip

memory, reflects network load and contention inherently, providing an approximation

of the latency seen by typical core memory references. Therefore, we think it captures

a more global system effects than a purely network-based metric such as Liang and

Jantsch’s approach [28]. Our AMAT metric, however, does not truly separate out

the LLC and NOC utility to the core from the effects of the off-chip memory. Thus,

applications which frequently miss in the LLC, causing off-chip memory accesses,

will lead to high AMAT values, and thus high LLC and NOC frequencies, despite

the LLC utility being low in this case. Later in this work, we will improve it and

propose another more accurate metric called critical latency. Chapter 3’s DVFS

policy uses a PI controller, subsuming that of Liang and Jantsch. This work also

describes implementation techniques on how to monitor system metric of multicore

with low overhead.

In this work we assume a low-overhead, in-network monitoring scheme is used for

the transmission system status information to the power controller.

Both Liang and Jantsch’s [28] suffer from another weakness, they have no system-
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Figure 3.2: A multicore processor design where the uncore (NOC+LLC) forms a
single V/F domain.

atic approach to decide the reference point for their controllers. The reference point

is decided empirically according to offline simulations. However, it is very difficult,

if not impossible, for a fixed reference point to be appropriate for different kinds of

applications. Moreover, neither work provides performance results from full-system

simulation to validate their approach.

3.2.2 Problem Description

We consider a common case in multicore processor design where the entire chip is

composed of an array of tiles. Each tile contains a processor core and private caches.

The communication fabric is a 2D mesh NOC with one router residing in each tile.

There is a shared LLC partitioned into slices and distributed uniformly among tiles.

The NOC and the LLC together are referred to as the uncore system in this work.

The system is illustrated in Figure 3.2 where NI denotes Network Interface with

cores.

The problem we attempt to solve is formulated as follows.

Uncore dynamic voltage and frequency scaling: within a set time window, find

the voltage/frequency level for the uncore such that the uncore energy dissipation is
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minimized while the chip performance, in terms of total application runtime, has

negligible or user-specified degradation.

Please note that our problem formulation has a key difference from previous works

on NOC DVFS, which try to optimize the performance of NOC itself, not considering

directly its utility to the system. In contrast, we have the more challenging goal of

optimizing uncore energy under the constraint of entire system performance. We

present the first work we are aware of in this area with such formulation. The

uncore energy we try to minimize includes both dynamic and leakage energy and

their models are well-known.

3.2.3 CMP Uncore Basics

Typical CMPs are composed of a set of cores, consisting of the processor and

private lower level caches (level-1 and sometimes level-2), along with an “uncore”.

The uncore portion of the die refers to all the integrated subsystems on the chip

except the cores. More precisely, the LLC, the routers and links of NoC, integrated

memory controller, integrated I/O controller etc. constitute the uncore. In other

words, the uncore enables communication between the processing cores, and with the

LLC, off-chip memory, I/O devices, graphics core and accelerators, if any. Therefore,

any miss in the local caches of a core will result in an “uncore request”. Finding

the location of the requested cache line, transferring the cache line to the core or

the memory controller as well as controlling the global state of the cache line are all

managed by the uncore. In modern LLCs, the banks of the LLC are partitioned and

distributed such that a portion of the LLC is co-located with each core. This LLC

arrangement has the advantage of improving performance over the prior, monolithic

cache designs.

In our baseline design, we assume coherence between the private caches in the
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cores is maintained via a distributed directory cache in the uncore. The NoC inter-

connecting the uncore and the cores primarily carries memory system traffic. Partic-

ularly, the NoC carries lower-level cache spills and fills, lower-level cache coherence

messages, and LLC cache spills and fills. We assume that LLC cache set indices are

spread about the partitions of the LLC in a round robin fashion, to ensure that each

partition receives approximately the same amount of traffic and no single partition

becomes a hotspot.

3.2.4 Uncore Power and Performance Implications

The uncore consumes a significant fraction of the whole chip power due to the

relatively large proportion of the chip area it consumes. In particular, the uncore

power can be broken down into static and dynamic power components, corresponding

the constant power drain due to leakage, and the usage dependent power consumption

due to gate switching respectively.

Static power in CMOS circuits is mainly caused by subthreshold leakage, gate

leakage and junction leakage current, and can be expressed by

Pstatic = Vdd · Isub + Vdd · Igate + Vdd · Ijunc (3.1)

The supply voltage affects static power not only through the multiplication factors

above but also through the leakage current. For example, leakage current is described

by [21]

Isub = µCoxV
2
th

W

L
· e

VGS−VT
n·Vth (3.2)

where µ, Cox and n are technology-dependent parameters, W and L are transistor

dimensions, and Vth is the thermal voltage. Since the gate-source voltage VGS is

decided by the supply voltage, the leakage current is directly affected by the supply
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voltage. Overall, voltage scaling can help to reduce static power, taken together the

relationship between static power and Vdd is roughly linear.

Dynamic power dissipation for CMOS circuits is given by

P = α · C · V 2 · f (3.3)

Although the activity factor (α) for the uncore is not necessarily high, its total area

and capacitance (C) can be large. Similarly the leakage power, a growing problem in

future VLSI process technologies, is also proportional to the area of uncore. Equa-

tion (3.3) also includes two interrelated components – the voltage squared (V 2) and

frequency (f). For a given design, increasing the voltage makes transistors to switch

faster, allowing the chip to operate at a higher frequency. Conversely, lowering the

voltage forces a decrease of the clock frequency to meet timing constraints. Dynamic

voltage and frequency scaling (DVFS), is a well-known technique which leverages

this relationship to lower dynamic power consumption. Lowering the voltage has

a quadratic effect on the dynamic power of the circuit being lowered, though this

comes at the cost of some performance due to the required decrease in frequency.

By lowering the voltage and frequency to match but not exceed the demands of the

application, a good DVFS policy can achieve substantial power savings.

Achieving power savings through DVFS in the cores is a comparatively simple

problem, considering that the information needed to select an appropriate voltage

and frequency are available in a localized place, the CPU core itself (e.g. from per-

formance counters within that core). Determining an appropriate DVFS state for

the uncore is a significantly more difficult problem. Because the uncore consists of

the LLC and network, the relative criticality of the uncore’s performance to the per-

formance of the system is highly dependent on the application’s demand for LLC

data and inter-thread communication. Applications which are mostly L1 cache res-
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ident place little performance pressure on the uncore and the uncore can safely run

at a relatively low frequency, while those with frequent L2 cache misses place high

demands on the uncore and require the uncore to run at a high frequency.

For purposes of studying uncore DVFS polices, we decompose the problem into

three major components. First, because the uncore consists of two very different

components, the LLC and NoC, it is unclear what performance metrics are appro-

priate as an input to the DVFS policy. Second, because the uncore is distributed

across the chip, a mechanism must be developed to monitor the status of the uncore

performance metrics and inform the DVFS policy. Finally third, once the inputs

have been defined and arrive at the DVFS controller, an appropriate policy must be

developed. We explore these components in the remainder of this section.

3.2.5 Options for DVFS Policy

Broadly speaking, there are two categories of approaches for DVFS: open-loop

control and closed-loop control. Open-loop control decides control variables based

on the current system state and a system model obtained either theoretically or

through machine learning. The behavior of a multicore system is typically very

complex. Even if a decent model is available, its behavior depends on environmental

parameters that are highly dynamic and thus are very difficult to reliably predict.

Closed-loop control adjusts control variables with consideration of observed out-

put. It includes several options: rule-based, PID (Proportional-Integral-Differential)

control, state-space model-based control and optimal control. In a rule-based ap-

proach, a set of ad hoc rules are determined, such as simply increase (decrease)

uncore V/F level if the network performance is poor (good) according to given met-

ric. Based on the observed output error, PID control adjusts the system to track a

target output. State-space model-based control formally synthesizes a control pol-
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icy [40]. Optimal control [5] decides system operations by solving an optimization

problem and sometimes can be applied with a state-space model.

We adopt PID control due to its simplicity, flexibility, low implementation over-

head. In a discrete-time system, where the output is a time-varying function yi

and the control variable is ui for control interval i, the error function is defined by

ei = yref − yi, where yref is the reference point or target output. Since differential

control is sensitive to data noise, we drop the differential term. A PI controller can

be described by:

ui = ui−1 +KI · ei +KP · (ei − ei−1) (3.4)

where KP and KI are constant parameters. Please note that the problem described

in Section 3.2.2 is an optimization problem, which implies a dynamic goal instead

of a steady target in typical PI controls. To bridge this gap, it is very important

to use a dynamic reference point, as shown in subsequent sections, instead of fixed

reference as in [7].

In this paper, we address DVFS for the uncore as a whole. We will demonstrate

that there is a large opportunity for uncore power saving with an accurate but low

cost monitoring technique to fetch network information, meanwhile using a simple

but effective control algorithm to adjust uncore voltage and frequency based on the

monitoring result.
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3.3 Uncore Performance Metrics

Monitoring is a very important part in the power management process. A good

monitoring technique can not only minimize the hardware overhead but also miti-

gate the system power consumption. On the contrary, the inappropriate monitoring

technique may bring extra burden to the system. In this work, we use critical la-

tency(CL) as the system metric, piggy-back as the information propagation technique

and extrapolation technique to compute collected data.

3.3.1 Previous Uncore Performance Metrics

Network communication traffic load and performance can be described via several

potential networks metrics. In this section we explore some potentially suitable

indicators that may predict network load.

Queue occupancy and crossbar demand: Routers typically have queues,

or input FIFOs for temporary storage of data. The occupancy level of a queue

naturally indicates local congestion. For example, an emptying queue may suggest

the receiver processing speed is too fast compared to the sender. While a filled queue

may suggest the router is congested and that the processing speed of the receiver

is not great enough. A stable queue occupancy would probably suggest a perfect

match between receiver speed and sender speed. Hence, queue occupancy has been

widely used in adaptive routing [11, 22] and DVFS for individual links [46, 40, 43].

The overall congestion status of a network can be estimated by monitoring queue

occupancy of all routers. We investigate the queue occupancy during the simulation,

the result is showed in Figure 3.3. From the figure, we can see that the middle four

have the highest demand rate, which is what we expected because statistically, if in

a uniform traffic, the middle four routers where crossbars locate experience the most

conjected traffic.
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Figure 3.3: Crossbar demand of Blackscholes.

A different and slightly overlapping metric for congestion is crossbar demand,

which is the number of active requests to an output of a router [11]. Many requests to

an output imply a convergent traffic patten, which is likely to become a bottleneck.

While queue occupancy measures the degree of downstream congestion, crossbar

demand indicates local congestion. In either case, estimating the performance of the

network as a whole requires monitoring many if not all routers.

Average per-request latency (APRL):While queue occupancy and crossbar

demand reflect network congestion, packet latency is a direct measure of network

performance. Packet latency is defined by the time span from a packet request being

made to the arrival to its destination. Although low packet latency is obviously

preferred, it is not directly obvious what should be the absolute goal in packet latency.

Different types of workload can be expected to produce different average hop-counts

and average packet lengths and hence different nominal packet latencies. Figure 3.4
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Figure 3.4: Average per-request latency of Blackscholes.

is an example of Blackscholes benchmark.

Average per-hop latency (APHL): Average Per-Request Latency can roughly

reflect the network traffic condition. However it suffers the following drawbacks: 1) It

ignores the difference of the number of hops between each request. 2) The packet size

of different request also varies. For the convenience of a normalized comparison, we

suggest average per-hop latency (APHL), which is the average latency a flit incurs as

it traverses each router along its path through the NoC. For any specific system, there

is an unique minimum latency for one hop which is determined by the link delay plus

the router pipeline latency. By removing distance traveled and serialization latency,

APHL gives a traffic pattern independent metric of network load as Figure 3.5.

As such, APHL’s deviance from a given NoC’s inherent minimum per-hop latency

serves as a clear target for the DVFS tuning. Figure 3.6 is an example of APHL.

Figure 3.7 compares APRL and APHL and we can see that after ruling out the
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Figure 3.6: Average per-hop latency of Blackscholes.
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Figure 3.7: Comparison of APHL and APRL.

drawbacks of APRL mentioned above, ALPH can better reflect the network traffic

condition.

3.3.2 Average Memory Access Time – AMAT

While the previous metrics merely provide the information of current network

congestion, we also propose average memory access time (AMAT) as a metric which

provides not only the current network status but also the demand for its perfor-

mance. When a cache miss occurs on the private caches, the NoC is used to fetch

the missing cache line from LLC. Thus, NoC performance translates to memory op-

eration latency. Experimentally we determined that for small AMAT increases, IPC

(instructions per cycle) of the cores decreases approximately linearly with AMAT

with a slope of .5. Consequently, AMAT provides a good index of required uncore
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Figure 3.8: AMAT with respect to uncore clock period.

performance. Equation (3.5) shows a simplified uncore AMAT formula:

AMAT = HitRate(private)× Latency(private)

+ (1−HitRate(private))× Latency(uncore)

(3.5)

where HitRate(private) is the aggregate hit rate on the private caches (L1 and L2)

and Latency(private) is the average access time on those caches. Latency(uncore)

is the average access time to the shared LLC (ie. access time to the L3 slice on a

remote tile), plus the latency of the memory controller if the required cache block

is missing in LLC. For simplicity we assume Latency(uncore) linear with the clock

period (1/f) of the uncore, such that Figure 3.8 shows a representation of AMAT.

Figure 3.8 shows two extreme cases. f0 depicts the AMAT with respect to

the clock period when HitRate(private) = 0, while f1 shows the AMAT when

HitRate(private) = 1. f0 represents the case the most of the memory access re-

sults in the private cache miss such that the missing block must be transferred over

the network. In this case, the AMAT is highly dependent on the uncore performance,

hence decreasing the uncore frequency via DVFS has a strong negative impact on

system performance and should be avoided. On the other hand, f1 represents the

case where all memory accesses are served by the private caches. In such a case, de-

creasing uncore frequency has no impact on system behavior, hence should be done
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to achieve power savings with little impact on performance. Thus, it is desirable

for the DVFS controller to account for AMAT in deciding whether increasing the

frequency is worth the increased power or not.

3.3.3 Composite Uncore Metric – Critical Latency

The throughput-driven DVFS described in the work [7] largely solves the dy-

namic reference problem. Although the metric used by the technique captures the

performance of the uncore well, it is still oblivious of the overall chip performance.

Ideally, the metric should reflect both the uncore performance and its criticality to

the overall chip performance. We therefore define a new metric - critical latency,

expressed by

Γ = η · λU (3.6)

where η is the criticality factor and λU is the uncore latency.

The uncore latency should account for the latency in the network and LLC.

Subtracting the reply return from request inject time, one can obtain the packet

latency; however, this latency may contain off-chip memory latency in the event of

an LLC miss. This memory latency should be excluded from consideration since

it is not affected by the uncore DVFS. In certain cases, the LLC miss can be very

high and the overall data latency is dominated by the memory latency. In this case,

increasing uncore V/F does not help to improve chip performance while causes more

power dissipation †. The uncore latency can be described by

λU =
(
∑Npackets

j=1 λpacket,j)− λMem ·NLLC Misses

Npackets

(3.7)

†We intentionally do not differentiate between packets which lead to coherence traffic and those
which do not. Coherence related traffic can increase LLC latency and is sensitive to uncore V/F
state.
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where λpacket,j is the total round-trip latency for packet j, λMem is the memory access

latency, NLLC Misses is the number of LLC misses in a control interval and Npackets is

the number of packets in the same interval.

In microprocessors, both store and load data induce network traffic and poten-

tially LLC access. These two types of packet requests have different impact on the

overall chip performance. Often, a long latency load can block the execution of in-

structions that need the data, and therefore is performance critical. In contrast, a

store operation can often run in parallel with subsequent instructions and is rarely

critical. Thus, the criticality factor of uncore performance includes Loads Fraction,

which is the number of load instructions per cycle. We scale Loads Fraction by the

L1 miss rate, assuming L1 is the only level of private cache, because loads which hit in

the private caches never enter the uncore and are not affected by uncore performance.

Therefore, we have

η = L1 Miss× Loads Fraction (3.8)
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3.4 Uncore Monitoring Technique

In the prior work, network status information has been predominately used lo-

cally, particularly for adaptive routing [22, 53, 48, 47], and for localized DVFS poli-

cies [46, 40, 43]. Gratz et al. [11] and Ma et al. [34] propose small, light-weight

status information networks to provide deeper visibility into the NoC and hence

enable better adaptive routing decisions. In these cases, the performance metric

obtained from the local router is assumed to provide enough information to enable

local decisions, such as which output port to send a packet to, or what DVFS setting

for a given router. These techniques, however, provide a limited view of the status of

the network as a whole, either decreasing exponentially with distance [11] or limited

to one bit of data per node in only the orthogonal directions [34]. There are some

other monitoring techniques to inform DVFS policy in NoCs. Yin et al. [58] propose

dedicated links and virtual channels for collecting and monitoring system status in-

formation; this approach is expensive in terms of design time to create a dedicated

interface, power for these links and area for the logic associated. Rahimi et al. [43]

propose to monitor network performance based on link utilization; this approach is

reasonable for fine-grained, local link DVFS control but does not scale to a full-chip

shared resource.

3.4.1 Uncore Status Monitoring

Ideally for global decisions, one would like continuous monitoring of uncore sta-

tus, whether per-packet statistics to calculate APHL, or per-core memory statistics

to calculate average AMAT. Such complete, active monitoring entails a calculation

overhead at every tile, which includes counting starting/arrival time of packets, cal-

culating the average, etc. Moreover, the status obtained at each tile must be regu-

larly sent to the central power controller to set DVFS policy, consequently causing
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increased traffic and congestion.

To avoid increasing traffic and congestion within the primary NoC we propose to

leverage unused space in the header flits of existing packets to “piggyback” network

status information. This approach has the advantage of being scalable to larger

networks because no extra networks or links must be designed. Furthermore, it is

passive, ie. it does not perturb the network with extra status packets. A potential

disadvantage to this approach is the non-determinism of status message delivery.

As we will show, however, this does not significantly degrade the accuracy of this

approach.

We propose to estimate current AMAT to provide feedback to the DVFS con-

troller. Each tile keeps track of its status information and a monitor collects the

information for AMAT computation. To minimize hardware overhead, we use the

existing NoC infrastructure to convey the information, to avoid increasing traffic and

congestion, we leverage unused space in the header flits and employ passive monitor-

ing rather than any active system. We propose a single monitor for our 4×4 network;

experimental results show this is sufficient for this size network. We assume the un-

core contains a Power Control Unit (PCU), which is a dedicated small processor for

chip power management as in Intel’s Nehalem architecture [26].

3.4.2 Data Collection

A holistic view of the full system is largely missing from much of the prior work

in DVFS policies for the on-chip interconnect. In interconnect research, researchers

typically focus on the network, trying to minimize its power consumption or increase

its performance. This approach misses the strong connection between processing

elements and the interconnect, wherein small changes in the network may have a

strong impact on the whole system. For example, when executing a given application,
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the cores may be memory bound, requiring data fetched from the memory through

the network to make progress. If the frequency of the network is lowered even slightly,

the processing will slow down accordingly, leading to wasted time and energy while

the processors idle. Alternately, however, if the program is computation centric

or if the data required fits within the upper-level, core-private caches, requested

data is not as urgently important to the processing unit. Therefore, slowing down

the network frequency will not significantly affect processing performance much,

meanwhile achieving a lot of energy saving. Thus, it is critically important to view

interconnect performance demands within the larger context of system performance.

In our proposed technique, each tile maintains statistics on its private, lower-level

cache’s behavior necessary to compute AMAT. These statistics must be sent to a

central, monitoring node for overall AMAT estimation and DVFS policy generation.

Rather than injecting more packets into the system, increasing traffic and congestion,

each tile “piggybacks” its status information into every packet injected into the

network. Under the assumption of 128-bit wide links, and 64-byte cache blocks, we

find there are ∼ 64 unused bits in the header flit or single flit packets. We leverage

these unused bits to encode the status information as shown in Figure 3.9. Here, Time

Stamp denotes the time the packet is generated. HitRate(L1) andHitRate(L2) show

the hit rate of L1 and L2 caches during the time window. No.ofUncoreRequest and

53



Figure 3.10: NoC layout; the monitor resides at tile 6

Sum(RL) correspond to the number of L2 requests sent into the Uncore and the

sum request latency during the time window, respectively. The Sum(RL) is the

accumulated time span required for L2 requests into the uncore, and includes the

access time of the L3, cache coherence resolution time and main memory access time

on L3 misses. The additional hardware cost to maintain this status information is

discussed in Section 3.6.1.

Figure 3.10 shows an NoC layout illustrating our monitoring technique. Instead

of adding monitors to each tile, we employ a single monitor that collects the data

from the whole network. We chose tile 6 as the location of the monitor intuitively

because a central location provides the best vantage point to passively collect the

desired statistics (an assumption experimentally verified). In addition, the monitor

tile should be near the PCU so that the overhead of interconnect between the monitor

tile and the PCU is negligible. The monitor grabs status information from all passing

packets (e.g. a packet traveling from tile 4 to tile 7) or packets bound to tile 6 (e.g.

a packet from tile 13 to tile 6). Data collection is passive, a potential downside of

this approach is non-determinism of message delivery, as we will discuss in the next

section.
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3.4.3 Overall Metrics Computation

Once a packet arrives at the monitor, the source node’s status information, en-

coded in the packet’s header, is handed over to the PCU (Power Control Unit). The

PCU is in charge of computing collected data on the packet’s arrival.

This propagation technique is applicable to both AMAT and critical latency or

some other potential metrics that require core information. Here we use AMAT as

an example to elaborate the propagation process. Critical latency can use a similar

method.

The AMAT for each tile is computed as per Equation 3.9 based on the information

gathered.

AMAT = HitRate(L1)×AccessT ime(L1)

+ (1−HitRate(L1))× Latency(L2)

Latency(L2) = HitRate(L2)×AccessT ime(L2)

+ (1−HitRate(L2))× Latency(uncore)

Latency(uncore) = (Sum(RL))/(No. of Uncore Request)

(3.9)

Note that Eq. 3.9 is a more detailed version of Eq. 3.5, where HitRate(private) and

Latency(private) are decomposed into their constituent L1 and L2 components. The

AccessT ime values are constants for a given L1 and L2 cache design and hence need

not be sent in the header. Also note, the Sum(RL) the sum of round trip time for

Uncore requests, including NoC latency, L3 access time, cache coherency latency, as

well as main memory latency when L3 misses occur.

Our DVFS policy requires the overall, chip-wide AMAT as an input. This overall

AMAT is computed for every time window of 50000 core cycles. To calculate overall

AMAT, we use a weighted average of the per-node AMAT, with respect to the number
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of memory instructions issued by that tile during the window. Upon packet arrival or

traversal of the monitor tile, the PCU calculates the AMAT for the source tile of the

packet and stores it in a table with 16 entries; one for each tile. Memory instruction

count is also stored in the table. At the end of each time window, the PCU, using

the memory instruction counts as weights, computes the weighted average of AMAT

across all tiles as the overall AMAT. At the end of every time window, all entries

are reset to 0; entries not updated are excluded from overall AMAT computation.

Figure 3.11 depicts this process. The graph shows the AMATs of Tilei and Tilej,

in a two tile system. The cross marks on the time line denote packet arrivals, and

the circles are the AMAT for the corresponding tile to be stored in the table. The

numbers above the circles denote the memory instruction count. The triangles are

the final AMAT values used in overall AMAT calculation. In “Window 1”, Tilei

sends two packets, but the data from the first packet is discarded as the second one

overrides it. At the end of this window, the PCU first calculates the per-tile AMAT

for Tilei and Tilej of 80 and 65 respectively from the status information in the final

packet from each. It then determines there are 120 memory instructions in Tilei

and 60 in Tilej, and these values are used in the weighted average overall AMAT

thus (80 × 120 + 65× 60)/(120 + 60). In “Window 2”, the PCU receives no packet

from Tilei thus the overall AMAT is computed only from AMATj and it is 120. The

system clock is also reset at the end of time window, thus if a packet’s time stamp is

later than the current system time, the packet is discarded as it is from the previous

window.

We refer the above method as “Näıve” as it calculates AMAT without accounting

for packet arrival time. Unfortunately, this passive monitoring method does not

guarantee that each tile’s statistics are current. As the final value is evaluated at

the end of each time window, it is better to have a packet from a tile near the end
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Figure 3.11: Overall AMAT computation

of the window. For example, at “Window 3” in Figure 3.11, AMATi and AMATj

have the same weight as the numbers of memory instructions carried over are the

same. However, in the end of the time window, it is very likely that Tilei eventually

has more memory instructions than Tilej since the count had been determined much

earlier. Thus, we introduce a method of linear extrapolation to correct this bias. We

assume that the number of memory instructions linearly increases in a time window.

With the fact that the memory instruction count is 0 at the beginning of a time

window, we can estimate the count in the end of it using a sampled count at any

location of the window. We use the “Time Stamp” in the packet to define the relative

location within the time window, and that needs to be stored in the table. By this

“extrapolation”, in “Window 3”, the effective memory instruction count of Tilei

becomes 400 while that of Tilej becomes 133. Finally, the overall AMAT becomes

45 while in “Näıve” it is 40.

Figure 3.12 compares the performances of the “Näıve” and “Extrapolation” meth-

ods. The figure shows the correlation between actual and computed overall AMATs

for monitor tiles, tile0-tile15 (tiles numbered as shown in Figure 3.10). Generally,
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Figure 3.12: Overall AMAT from each tile’s perspective

higher correlations across all tiles indicates a given method provides a better esti-

mate of overall AMAT. For Canneal we see that “extrapolation” generally results

in a more accurate overall AMAT than “Näıve.” For Vips, much higher correlation

is achieved by “extrapolation” method. Vips ’s traffic pattern is more highly skewed

and hence requires “extrapolation” to produce reasonable results. Note that in both

cases tile6 shows the highest correlation among the tiles, thus we select tile6 as our

monitor tile which also matches our assumption that central location provides better

visibility.

The composition of critical latency(CL) is similar to that of the AMAT, so the

computation procedure of AMAT can also be applied to critical latency.
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3.5 Control Policy for the Uncore System

3.5.1 PID-Based DVFS Policy

We choose to implement a DVFS control scheme based on PID (Proportional-

Integral-Derivative) control. Compared to rule-based approaches [17, 45], PID con-

trol can easily adapt to various application scenarios. Its computation cost is sig-

nificantly less than learning-based methods [18]. It has been applied for DVFS in

processor cores [55].

As the broad application of the propagation technique in Section 3.4.3, the PID

control system is also capable of taking different metrics as system inputs and ref-

erences. We take AMAT as an input example here, but critical latency can also be

used in the control system.

PID Transfomer

Uncore System-

+

AMAT_ ref

e u

frequency

Packet requests

AMAT

AMAT_monitored

Monitor

Figure 3.13: PID system diagram with AMAT as system metric.

The block diagram of PID control system is shown in Figure 3.13. The controller

takes two inputs: the reference and monitored AMAT. The reference AMAT is the

control target and can be obtained from empirical data. The control output is

updated once per control interval monitoring). The difference between the two inputs

is the error function ej = AMATref−AMATj where AMATj is the AMAT observed

at control interval j. The controller calculates the control output u according to

uj = uj−1 +KI · ej +KP · (ej − ej−1) (3.10)
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where KI and KP are constant coefficients. Note we only implement the Proportional

(P) and Integral (I) terms in our controller, as this is simpler and often more robust

than including the Derivative (D) term [55]. Control output u is converted to a V/F

setting for the uncore system. In general, AMAT is a nonlinear function with respect

to uncore frequency f . We perform a transformation of u = 1/f such that AMAT is

approximately a linear function of u.

3.5.2 Latency-Based PI Control with Dynamic Reference

The model-assisted controller is conceptually superior to that proposed by in

[8], where one fixed reference point is used. The improvement, however, can be

limited as the model-based prediction may be inaccurate, as the number of optional

reference points is still limited. If we add many more options, the model would

manifest a fine-grained guidance to the PI controller. In fact, it virtually replaces

the PI controller. Such model based approach heavily relies on the assumption that

the system characteristics of two adjacent control intervals are highly correlated,

which is not always true. Hence, using too many optional references is risky as the

prediction is likely to be wrong. To fix this problem, we examine an alternate PI

controller that allows a truly dynamic reference point. The reference point should be
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the target for the control. For the uncore latency λU , defined in Equation (3.7), we

can determine our desired target. The λU mainly consists of the propagation latency

in the network, the serialization latency, the queuing latency in the network and

the LLC access latency. When there is no congestion, the queuing latency should

approach zero. Ideally, we want to keep the network lightly loaded. Thus, we can

define a reference uncore latency as

λref = (1 + ρ) · (2 · (λhop ·Nhops + Lpacket) + λLLC) (3.11)

where ρ is a constant selected to be 0.1, λhop is the propagation (without queuing) la-

tency per hop, Nhops is the average number of hops for packets in a uniformly random

traffic, Lpacket is the average packet length and λLLC is the LLC access latency. The

packet length Lpacket is in terms of flits and to account for the serialization latency.

The coefficient 2 in Equation (3.11) is to cover the round-trip. The underlying reason

for including the ρ is to avoid the situation that when the reference uncore latency

is equal to the real uncore latency, the ρ allows the queuing latency to be slightly

above zero, which is also equivalent to a very small network congestion. Please note

that λref is a constant and can be pre-characterized offline. Overall, the reference

for the critical latency becomes:

Γref,i = ηi · λref (3.12)

As the criticality factor ηi varies from interval to interval, this reference is dynamic

with respect to packets at runtime.
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3.6 Design Implementation

The implementation of the proposed DVFS methods mainly include: (1) infor-

mation collection at each tile; (2) a central controller that aggregates the collected

information and performs control policy computation; (3) information transportation

from tiles to the central controller.

3.6.1 AMAT Implementation Overhead

The DVFS controller needs a modest amount of hardware support. At each

tile, one counter is needed to frame the control interval, in our case 50000 cycles,

so 16 bits is sufficient. To track each tile’s memory operation status the following

additional registers are required by each tile: One 20-bit register for L1 hit count, one

12-bit register for L2 hit count, one 12-bit register is required to count the number

of L2 misses and one 20-bit register to sum up all of the L2 miss latencies. These

registers are updated at the completion of memory instructions, and reset as the time

windows end. These registers are used to compute HitRate(L1) and HitRate(L2)

prior to encoding in the header flit, this latency is hidden by the packet generation

delay. Both AMAT computation and the PID algorithm are composed of a few

simple arithmetic calculations, which can be easily handled by the PCU. The PCU

has sufficient storage to accommodate the data collected. We assume the PCU is co-

located with the monitor tile, if this is not the case the monitor will need additional

registers for the temporary storage of collected data prior to sending it to the PCU.

Therefore, the overall hardware overhead is 80 bits per tile plus a possible 64 bits at

the monitor tile.
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3.6.2 Critical Latency Implementation Overhead

For the critical latency-based DVFS controls, registers are required to save rele-

vant information at each tile. The bit-width of each register is decided by the data

to be saved. Here we show a design setting. We use three 16-bit registers to save

the numbers of load instructions, private cache hits and private cache misses, re-

spectively. Additionally, there is a 20-bit register for accumulating the total request

latency. Another 12-bit register is used to count the number of LLC misses. A 16-bit

register is needed to save the uncore request count. Last, there is a 16-bit counter to

keep track of control interval. Overall, 112 bits of registers are required for each tile.

In modern multicore processor designs, e.g., Intel’s Nehalem architecture [26],

there exists a Power Control Unit (PCU)dedicated to chip power management. Thus,

the control of our DVFS can be implemented using PCU without additional hard-

ware. The PCU retains a lookup table with each entry containing the data for a given

tile and it also needs to keep the reference points and parameters for the controller.

At the end of each control interval, the PCU computes the metric and uncore V/F

level. The computations are several arithmetic operations and thus can be carried

out quickly. For the transmission of status information from the cores to the PCU,

we use a method similar to Section 3.6.1. When a packet is sent out from a tile, the

96 bits information (by excluding the control interval counter) is scaled to 64 bits

and is embedded in the header flit. If the packet reaches or passes by the tile where

the PCU resides, the data is scaled back to 96 bits and downloaded to the lookup

table. Within each control interval, later data from a tile overwrites the old data

from the same interval. Since we do not use additional network or send dedicated

packets, the data transportation overhead is fairly low. In Section 3.4.1, it will show

that a single monitor tile can obtain sufficient sample data in a control interval.
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Figure 3.15: Oracle APHL simulation results of PARSEC.

3.7 Evaluation

In this section we first discuss our methodology and then compare the perfor-

mance of our proposed technique and several variation versus baseline.

3.7.1 DVFS Oracle Simulation

In order to investigate how uncore system will affect the APHL, we try to change

the injection ratio of the core and uncore here. For example:

core:Uncore = 3:1

which meas uncore clock speed is 3 times slower than core part. In Figure 3.15,

the APHL under different ratio is clearly showed and we can tell that with ratio

increaing, the APHL also increases.

Knee point: We define the knee point as the point at which the increase in

latency is a certain amount over the latency of 1:1 The more of the rate, the more
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aggressive the algorithm will be. Meanwhile the more power it will save. Figure 3.16

is an example when raito factor is set to 0.2(or 20%).

When it applies knee point to the oracle simulation, we can get an ideal result

that in each time window, it will always achieve the best frequency level. Figure 3.17a

is the knee point choice when ratio is set to 0.1 for Bodytrack benchmark. When

knee point goes high, the uncore will run slower as in Figure 3.17b.
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Figure 3.17: Oracle simulations with various knee points of Bodytrack.
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3.7.2 Experiment Setup for AMAT-Based PI Controller

The testbed architecture in our experiment is a 16-tile CMP as shown in Fig-

ure 3.2(b). Each tile is composed of a processing core with 2-levels of private cache,

a network interface (NI) and a partition of the shared L3 cache (LLC). Table 3.1

summarizes our experimental configurations and parameters. For shared-memory,

multi-processor application results, we use gem5 full system simulator to generate

PARSEC shared-memory multi-processor benchmark memory system traces [3]. For

multi-application workloads, gem5-generated traces of randomly selected applica-

tions from the SPEC CPU2006 benchmark suite were chosen to run simultaneously.

Each trace contains up to 250 million memory operations. These traces are run

through a memory hierarchy (L1-L2-LLC+directory) and network simulator based

upon Ocin-tsim [42]. Although trace-driven, open-loop, NoC simulation can intro-

duce error, we expect that for the small changes in AMAT experienced, these errors

are minimal. Uncore DVFS is emulated by varying packet injection rate (e.g. slow-

ing down uncore frequency by a half emulates doubling the injection rate). Please

note that uncore DVFS does not affect off-chip memory access time. We assume

that memory access time is constant with respect to core frequency. We explored

several options for the DVFS control interval between 10000 clock cycles to 100000

clock cycles. In this work present results assuming an interval of 50000 clocks cycles

as it provides more than sufficient time to collect traffic information as well as being

short enough to capture fine-grain program phase behavior.

In the experiment, both dynamic and static power are considered. The NOC

and LLC power models are based on ORION 2.0 [20] and CACTI 6.0 [37] of 65nm

technology, respectively.
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Table 3.1: AMAT simulation setup

Parameter Values

Core Frequency 1GHz
#processing cores 16

L1 data cache 2-way 32Kb, 1 core cycle latency
L2 cache 8-way 256Kb, 13 core cycle latency

L3 cache (LLC)
16-way, 2MB/bank, 32MB/total,

15 uncore cycle latency
Directory cache MESI, 4 uncore cycle latency

Memory access latency 100 core cycles

NoC
4× 4 2D mesh,

X-Y DOR, 2VCs/port 4flits deep

Voltage/Frequency
10 levels, voltage: 0.5V–1V,
frequency: 250MHz–1GHz

V/F response time 500 core cycles

3.7.3 Simulation Results

First in this section we examine the results of our technique versus baseline and

other competing techniques on shared-memory, multi-processor applications. We

then examine its performance on multi-application workloads.

Figure 3.18 compares the total energy (including both dynamic and static energy)

savings and performance degradation of our best proposed approach (labeled Est.

AMAT+PID) versus baseline without DVFS, along with three variations which we

discuss in the following subsections. The figure shows our PID technique, informed by

estimated AMAT provides an average savings of 27% while reducing the performance

of the uncore (measured by impact on absolute AMAT) by 7%. We empirically

determined that AMAT increases of 7% tend to decrease processor performance

(IPC) by < 3.5% (see Section 3.7.4). Blackscholes shows the best benefit, with a

59% reduction in energy, while Canneal shows the least reduction in energy at 1%.

Both benchmarks show negligible performance impact. In Blackscholes the uncore

is not critical to performance, because the L1 and L2 hit rates are high, so voltage

and frequency (V/F) can be dropped without impacting performance. Canneal,
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Figure 3.18: Energy and performance impact for PARSEC benchmarks. Our best
proposed method is “Est. AMAT + PID”.
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however, has a relatively low L1 and L2 hit rate and thus the uncore’s performance

is more critical to application performance. In both cases our algorithm preserves

our performance goal of <5% IPC loss.

PID-based vs. Rule-based DVFS: Figure 3.18 also shows the results for a

simple, näıve, rule based approach for DVFS policy (labeled Rule-Based), also in-

formed by our proposed monitoring technique. In this approach, V/Fs are associated

with specific ranges of AMAT (e.g. if monitored AMAT is a then uncore frequency

level is set to b). The advantage to this technique would be that it eschews the

overheads of the PID controller, however, its static nature ignores time-varying dy-

namics of the system. While rule-based DVFS obtains similar energy reduction as

PID-based DVFS, it is unable to adapt as well and performance decreases by an

additional 37% relative PID-based DVFS with an AMAT degradation of 10%.

Monitoring AMAT vs. APHL: APHL (Average Per-Hop Latency) is a sim-

ple, direct measure of network performance discussed in Section 3.3.1. Figure 3.18

also shows results for PID informed by the APHL metric. In the figure we see that

APHL is generally a poor metric. Due to relatively low congestion in the intercon-

nect APHL ends up reducing uncore V/F and saving energy significantly, however,

this results comes at a high price in terms of impact on performance as it appears

largely oblivious to the demands of the applications. This leads to extremely large

performance losses, up to 350% in the case of Canneal. This phenomenon is due to

the static APHL target of three uncore cycles. When traffic load is not high, lower-

ing uncore frequency may still maintain an APHL close to 3 uncore cycles, however,

the network latency in core cycles increases due to the frequency ratio change. This

dramatically affects performance when L1 or L2 miss rates are high. Monitoring

APHL in core cycles, however, is impractical because of the difficulty in finding ap-

propriate PID reference levels without knowing the dynamically changing network
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latency relative to system performance.

Sampled AMAT vs. Perfect knowledge of AMAT: The AMAT monitoring

technique we propose uses a single tile to collect information from its own packets

and passing-by traffic. Compared to monitoring all tiles for complete knowledge

of AMAT, our technique has much lower overhead, however, this comes at the po-

tential cost of some inaccuracy in AMAT estimation due to incomplete knowledge.

Figure 3.18 also shows results for PID DVFS based upon perfect knowledge of the

system AMAT each time window (labeled Perfect AMAT+PID). The figure shows

estimating AMAT produces results quite close to perfect knowledge. Overall, the

difference in energy savings and performance is ∼ 1− 2%.

In order to further test our monitoring technique and control algorithm, examine

a use case in which multiple single threaded applications are run simultaneously on

the system. The results from a set this experiment are shown in Figure 3.19. As

the number of possible combinations of applications is extremely large, we show the

results from three representative combinations to demonstrate how our technique

adapts to the demands of the applications being run. The groupings of applications

shown are as follows: Combo 1: cactusADM + gromacs + GemsFDTD + milc,

Combo 2: cactusADM + sphinx3 + namd + sjeng + GemsFDTD, and Combo 3:

sphinx3 + zeusmp + wupwise + sjeng. In the event that the combination of appli-

cations places a high demand on uncore performance (comb1 from the figure), the

uncore remains at a high frequency and no performance is lost (though no energy is

saved). In the event that there is uncore performance to spare, the Est. AMAT+PID

lowers the V/F accordingly and saves energy with a minimal impact on performance.

Generally across all the combination used, the performance and energy savings seen

match those found in the shared-memory applications.
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Figure 3.19: Energy and performance impact for multi-application benchmarks.
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3.7.4 Analysis

In this section we explore how varying configurations affect the results, examine

how IPC and AMAT are related, and examine how well our proposed controller

tracks the ideal V/F point on a given application.

Impact of V/F transition time: In real systems, it takes certain amount of

time to make V/F level changes. In the prior results, we assume the V/F transi-

tion time of 500 core clock cycles is spent for each V/F level change, during which

time the entire network is stalled. This transition time value is based on previous

literature [55] with anticipation of technology progress in recent years. Figure 3.20

examines how the results are effected by this transition time. The figure shows that

the transition time incurs a relatively small, 1-2% penalty on AMAT performance

with negligible effect on energy savings.

Impact of PID control parameters: A given power management policy should

be able to achieve different energy-performance tradeoffs. In our proposed controller,

this tradeoff can be managed by varying the parameters of the PID controller. In

the Est. AMAT+PID, we set AMATref to 2. We also run the simulations with

AMATref of 4.2 to achieve a more aggressive power savings. The results in Fig-

ure 3.21 indicate that an additional 6% energy savings may be achieved through

the aggressive settings, however this comes at the cost of doubling the performance

penalty at 12%.

Relationship between IPC and AMAT: While AMAT is an important metric

of memory system performance, ultimately application performance is more typically

described in terms of instructions per clock (IPC). In order to find the relationship

between IPC and AMAT, we derive the cache latency that allows the increase of the

AMAT to 10%,20% and so on. The Simulation are done on Gem5 detailed mode with
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SPEC 2006 benchmarks. From the Figure 3.22, we can roughly draw an conclusion

that IPC degradation : AMAT Increase = 1 : 2, thus an increase in AMAT of 7%

should be expected to lead to a decrease in performance of ∼3.5%.

Performance relative an omniscient controller: Here we provide some sim-

ulation details to aid developing an intuition on the behavior of our approach. In

Figure 3.23, we show a snapshot of the uncore frequency over time of our Est.

AMAT+PID system versus an “Ideal” DVFS policy. The Ideal policy is an un-

realistic case where every benchmark is simulated once for each V/F setting and

the lowest V/F are chosen for each time window which meet the performance goal

of < 5% performance loss. Generally Est. AMAT+PID follows the Ideal policy

very closely. Where variance occurs, the estimated method is generally more con-

servative. Initially, both frequencies are high due to high cache miss rate during

initialization. After two millions of clock cycles, the lower level caches are filled and

the frequency is lowered, reflecting the lower performance criticality of the uncore.

There are some frequency spikes arising from occasional traffic spikes due to appli-

cation phase changes. Surprisingly, the Est. AMAT+PID policy is able to track the
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Figure 3.23: Simulation snapshot of Blackscholes showing DVFS frequency over time,
Est. AMAT+PID vs. Ideal.

performance needs of the uncore quite well even during these spikes.

3.7.5 Experiment Setup for Critical Latency Based PI Controller

The baseline architecture in our experiments is a 16-tile chip multiprocessor. Each

tile is composed of a processing core with 1-level of private cache, a network inter-

face, an NOC router and a partition of the shared L2 cache (LLC) and directory.

Parameter Values

Core Frequency 1GHz

#processing cores 16

L1 data cache 2-way 256Kb, 2 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total,

10 uncore cycle latency

Directory cache MESI, 4 uncore cycle latency

NoC
4× 4 2D mesh,

X-Y DOR, 4 flits depth/VC

Voltage/Frequency
10 levels, voltage: 1V–2V,
frequency: 250MHz–1GHz

Table 3.2: Critical latency simulation setup.
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Each core is an in-order Alpha ISA processor. Table 3.2 summarizes our experi-

mental configurations and parameters. We use Gem5 [4] full system simulator with

PARSEC shared-memory multi-processor benchmarks [3]. For each benchmark, the

entire application is run in full-system mode; the results obtained are based upon

statistics from the region of interest (ROI), which is usually hundreds of millions

of cycles long. Gem5 “Ruby” memory hierarchy (L1-LLC+directory) and “Garnet”

network simulator are used for all results. Frequency scaling for uncore is emulated

by changing the latency of each uncore component. For instance, the latencies of

each router pipeline stage, link traversal time and the LLC access time are doubled

when the uncore frequency is reduced to 50%. As off-chip memory is not affected

by uncore DVFS, its access latency is assumed to be a constant. We expect the

proposed techniques should work well with core DVFS as this would be expressed

through decreased L1 demand, decreasing the utility of the uncore. The control

interval for the uncore DVFS is 50K core clock cycles. According to our experi-

ence and existing literature, such interval size allows sufficient time for the uncore

V/F change to settle, and is sufficiently small to capture fine-grain program phase

behavior. Both dynamic and leakage power are considered in the experiment. We

use ORION 2.0 [20] and CACTI 6.0 [37] based on 65nm technology for the power

models of NOC and LLC, respectively. The overall performance is evaluated as the

execution time for the ROI of each application.

In this work, we compare the following methods:

Baseline constantly high uncore V/F level.

AMAT+PI chapter 3’s method [7].

CL+PI PI control based on the critical latency described in Section 3.3.3.

CL+ModelAssist the critical latency-driven, model assisted PI control described
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Figure 3.24: Normalized energy (with the baseline result as 1) for PARSEC bench-
marks.

in [8].

Throughput the throughput driven PI control with dynamic reference method de-

scribed in [8].

OurBest the critical latency-driven, PI control with dynamic reference described in

Section 3.5.2.

3.7.6 Energy and Performance Comparisons

Figure 3.24 shows the energy comparison for the different methods. The figure

shows, the critical latency defined by Equation (3.6) leads to significantly more power

savings than that from AMAT [7]. This is especially obvious for the case canneal.

The model-assist technique can further reduce power dissipation. Our best method

can provide additional 50% power reduction over prior techniques [7].

Figure 3.25 provides a comparison of the performance impact of the different

methods.
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Method Energy ×Delay Energy ×Delay2
Baseline 1.0 1.0

AMAT+PI 0.5 0.51
CL+PI 0.31 0.33

CL+ModelAssist 0.28 0.30
Throughput 0.27 0.29

OurBest 0.22 0.23

Table 3.3: Normalized energy-delay product on average for all PARSEC cases.
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Except dedup, the performance degradation from all of our techniques is quite

limited. In the worst case of dedup, model assist and our best control progressively

improve the performance. Overall, the performance loss from all our methods is

around only 5%. In Table 3.3, the normalized energy-delay product among all cases

are listed. The progressive improvement from the new metric (critical latency), model

assist and dynamic reference can be observed. Compared to AMAT+PI [7], our best

method reduces the energy-delay product by 56%.

To analyze controller sensitivity to parameters, we varied the parameters to ob-

tain different solutions for the throughput-based and our best methods. The results

are plotted in Figure 3.26 together with those from AMAT+PI and CL+ModelAssist.

The solutions at lower-left envelope for each technique are Pareto optimal as they im-

ply either high performance or low energy consumption. One can see that OurBest,

the latency-based PI control with dynamic reference, achieves the best performance-

energy tradeoff regardless of parameter set point. On the other hand, please note that

the throughput-driven DVFS has much lower implementation overhead as shown in

Section 3.6.
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3.8 Additional Analysis

In this section we provide some additional analysis, exploring how the control

algorithm works and its sensitivity to control interval size.

In the DVFS control, one practical issue is how to decide the control interval

size for the control. We use 50K core clock cycles, which is long enough for V/F

change and short enough for fine-grained power control. We performed simulations

on two PARSEC benchmarks with different control interval sizes and the results are

summarized in Table 3.4. One can see that the results are not sensitive to moderate

interval size changes.

Interval size Energy ×Delay
(# cycles) freqmine x264

12K 0.468 0.151
25K 0.470 0.145
50K 0.462 0.136
75K 0.479 0.147
100K 0.500 0.145

Table 3.4: Impact of different control interval sizes. The Energy×Delay values are
normalized with the baseline result as 1.

For the PARSEC benchmark fluidanimate, we simulate with different constant

uncore V/F levels throughout the entire ROI. The average critical latency versus

uncore clock period results are plotted in Figure 3.27. The results confirm that

critical latency has approximately linear dependence on the uncore period.

In Section 3.5.2, we argue that it is very hard to accurately predict the system

behaviors. Figure 3.28, 3.29 and 3.30 show some simulation results for a segment of

x264, an application from the PARSEC benchmarks. Its horizontal axis is in terms

of control interval of 50K clock cycles, i.e., each data point is an average over 50K

cycles. Despite such smoothing, the data still show drastic changes from interval
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Figure 3.28: Loads fraction over control intervals.

to interval. These results confirm that it is very difficult to accurately predict the

behavior of a multicore system.
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Figure 3.29: The number of L1 misses over control intervals.
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Figure 3.30: The number of LLC misses over control intervals.
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4. CONCLUSION

In this work, a floorplanning approach for multi-core processors where cores and

memory cores are required to be placed under regularity constraint is proposed. This

is the first work on applying regularity constraint floorplanning to multi-processor.

Experimental results indicate that the proposed approach significantly outperforms

a naive semi-automatic method. In future research, further study on the multi-core

processor floorplanning using other representations like TCG [29] will be conducted.

We also propose a DVFS policy for a CMP’s uncore in this work. This policy

leverages an uncore performance monitoring based upon AMAT estimation. This

technique is integrated with a PID-based DVFS control system. In simulation on

PARSEC benchmarks, the proposed approach achieves 27% NoC and LLC energy

reduction, with only 7.3% degradation on AMAT, correlated to a ∼ 3.7% system

performance drop. We show that the technique has low computation and communi-

cation overheads and is practical to implement. Besides, we investigated DVFS for

shared resources (NOC/LLC) in multicore processor designs. Several metrics and

policies are developed. The proposed techniques are evaluated on public domain

architecture benchmarks with full-system simulation. The results show quite large

energy savings and improvement over recent previous work.
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