122 research outputs found

    An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control Protocols

    Full text link

    Outlier detection approach for PCB testing based on Principal Component Analysis, An

    Get PDF
    2011 Spring.Includes bibliographical references.Capacitive Lead Frame Testing, a widely used approach for printed circuit board testing, is very effective for open solder detection. The approach, however, is affected by mechanical variations during testing and by tolerances of electrical parameters of components, making it difficult to use threshold based techniques for defect detection. A novel approach is presented in this thesis for identifying boardruns that are likely to be outliers. Based on Principal Components Analysis (PCA), this approach treats the set of capacitance measurements of individual connectors or sockets in a holistic manner to overcome the measurement and component parameter variations inherent in test data. Effectiveness of the method is evaluated using measurements on different types of boards. Based on multiple analyses of different measurement datasets, the most suitable statistics for outlier detection and relative parameter values are also identified. Enhancements to the PCA-based technique using the concept of test-pin windows are presented to increase the resolution of the analysis. When applied to one test window at a time, PCA is able to detect the physical position of potential defects. Combining the basic and enhanced techniques, the effectiveness of outlier detection is improved. The PCA based approach is extended to detect and compensate for systematic variation of measurement data caused by tilt or shift of the sense plate. This scheme promises to enhance the accuracy of outlier detection when measurements are from different fixtures. Compensation approaches are introduced to correct the 'abnormal' measurements due to sense-plate variations to a 'normal' and consistent baseline. The effectiveness of this approach in the presence of the two common forms of mechanical variations is illustrated. Potential to use PCA based analysis to estimate the relative amount of tilt and shift in sense plate is demonstrated

    Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    Get PDF
    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process

    Fault-tolerant building-block computer study

    Get PDF
    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation

    Design of module for demonstration and testing of system basis chips NCV7471

    Get PDF
    Práce se zabývá návrhem automobilové elektronické řídicí jednotky (ECU) s funkcí partial networking definovanou normou ISO 11898-6. Cílem je navrhnout a vytvořit demonstrační ECU s použitím system basis chip NCV7471. Protože NCV7471 obsahuje standardní CAN transceiver, funkce partial networking je realizována pouze softwarem řídicí jednotky. Práce zvažuje možné způsoby realizace jak HW, tak SW části, tak aby byla zajištěna nízká spotřeba ECU v různých operačních módech, a snaží se sledovat současné trendy v automobilovém průmyslu.The thesis deals with the design of automotive ECU with partial networking (PN) functionality according to ISO 11898-6. Aim is to design and create evaluation electronic control unit (ECU) using system basis chip NCV7471. Since NCV7471 integrates standard CAN transceiver without HW PN support, the PN functionality is realized by ECU software. This thesis considers possible ways of realization in HW and SW domain to maintain low power consumption of the ECU in different operational modes in order to follow current trends in automotive industry.

    Engineering Support Contract Capabilities Awareness

    Get PDF
    No abstract availabl

    Automated testsystem of COGNISION headset for cognitive diagnosis.

    Get PDF
    There are more than 15 million Americans suffering from a chronic cognitive disability in the Unites States. Researchers have been exploring many different quantitative measures, such as event related potentials (ERP), electro-encephalogram (EEG), Magnetic Encephalogram (MEG) and Brain volumetry to accurately and repeatedly diagnose patients suffering from debilitating cognitive disorders. More than a million cases have been diagnosed every year, with many of those patients being misdiagnosed as a result of inadequate diagnostic and quality control tools. As a result, the medical device industry has been actively developing alternative diagnostic techniques, which implement one or more quantitative measures to improve diagnosis. For example, Neuronetrix (Louisville, KY) developed COGNISION™ that utilizes both ERP and EEG data to diagnose the cognitive ability of patients. The system has shown to be a powerful tool; however, its commercial success would be limited without lack of a fast and effective method of testing and validating the product. Thus, the goal of this study is to develop, test and validate a new “Testset” system for accurately and repeatedly validating the COGNISION™ Headset. A Testset was constructed that is comprised of a software control component designed using the Labview G programming language, which runs on a computer terminal, a Data Acquisition (DAQ) card and switching board. The Testset is connected to a series of testing fixtures for interfacing with the various components of the Headset. The Testset evaluates the Headset at multiple stages of the manufacturing process as a whole system or by its individual components. At the first stage of production the Electrode Strings, amplifier board (Uberyoke), and Headset Control Unit (HCU) are tested and operated as individual printed circuit boards (PCBs). These components are again tested as mid-level assemblies and/or at the finished product stage as a complete autonomous system with the Testset monitoring the process. All tests are automated, requiring only a few parameters to be defined before a test is initiated by a single button press, and then selected test sequences are begun for that particular component or system and are completed in a few minutes. A total of 2 Testsets were constructed and used to validate 10 Headsets. An automated software system was designed to control the Testset. The Testset demonstrated the ability to validate and test 100% of the individual components and completed assembled Headsets. The Testsets were found to be within 5% of the manufacturing specifications. Subsequently, the Automated Testset developed in this study enabled the manufacturer to provide a comprehensive report on the calibration parameters of the Headset, which is retained on file for each unit sold. The automated testsystem’s statistical analysis shows that the two Testsets yielded reliable and consistent results with each other
    corecore