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ABSTRACT

The development of ultra-reliable core computers is a starting point
for improving the reliability of complex military systems. Such com-
puters can provide reliable fault diagnosis, failure circumvention, and,
in some cases serve as an automated repairman for their host systems.

This report describes a small set of building-block circuits which
can be implemented as single VLSI devices, and which can be used with
off-the-shW microprocessors and memories to build Self Checking Com-
puter Modules (SCCM). Each SCCM is a microcomputer which is capable of
detecting its own faults during normal operation and is designed to com-

municace with other identical modules over one or more Mil Standard 1553A
buses. Several SCC!1s can be connected into a network with backup spares
to provide fault-tolerant operation, i.e. automated recovery from faults.
Alternative fault-tolerant SCCM configurations are discussed along with
the cost and reliability associated with their implementation.
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EXECUTIVE SUr111ARY

Reliability is a c o n t i n u i n q problem in mili -
tary electronic systems. The cost of electronic
system failures shows up as reduced operational
readiness and requirements for logistics supply
chains and maintenance personnel. 	 it is estimated

that the cost of supporting an electronic system
for its lite is often more than its initial pro-

curement cost.

Today both the knowledge and the technology
exist to build highly reliable computers at only
small penalties of size, weight and cost. The
reliability of these computers is achieved through

a redundant or fault-tolerant architecture. VLSI
technology provides the capability of putting large
amounts of circuitry in small and inexpensive
packages. By using a standby redundant architec-
ture in which unpowered elements of the computer
are spare, computer system reliability can be im-
proved in increments by adding spares. The long
term potential result is systems which are suffi-
ciently reliable, that they do not require techni-
cian or logistic support for the life of their
mission.	 In the shorter term, systems can be built
which utilize a highly reliable core computer which
can significantly aid in the diagnosis and mainte-
nance of the entire system.1

The purpose of this study is to define and
characterize the VLSI building blocks required to
combine existing microprocessors and memory into a
wide variety of self-checking and fault-tolerant
computing systems. Fault tolerance is the ability
to continue correct operation in the presence of
failures.	 Self-checking circuits are capable of

detecting their own malfunctions. This study has
resulted in the definition of four VLSI circuits

which allow the construction of a single or a dis-
tributed fault-tolerant computer system. The four
building-block circuits are:	 1) an error detecting_
(and correcting) Memory Interface, 2) a program-
mable taus Interface, 3) a Core [building [clock, and
4) an I/O building block. These circuits interface
with two commercial microprocessors and commercial
memory to Corm a Self-Checking Computer Module

(SCCt1). This computer- operates just like any reg-
ula r microcomputer but additionally it signals its
own malfunctions and can disable its outputs upon
detection of an internal fault.	 It is designed to
connnunicate with other identical modules over , one
or more Mil Standard 1553A buses.

The Self-Checking Computer Module (SCCH),
which is constructed using the VLSI buildiny-block
circuits, is itself a much larger building block
which is combined with other SCCr1s to form a vari-
ety of fault-tolerant computing systems. Examples
of fault-tolerant SCCH configurations are shown in
Figure 1. The first is a standby redundant con-

figuration. A single computer (SCCM) is backed up
by one or more spares. Upon failure of the primary
SCCM, a backup spare automatically takes over the

ongoing computations. The second configuration

represents a network of SCCt1s operating as a

Figure 1. Fault-Tolerant SCCH Configurations

distributed system. In this case, redundant spare
modules can be employed to provide automated fault
recovery in critical functions as designated by

the system designer. This type of configuration
is applicable to avionics and shipboard control
system3.	 In the third configuration, a number of
SCCt1s perform the same computations simultaneously.
Their outputs are voted in peripheral devices.
This type of configuration is used for _,r•emely

high reliability applications which are human-life
dependent, such as commercial aircraft control.

In summary, the important attributes of this

building-block approach to fault-tolerant comput-
ing are:

(1) Using the four VLSI building blocks, Self-
Checking Computer HodUleS can be constructed from
a variety of commercial microprocessors and
memories.

(2) The self-checking property of the SCCM

allows these machines to instantly detect and sig-
nal internal faults, thus allowing straightforward

implementation of automated recovery by backup
spares.

(3) Using the SCCt1s as building blocks allows
the system designer to choose from a wide variety
of system architectures. He is allowed full flex-
ibility in the tradeoff between redundancy and
performance in adding or deleting computers in the
system.

The following report describes the individual VLSI

building blocks, the resulting Se l f-Checking Com-
puter Module (SCCM), fault-tolerant configurations

of several SCCr1s, and tinally, an evaluation of
the cost and effectiveness of this approach.
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I .	 INTRODUCT1014

Reliability and consequently maintenance are
a con tiiuinq problem in complex military systems.
The cost of failures shows up in many ways, includ-

ing reduced operational readiness, and high dollar,
costs associated with the large number of personnel
involved in maintenance and logistics.	 It is esti-
mated that costs of ownership often exceed procure-
ment costs in major electronic systems. 	 It is
likely that life-cycle costs can be significantly

reduced by increasing system testability, maintain-
abilicy, and adding self-repairing features in the
earls stages of a system design. A moderate
increase of initial hardware costs can yield im-
proved system reliability and reduce maintenance
costs for a system's operational lifetime.

The computers within a system provide the

starting point for automated maintenance. If
computer reliability is assurel, the computers

can be used for 1) subsystem testing and failure
diagnosis, 2) automatically replacing failed sub-

systems with spare parts, or 3) where no backup
spares are available, modifying on-board processing

to account for- the degraded subsystem state.
Stated in another way, the computer becomes an
automated repairman which may bring within reach
the ultimate goal of maintenance-free systells. To

achieve the level of computer reliabilit y required
for this goal, fault-tolerant design techniques and
extensive use of VLSI must be employed.

The use of VLSI circuitry enhances the basic
component reliability, and combining reliable com-
ponent ,, with fault-tolerant design can lead to
failure-free operation. Using fault-tolerance
techniques, spare ;nodules are included in a com-

puter which are automatically substituted for
faulty modules .vhen a fault occurs. Discarded
modules can be replaced by a repairman at regularly
scheduled maintenance intervals without disruption
in service. The number of spares can be adjusted
to provide fault-free operation over various re-
quired time intervals. 	 fault-tolerant computer
design is a mature discipline', and the use of VLSI

technology makes the cost of such machines rela-
tively inexpensive."i'

The purpose of this study is to define and
characterize the VLSI building-block circuits
required to combine existing microprocessors and
memories into a wide variet y of fault-tolerant com-
puting systems. The study has resulted in the

definition of four VLSI building-block circuits
which allow the construction of single or distrib-

uted (multiple) computer systems. These systems
are fault-tolerant, and thus have the ability to

continue correct computation in the presence of
failures and transient malfunctions.	 Specifically,
the building-block circuits are connected with
existing ("off-the'shelf") microprocessors and

memory devices to form Self-Checkinq Computer
Modules (SCCM). Each SCCM contains a computer and
the circuits necessary to connnunicate with other
(SCCM) computer modules or with dedicated i/,'
circuits.	 Each SCCM is also Self-Checkinq in that
it is capable of detecting internal hardware faults
concurrently with normal operation. It generates
fault-alarm signals so that recovery can be imple-

mented and other, redundant, (SCCM) computer mod-
ules can take over in case of failure.

The four buildinq-block circuits are desig-
nated the Memory Interface, ProgranMnable Bus inter-
face, 1/0 Block, and Core Block. They provide the
following important properties:

I. They can be used with a variety of existing
microprocessors. This means that standard
computers with existing software can be used
in constructing building-block computer
systems.

2. The building- block concept is oriented toward
current and future standards through the use
of standard interfaces and the ability to
accept different microprocessors and memory.

3. Computers can be arranged in a distributed

configuration. Modules can be added to aug-
ment performance or to provide redundancy for

fault-tolerant operation.

A typical Self-Checking Computer Module is
shown below in Figure 2. it provides a computer

building block with a great deal of computing
power. A 16-bit processor with instruction cycles

in the range of 1-2 microseconds would be provided
aloncl with 32 thousand words of memory.

23 RAMS	 I	 MI	 CORE
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MI	 - MEMORY INTERFACE BUILDING BLOCK
BI	 - BUS INTERFACE BUILDING BLOC.
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MP	 MICROPROCESSOR

Figure 2. A Self-Checking Computer Module

Typical packaging would be a 50 square inch multi-
layer board containing 23 commercial RAMS and two
commercial microprocessors. The building-block

circuits are one Memory Interface (MI), one Core
circuit (C), three Bus Interfaces (BI), and two

I/O devices (10).

A description of the individual buildinq
blocks and the resulting self-checking computer

modules is presented in Section 2. This is fol-
lowed by a description of their, use in multicom-

puter networks, presented in Section 3. Upon
definition of the building blocks, a study was

conducted to estimate the cost, physical charac-
teristics, and the reliability of the building-
block computers. This is presented in Section 4
and summarized below.

In order to evaluate the cost and reliability

of this approach, we postulated a hypothetical
Baseline Computer which has performance equivalent
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to the SCCM, but does rot have any of its fault-
tolerant properties. This baseline machine was

estimated to cost between $8,000 and 510,000 when
constructed with high-rel VLSI parts. The Self-
Checking Computer Module was then compared with the
baseline computer. The relative increase in cost
for its fault-tolerant properties (over the base-
line machine) was tabulated, along with the rela-
tive improvement in reliability. An example is
shown in Table 1. For various design options, the
expected percentage of failures is shown for an
ensemble of machines.

Relative	 Expected Percent

Cost	 Failures in Ensemble
of Machines in:

6 Months 1 Year 2 Years

Baseline
Computer	 1	 22):	 39%	 633,

Self-Checking

Computer
Module (SCCM)	 1.5	 6,	 16"	 40':

SCCi1 plus:

1 Spare	 3	 0.5	 2	 16;

2 Spares	 4.5	 0.11°	 0.5	 6'L

Table 1. SCCM Cost and Reliability Example

To assess the incremental cost of an SCCM,
we examine the additional features which must be
included in the Baseline Computer. The additional
logic for self-checking circuitry adds about 15
to the complexity of the Baseline Computer-. This
property is essential for fault-tolerant operation
since prompt and dependable detection of faults is
necessary for automated recovery. Each SCCM also
contains error correcting (SEC/DED) codes in

memory and a spare replacement bit such that most
single faults in memory can be corrected. Since

the memory is by far the least reliable portion of
the SCCM (using current technology), single-fault
recovery in this area significantly improves the
reliability of the whole module. More common than

hard failures are transient mistakes caused by
erroneous bits stored in memory. Most of these
errors are also corrected by this error correction
capability which represents an addition of 25 to
the complexity of the SCCM.

Thus the SCCM is about 1.5 times as expensive
as a conventional computer of similar capability
but, due to its internal memory fault correction,

it is expected to have several times less failures
in the field. The self-checking property allows
the SCCM to be easily connected with one or more
backup spares which provide automatic fault recov-
ery.	 In this case, the expected failures can be
reduced one or more orde s of magnitude.

When spares are used, their number is chosen
to assure reliable operation over some specified
time interval at which scheduled maintenance is

performed (e.g. 6 months, 2 years, etc.). At the

time when the maintenance person arrives, the
computer system indicates which SCCM modules have

been discarded as faulty and automatically re-
placed with spares. He then substitutes new SCCMs

for the faulty modules without disrupting computer
service.	 In the future, when the cost of VLSI
circuitry drops even farther, it is expected that
sufficient redundancy can be included so that the

core computers will function properly over the
entire operational life of their host systems

without any external maintenance.

The relative increase in internal gates and
registers to provide a self-checking and fault-

tolerant computer is relatively constant over
various levels of circuit integration (i.e. SSI,

MSI, LSI, VLSI). VLSI implementation makes this
type of design more attractive for several reasons.

First, packaging is more efficient. When a com-
puter is partitioned into chips, pin limitations
often do not allow full utilization of the poten-
tial gates inside.	 Extra space is often available
for a nearly "free" implementation of self-
checking logic. A side benefit is that the self-

checking chips are more easily tested by the manu-
facturer. The general reduction in circuit costs
associated with VLSi similarly reduces the incre-
mental costs of fault tolerance, i.e. checking
circuitry and spares.	 In past computers, fault

tolerance cost an additional 5100,000 or more and
was only applied to one-of-a-kind problems such as
space missions. With VLSI technology, this incre-
mental cost is reduced by an order of magnitude
making fault tolerance applicable to a much wider
range of applications. This report is directed

toward this area of LSI and VLSI devices which can
currently be produced. Extrapolating to future

VLSI developments, the cost of fault-tolerant com-
puting will be reduced by an additional order of
magnitude. It is expected that self-checking com-
puters will be packaged on a single chip along
with redundancy for local fault recovery at a cost
of a few hundred dollars.

Ii. THE SELF-CHECKiNG COMPUTER MODULE (SCCM)

The Self-Checking Computer Module, as previ-

ously described, is a small computer- which is
capable of detecting its o %-;n malfunctions.	 It
contains I/O and bus interface logic which allows
it to be connected to other- SCCMs to form fault-

tolerant configurations. The SCCi1 contains com-
mercially available microp;neessors, memories, and
four types of VLSI buildine-block circuits as
shown in Figure 3. The building blocks are:
1) an error detecting (and correcting) Memory
Interface (MI-BB), 2) a programmable Bus Inter-
face (BI-BB), 3) a Core building block (Core-BB),
and 4) an I/O building block (iO-BB).

The building-block circuits control and

interface the various processor, bus interface,
memory, and I/O functions to the SCCM's internal
bus.	 Each building block is responsible for
detecting faults in its associated circuitry and
then signaling the fault condition to the Core
building block by means of an internal fault

indicator. The Memory interface Building Block
implements fault detection and correction in the
memory, as well as providing detection of faults
in its own internal circuitry. Similary, the Bus

Interface and I/O Building Blocks provide irter-
courrunications and input-output functions, along
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with detecting faults within themselves and their
associated communications circuitry. The Core
Building Block checks the processing function by
running two CPUs in synchronism and comparing
their outputs.	 It is also responsible for fault
collection and fault handling within the module.
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Figure 3. Self-Checking Computer Module Architecture

The Core Building Block receives fault indi-
cators from the other buildinq-block circuits and
also checks internal bus information for proper

coding. Upon detecting an error, the Core-BB dis-
ables the bus interface and I/O functions, isolat-
ing the SCCM module from its surrounding environ-
ment. Tne Core-BB can optionally 1) halt further

processing until external intervention, or 2)
attempt a rollback or restart of the processor, or

when fitted, 3) initiate a memory reload from a
local nonvolatile store and execute a program re-

start. Repeated errors result in the disabling of
the faulty computer module by the Core Building
Block. Recovery can be effected by an external
SCCM which is programmed to recognize the lack of
activity from an SCCM and take over the ongoing
computations.

An important attribute of the building blocks
is that they are interconnected via the internal
processor-memory bus. All I/0, external bus trans-
missions, reconfigurations, and external diagnoses
are cormranded by reading from or writing into out-

of range addresses. This use of '(memory-mapped
1/0" avoids dependence on processor-specific I/t?
operations, and thus allows use of a wide range of

existing microprocessors in the SCCM.

The following is a brief description of the
building-block circuits.
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The fault-detecting and ce , recting MI-BB

interfaces a storage array (consisting of a redun-
dant set of memory chips) to the SCCM internal bus.

It provides Hamming correction to damaged memory
data, replacement of a faulty hit with a spare,
parity encoding an[{ ^Leading to the internal bus,
and r(Ptcction of internal faults within its own

.lrcuitry.

The MI-BB needs only to be capable of detect-
inq errors to satisfy the requirement of an SCCM.
However, memory is the source of the largest number
of failures within the SCCM, and single-fault

repair in this area will greatly improve the relia-
bility of the whole module, even though the basic

computer module is treated as a replaceable (throw
away) item with backup spares. A block diagram of

the memory interface building block 'Is shown in
Figure 4•
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Figure 4. The Memory Interface Building Block

The .Access Element (AE) provides the address
parity checking and decoding required to select a
memory module (storage array plus MI-BB). It names
and validates the incoming address by means of a
self-checking parity -hecker circuit.

The Error- Control element is responsible for

generation of (lamming code check bits and syndromes,
byte-parity generation and checking (for the SCCi1
internal bus), and error analysis. The circuits
used in the EC are also self-testing. A single-bit
error is corrected by decoding the syndrome gener-
ated from the word read from memory, in order to

localize the faulty bit. The correction is per-
formed by conlplementinq the fault bit.

The error analyzer collects various error indi-

cations such as single error, double error, and
circuit error, which are recorded in an Error

Status !lord and which can be transmitted over the
bus on system demand.

The Bit Replacement (BR) element performs the

reconfiguration of the storage array. It contains
a multiplexer circuit which can replace any one bit
plane in the memory with a single standby spare.
The bit to be replaced is specified by external
command.

The Data Bus Interface (DBI) contains a Memory
Data Register and the tr-state drivers and re-
ceivers used to interface with the SCCM internal
data bu y . Bit inversion for Hamming correction is
performed in the Data Register.

The itemory Control (MC) element receives com-
mands from the SCCM internal control bus which
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specifies "read" and "write" operations. For ad-

dresses less than 61,440, the commands are inter-
preted as normal memory operations. "Read" and
"write" instructions with addresses larger than
61,440 are reserved for memory-mapped 1/0. A set

of these out-of-range addresses is reserved for
commands to the MI-BB. Among these commands are:

1) read error status word, 2) read error position
of faulty word, 3) read address of last error, 4)

reset, 5) disable correction, 6) read redundant
check bits, 1) replace a bit plane with a spare,
and 8) set soft name.

From preliminary designs, %he complexity of
the Memory Interface building block is estimated
to be equivalent to 2000 gates. This represents
a small failure rate with respect to the storage
array and is readily implemented as a single LSI
building block.

The Bus Interface Building Block (BI-BEt)

The Bus Interface Building Block provides the
mechanism by which information is transferred be-
tween SCCMs via an intercomnunications bus system.
This external bus system consists of several redun-
dant buses and is being designed to utilize MIL STD

1553A communications formats. Each BI-BB can be
microprogrammed to function as either a Bus Con-
troller or REnote Terminal (designated Bus Adaptor)
for a single 1553A bus. Several BI-BBs are em-
ployed in each SCCM so that each computer module
can communicate over several buses simultaneously.

The Bus Controller and Adaptor functions pro-
vided by the BI-BBs are much more powerful than
those normally implemented for 1553A controllers
and terminals. These BI-BBs are capable of moving

data directly between the memories of the SCCMs
attached to a given data bus with a minimum of
software support. The controller and adaptors on
a given bus operate together in a relatively auton-
omous fashion similar to the data channe l s on much
larger machines, as described below.

The SCCM which controls an intercommunications

bus contains a BI-BB which is microprogrammed to be
a Bus Controller. When it wishes to initiate a

data transfer between the memories of the SCCM
modules on its bus, it alerts the Bus Controller.

The Bus Controller_ reads a control table from
its host SCCM's memory which specifies the source
and destination of information required for the

bus transfer along with the length of the trans-
mission. The Controller then broadcasts the appro-
priate commands over the bus system to "set up" the
transmitting and receiving adaptor circuits. 	 It
monitors the transfer of information, records
status messages, and notifies the host SCCM upon

completion of the transfer.

BI-BBs in other SCCMs connected to the same
intercommunications bus are microprogrammed as Bu-s

Adaptors. These Bus Adaptors serve as remote
terminals on the bus. The Bus Controller, in set-
ting up a transfer, s pecifies one adaptor as a

data source.	 It then specifies one or more Bus
Adaptors as data acceptors and names the data to

be moved.

The source Adaptor then finds and extracts
the specified information from its host SCCM's

memory, using cycle-stealing, and places this in-

formation on the bus. Simultaneously, the acceptor
Adaptor(s) takes this information off the bus and

loads it into its host SCCM's memory, via cycle-
stealing.

An SCCM can contain several b7s adaptors to

provide an interface to a number if redundant
external buses. Communication can occur simultane-

ously over as many as three buses with an SCCM
without conflict (time delays) seen on any bus. A
Bus Adaptor cannot initiate a bus transfer, but
only responds to the commands of a Bus Controller.
Provision is made for sending discrete commands
through Bus Adaptors such as, power on, power off,
halt, interrupt, reconfigure, etc.

The functioning of the Intercommunications Bus

System is further described in a following section.
A block diagram of the BI-BB is shown in Figure 5.
It consists of five major elements, a Manchester/
NRZ translator, a Microprogram Control Unit, a
Control ROM, a Data Path Element, and a DMA (direct
memory access) Controller.
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Figure 5. The Bus Interface Building Block

The Manchester/NRZ Translator translates in-
coming Biphase Manchester into commands and data
by supplying a bus-synchronized clock, command and

data word-sync indicators, NRZ data, and parity and
Manchester-error detection signals.	 It will also
accept NRZ data, encode it, and output Manchester
data for bus transmission, along with the associ-
ated command and data sync signals.

The "licrop o-gram Control Unit (MCU) is a
microproc.:air sequencer. A microprogram location
counter is started at one of several fixed addresses
by command sync, data sync, or a host processor
command (detection of an out-of-range address).
The locatior counter proceeds through sequential
addresses or branches on the basis of incoming data,
internal flags, or other internal circuit condi-

tions. The microprogram sequencer is programmed
to generate a unique set of address sequences for
each type of incoming bus command, data sequence,
or computer command. This output sequence is then

mapped through a Control ROM to generate the
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detailed control signals required to drive the
Data Path, MCU, and DNA Control Elements.

The Control ROP1 maps the microprogram address
sequence into control 	 signals for the various

I
	

circuit elements.

The Data Path element contains 1) registers

necessary to buffer addresses and data, 2) ROH to
store memory protection hounds, data keys, and

table addresses, and 3) an arithmetic logic unit
for addressing computations. This circuit is not

unlike existing bit slice processors, with the ex-
ception that serial-parallel conversion registers,
RO11, and several holding registers are required
for the unique bus interface and DNA functions.

The WIA Control element is responsible for
obtaining control of the host SCCP1's internal bus
and transferring data between the BI-BB and the
host SCCN's memory.

The fault detection techniques employed in
the Bus Interface Building Block are based on
parity coding to protect memory information and
duplication with morphic comparison for most of

the logic circuitry.' Preliminary designs indicate
that this building block will have complexity
equivalent to 7,000-10,000 gates.

Tne I/O duituir, :Locke

Input-output requirements of host systems
vary widely in voltage ranges, currents, and timing
parameters. The approach best suited to building-
block development is to provide a standard set of
functions which serve a majority of general appli-

cations. The user is required to supply any addi-
tional functions unique to his applications.

To be consistent with the SCC1 design, all
building blocks must provide memory mapped I/0.
That is, each I/O building block must recognize

its identification and the function being requested
from an out-of-range address appearing on the host

SCCH's internal address bus. Data for output or
input is transferred over the data bus in response

to a processor write or read to the specified
address.

	

Candidate I/O functions are:	 1) 16-bit par-
allel data in and out, 2) 16-bit serial data in
and out, 3) a pulse saITIplinq circuit, 4) a pulse

counter, 5) a pulse generator, 6) an adjustable
frequency generator, 7) an analog multiplexer with

A/D converter, and 8) a high-rate DHA channel.

The density of VLSI te,,rinology is sufficiently
high that a number of I/O functions can be supplied

on a single chip. The specific function which is
required can be activated by connecting pins.

This approach can reduce the inventory of different
I/O building blocks to one or two.

The Core Building Block (Core—BB)

The Core-BB is responsible for: 1) detecting
CPU faults by synchronizing and comparing two

duplex CPUs, 2) collecting fault indications from
itself and other building blocks, and 3) disabling
its host SCCM upon detection of a permanent fault.
Three options are provided for attempted recovery

	

from transient faults. These are:	 1) Stop at

first fault indication; wait for outside help;

2) Roll back at first fault indication; stop if
the fault recurs; 3) Reioad memory and restart;
stop if fault recurs. 	 In all cases, Bus Controller

and I/O outputs are inhibited as long as the SCCM
is suspect; e.g. before a rollback or restart has
been successfully completed. Specific functions
of the Core-BB are listed: 1) Compare two CPUs

for disagreement; 2) Parity encode CPU output for
internal bus transmission; 3) Check parity on the

internal bus; 4) Recognize Core-BB commands which
can be sent from an external module via a bus
adaptor as out-of-range address (these are com-

mands to halt and inhibit outputs, restart, and
enable outputs of the receiving mod^lle); 5) Allo-
cate the internal tristate bus among several DMA
requests from the Bus Controller, Adaptors, and
I/O-BBs; 6) Detect internal faults within the Core-
BB; 7) Collect internal fault indications from all
buildinq blocks within the SCCM; 8) Disable SCCM

output under fault conditions; 9) Provide optional
rollback/restart compatibility for optional tran-

sient fault recovery; and 10) Halt computation on
recurring faults.
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The Fault-Handler element accepts morphic 	 RTI

fault indicators from the other BBs and from within
the Core-BB. it reduces these to a single two-wire
master fault indicator which indicates a fault
somewhere in the SCCM. This fault indicator
triggers the removal of power from bus controller
and output drivers, isolating the computer module
from the rest of the system. Duplex Recovery
Sequencers are employed to implement optional tran-
sient recovery sequences. They are checked with a
self-checkinq comparator.

The Core-BB consists of three elements as
shown in Figure 6. The Processor Check element

serves three functions: 0 to compare the outputs
of two synchronous CPUs, 2) to encode and check

internal bus parity, and 3) to recognize and de-
code commands sent to the Core-BB through the in-
ternal bus.	 It contains self-checking parity
checkers, a duplex command decoder, and mcrphic

reduction trees.''

The Bus Arbitration element accepts two-wire
bus request signals from the various DMA control-

lers on other BBs. It obtains release of the bus
by the CPUs, and or •ants access to requesting BBs
on the basis of hardware priority. The Bus Avail-
able signal is sent as a two-wire indicator to
each requesting BB.

The Building-Block Desi g ns are all directed
toward developing a computer module which removes
itself from operation whenever a fault occurs

inside. The next section deals with the use of
these modules in a computer network.

III. SYSTEM CONFIGURATIONS

The SCC11s can be used in a number of differ-
ent fault-tolerant configurations to support a
variety of applications.	 This includes single

computer applications which employ standby redun-
dancy 0 .e. a single computer protected with back-
up spares) and hybrid redundancy (i.e. several
computers execute the same program and their out-
puts are voted; additional spares may also be
employed). The SCCMs may also be combined into
distributed computer networks in which the indi-
viduel computing functions can be protected with

standby or hybrid redundancy.

A distributed computer network architecture
has been developed at the Jet Propulsion Laboratory
for control and data handling applications, which
allows SCCMs to be connected into a variety of
configurations. This architecture, designated the
Unified Data System (UDS), has been constructed in
the form of a breadboard system. Software has
been developed, and the results have been widely

reported.'" '" This distributed computing archi-
tecture provides a framework for a number of com-
puters to work together, performing a collection
of different dedicated computing tasks. 	 individ-

ual computer modules may be protected by standby
redundancy or voting, and thus the architecture
provides a model for single computer configura-
tions by considering a single internal computer
with its redundant protection, or a model for dis-

tributed computer fault tolerance by implementing
the complete processing ensemble.

The next section describes the hardware and

intercommunications structure of the LIDS

architecture. This is followed by a brief descrip-

tion of the fault-tolerant configurations that can
be constructed.

Tht	 Iionitectuve Using Self-i neckirLj Computer
Ak:,tu l,, s

A fault-tolerant LIDS architecture consists of
a set of Self-Checking Computer- Modules connected
!,y a redundant set of interconenunications buses as
shown in Figure 7. There are two types of modules:
Terminal Modules (T11) and Hign-Level Modules (HLM).°

Figure 7. A Distributed SCCM Architecture

Terminal Modules (TP1) are SCCHs located within

various subsystems which are responsible for con-
trol and data gathering within their associated
subsystem. The TM contains two microprocessors
(IMP), memory (RAH) with an MI-BB, I/O-BBs, a Core-
BB, and several BI-BBs configured as Bus Adaptors
(BA). The TM interfaces with the other modules in
two ways:	 1) It receives a single Real-Time Inter-
rupt (RTI) which is common to all modules and which
is used for timing and synchronization, and 2) Each
TH contains a Bus Adaptor interface to each of sev-
eral interconwruTications buses. Data words can be
entered or extracted from the memory of the T11 com-
puter using Direct Memory Access (DMA) techniques.

Each BA can be commanded over its bus to fetch or
deposit data into the TM memory. A TH cannot ini-
tiate bus communications but it actively supports
DMA transactions into and out of its memory. An
external High-Level Module enters commands, data,
and timing information into the memory of the TM.
The TH delivers information to the system by plac-
ing outgoing messages into predetermined locations
of its memory, which can then be extracted by the
HL11 over the bus. The TM can be accessed through

several buses simultaneously. The associated BAs
provide hardware conflict resolution between com-

petinq DMA requests from different buses.

Hi g h-Level Modules (111-P1) are SCCHs which are
respons ible for coordinating the processing which
is carried out in the remote TP1s, for control of

intercommunications over the bus system, and for
high-level processing such as data compression and
decision making. They contain the same internal
components as the TMs, augmented by an additional
BI-BB which configured a ,^ a Bus Cnntroller (BC).

'Il^T^CII PAGE I$
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Each BC, which is unique to an HLM, can move blocks
of data between the memories of all computer mod-
ules connected to its bus via commands to their Bus
Adaptors. The BC specifies a source module, one or
more destination modules and identifies the data to
be moved. The BAs in the addressed modules then
move the specified data over the bus between the,(
host SCCM memories.

The computer in the HLM activates its BC by
presenting it with the address of a Bus Control
Table in the HLM memory. This table specifies the
source module, destination modules, data names, and

the length of the requested information transfer.
The BC initiates and controls the specified trans-
mission, monitors status messages to verify a cor-
rect transfer of information, and notifies the HLM

computer when it is completed. The BC is the mech-
anism by which the HLM can coordinate the proces-
sing in other computer nodules by entering com-
mands into their memories and reading out informa-
tion to monitor ongoing processes.

The Intercommunication Bus System (IBS) con-
sists of several independent serial buses, each of
which provides a bandwidth of approximately 1 mega-
bit.	 Each bus is connected to one Bus Adaptor 	 in
each of the computer modules (HLMs or TMs) to

which it is connected. To each bus is assigned a
primary Bus Controller whose HLM has complete con-

trol over that bus.	 It can relinquish control
over its bus to another HPI under two conditions:
1) it is not powered, or 2) its p rocessor commands
release of the bus to lower priority Bus Control-
lers for a designated time interval. Thus, the
set of buses may be operated simultaneously with

each bus controlled by a different 110 or with
individual buses time-shared between several such
module,.

Access to each bus by the various HLMs is
based on a fixed hardware priority assignment be-

tween Bus Controllers. A daisy-chain structure is
utilized for each bus to establish this priority
assignment as shown in Figure 7. Modules of higher
priority signal release of a bus via its "daisy-

chain," which then activates the hardware necessary
to allow bus access within modules of lower prior-
ity. Thus spare modules can gain access to a bus
whose controlling HLM has failed, or if a bus

fails, another bus can be shared between two con-
trollers.	 The individual buses are physically

independent; each has its own set of hardware bus
access control circuits and a daisy-chain for
pr i ority assignments. Therefore, no central bus
system controller exists as a potential catastroph-
ic failure mechanism. Similarly, there is no com-
mon clock. Each bus uses clock signals generated
by the transmitting module.	 The number of
buses within the IBS may be selected to meet re-

quirements of data throughput and redundancy. The
concept facilitates reconfiguring throughout a
mission if failures occur. 	 In the extreme, a
single remaining bus can support essential

functions.

The UDS design is oriented toward removing
"hard core" items whose failure can cause cata-
strophic system failure. Intercommunications and
clocks have often presented significant problems
in this area. These are dealt with in the UDS in

the following ways. The buses are made independ-
ent to avoid any common failure mechanisms. Each

HLM or TM uses its own internal clock, and the
buses use the clock of whatever module is trans-
mitting. With independent clocks in each computer
module there is also a distributed mechanism for
protecting against failure of the common RTI. 	 If
two or more independent RTI signals are generated,
each module can decide whether the RTI is correct

by comparing this signal with their own internal
clocks. If an RTI generator fails, the modules
will automatically switch to a backup, and if an
individual computer clock fails, damage is con-

tained to the faulty module.

Each SCCM, as previously described, is capa-
ble of detecting its own faults concurrent with
normal operation and will disable itself upon
detecting a permanent internal fault before dam-

aged information can propagate beyond the faulty
SCCM. This allows automated recovery to be imple-

mented with backup spares.

: grant Co>:," :.ti .;ti rs

A number of fault-tolerant configurations can
be derived from the UDS arc.itecture using SCCMs
as HLMs and TMs. Several are described below.

a) Standby Redundant Unikrocessor. This configu-
ration consists of a set of H'LP1s. One HLM is des-
ignated the "primary" module, another is desig-
nated a "hot" spare, other HLMs may be employed as
additional spares which are maintained in a dor-
mant state. The primary module performs the re-
quired computations, generates outputs, and col-
lects inputs for both itself and the "hot" spare

module via the intercommunications bus system.
The "hot" spare performs identical computations
to the primary module but does riot produce outputs
At each Real-Time Interrupt these two modules
perform cross-checks via the bus to see if the
other is functioning properly. Failure of either

module triggers recovery by the "good" module.
Should either active module detect an internal
fault and disable its outputs, the other machine
continues the ongoing computations. At a later
scheduled time, the surviving machine diagnoses
the faulty module and activates a new "hot" spare
if additional spares are available. 	 Under special
conditions two or more "hot" spares can be as-
signed to back up the primary module and provide a

greater degree of redundant protection.

b) Voted Uniprocessors. For applicafion.s demand-
ing extremely high reliability, thre- +:Ms can be

assigned to perform identical comput:^ions, and
each communicates with peripheral devices with a
separate dedicated bus. Outputs are voted in the
peripheral devices. Backup spare HLMs may option-

ally be employed to provide hybrid redundancy.
This type of configuration provides voting in
addition to the self-checkinq features of the
Wls. It has primarily been applied to systems in
which the cost of failure is clearly unacceptable,
such as flight control of commercial aircraft and

the Space Shuttle.'

c) Distributed Systems. Since the computer mod-
ules in a distributed system are performing a var-

iety of different functions, the requirements for
fault recovery vary in the different modules of
the system. Some functions are deemed more criti-
cal than others and redundancy is employed in a
selective fashion. Some computer modules,
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embedded in fully redundant subsystems.maty not
require fault retover'y . others performing critical
functions ma y be very heavil y protected.

The HLit which serves 	 the systmn executive.
and in some Cases othe r HL-, must survive a fault
without interruption in computations.	 These tr• iti-
tal modules are protected by st,indbv redundanty
with "hot" spares as described above. There are
often tether HLMs assigned to function. whith ,ire
deemed noncritical and which can tolerate a program
interruption of up to several seconds. These WCs
,10 not have dedicated "hot" spares. !then one of
these nodr.les develops an internal fault, the s y s-
tem executive WH replace; the fault y rxrdule with
a 'blank" spare. loads the spare's menrerrY. and re-
starts the internal programs. Since the HLMs have
nondedicated connections, a comm set of spare
nodules can bask up a number- of HLM% performing

different critical and noncritical computations.

The Terminal Modules are attached by a number
of wires to the spetifii subsystem in which thev

are located so they must have dedicated spares
which are also connected to the same subsystem.
The number of spares is determined by the critical-
ity and tailj' •e rate of its associated suhsystekn.
Since a Terr,inal Module does riot have the ability
to initiate a bus communication, it t:an onl y halt
and si gnal an error. Recognition of a failed Tfi
and commends for reconfiguration are the re,ponsi-
hility of a High-level ftodule.

Each controlling HLM is responsible for pvll-
ing the various modules under its Control to deter-
mine if a rWdule has isolated itself due to d
failure. This polling process can he carried out

nearly automaticalI,. using the bus sys tem every
few (10-100) milliseconds. (Bus system failures

are determined by rerouting suspeci messdges
through a different HIM-bus comb in.tti(in.) The HLM

is then responsible for issuing the reload and re-
confiquration corrrnands necessary to replace ,t
faulty module with a spare or reinitialise a
transient-disturbed module.

These connwnds are sent to the various UPS
nodules through one of several redundant Su,
Adaptors, which provide the tollowinl functions
with re;pett to their associated HI It or TM: 1)
power or unpower the internal computer. 1) load or
read out ttevory. 3) halt or start the processor at
specified locations, d) sample error status from
the RRs, and ^) send reconfiguration corwnands to
the RRs. Since there are several Bus Adaptors in
each UPS module which are ,onnected to independent
t,u, s y stems. there are redundant paths tot , tarry in.l

out r•econt iqurat ion. The Rus Atlai+tors are powered
at all tines.

1V. COST AND E11 -WiVENESS 01 RU1lDING-11LOCA
1ALIT-T01IRANT COMPUTERS

In order to e-stablish the tort and effective-
ness of fault-tolerant SCCM (tint i qurattons. it 1s
first necessar• v to examine the properties of indi-
vidual SCCM modules. The user determines how manv
are u;ed for a given s y stem and the number of
spares which are to he e^ployed, and thus his cost
and reliabilit y results .Ire quite System-specific.

Append i,	 1,a rhdratterisation of the test,

wei ght, power. vo+tane. and reliability of a sin,tle

SCCt1. Also included is d h ypothetic&) baseline
ttwiputet- module which does not have any of the
error detection and mer'+t ► ry-fault torrettfon tApa-
bilrties of the SCCM, this baseline computer It,
presented so that the relative • rntrealm in cost
tor the SUM can be deteminedl. The cost Increase
Is what one pays tot- intr •edsed reliability And
fault tolerdnte.

The estimates in Appendix 1 are rmAdr for an
SC(M containing 1) two 16-bit wlcroproce+tors. .'r
3:.000 word% of RAiL. 3) three bus interface
buildin g blotks, 3) one Core hurldin q block. and
5) one flenory Inter• tate building blot ► . Thft ton-
ficluration torre,ikards to a ►tigh-level tot/ule
previously described. (A Teraina) fiodul• would
tvpitall y contain uric less Rus Interface and 11m,
additional 110 building blot As and it if ♦ ► radar
compl et, itv.I The technolo gy is ass.vwt to he ht•
rel CitOS/SOS c • irtuits with up to 10.0M gdtrs on a
single chip. The results are sune,arr:etl below le
lat, le ?.

Cost Power Wright vo l ow

Raseline

Computer i "idle... S 14.6K	 6M	 3 1M10 Ife1

Self -Chet It Intl

Computer ►lodule... S13.6K	 NV '.? 1M ?a 1"

Table ?. Corputrr flodule P%-%t, Al Properties

Ahsolute estimates Of %CCM propertlrx Are. at
best, an ApUrotlrnatlpfl time- the vt%l drtrltes hairy
not been develo ped. Out basis of etti%&t1o11 Ile•
in pro3ettion of past And current etpprittim p . The
r•eldttVe estimates t+rtwet-n the propertlel of the
Baseline end SCCM module% should be wre actweate.
sinte the y are less Jel,brrr.tent uWm tppt ifit attelr"
bons. In a relative srrr.r. the %CC" it M to
50 more expensive. mtwr ikrwer tt)nttlr.11lg. IAO pram#
voluminous than a nonr •r,tunttan • hAt+ellnp etWule.
This represents the "frvnt -r- 	 r eeAllth 1t
paid to ot-Jer to re,f: o rte,	 r
tOsts.
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Figure H shows the comparative reliability of

the nonredundant baseline computer, a single SCCM,
and a duplex pair of an SCCi1 backed up by a spare.

It a large number of nonredundant computers

are deployed in the field, the user can expect a
large percentage of them to fail in a year's time.

He must then support maintenance personnel and
their associated test equipment to correct these

failures. At an extra SO initial investment,
SCCM% can be employed which, without backup spares,

reduce this failure rate by a factor between 2 and
3. At 3 times the price ;an extra SIO-$20K per
computer) he can employ backup spares and reduce
the failure rote 10 to 20 times. Additional spares

can be employed to reduce in-field failures to
extremely rare occurrences.

P69wv f'r+nap

Through the use of LS1. the cost of hardware

has dropped to the point where i fault-tolerant
computer costs much less than a non fault-tolerant

computer did only a few years ago. Using LSI cir-
cuits. the Intrinsic reliability of computer sys-

tems has Improved greatly, but not enough to pro-
vide fault-free operation. This is achieved by
fault-tolerant, i.e. self-repairing. architectures
which offer fault-free operation of a year or more
with current technology. The current cost of

fault tolerance is on the order of an extra
110.000-?0.000 per computer. This is largely due
to the cost of the additional high reliability
parts ohlch are many times more expensive than
commercial quality devices. Current costs may be

Sir 
IfiCantly reduced in two ways: 1) the use of

to-testing logic should make therm much more
ossil y tested. thus reducing a large production
cost, ,ind 2) using fault tolerance less component
screening Is required since an Occasional failure

IS automatica lly corrected.

VLSI circuit development is not static and by
the aid-1960% there should be major improvements

in this fault-tolerant computer technology. For
eaamlple, we can expect an SCCi1 to be packaged on
one or two chip% at a cost of less than Si000.
C e peMflts can be expected to be several times
sere reliable. producing an equivalent increase in
the reliable life of the fault-tolerant configura-
tions. One can project conservatively that fault-
tolerant machines can be .runt in a few years
stick provide S-10 years of maintenance-free oper-
stiea at lest ton S11000 in increased costs.

V. CONCLUSIONS

This Study h4%  resulted in the definition and

0re11SIRM resign of a Moll set of VLSI buildinq-
block circuits. which. if implemented. would allow
the user to coa%truct fault-tolerant computing
tyttamm% ovt of existing processors in a straight-

formarN fashion. VLSI circuitr y Is the key to
toils lmmpleiteatatlon. The redundant circuitry re-
quI M for fault tolerance. which was once expen-
••lee, tan row be obtained in small inexpensive
pat

ihe • rLSI buildtnq-block circuits are used to
coastew t mol l (SECfI) computer% which art- capable
of dotecting their own Internal faults (and cor-
"K111414 sore faults which are most likely to
w cur). These Sole-Checkinq Computer Modules can

CAM be comp laefl with backup %pore% to provide

automatic recovery from faults. A standard busing

system allows these SCCns to be connected into a

variety of fault-tolerant distributed computing
networks.

The ultimate goal of this work is maintenance-
free systems. By providing an ultrareliable core
computing system, it can act as an automated re-
pairman, to provide automated testing and redun-
dancy management in complex systems.

The next phase of this effort will be to do a
detailed logic design of the buildinq-block cir-
cuits and implement a breadboard consisting of
several self-checking buildinq-block computers

inte rconnected by the redundant bus system. This
step will be completed in 1979 and will provide the
detailed experience necessary for a subsequent VLSI
implementation of the building-block circuits.

When this is accomplished, we hope that the
system engineer will have in hand the tools for the
immediate and routine use of fault-tolerant comput-
ing. This building-block development has a near
term goal of developing the enablinq technology
(circuits) for the off-the-shelf use of fault-
tolerant computers.	 it is a first step in a long

term goal of usiny the increasing density and re-
liability of new VLSI circuit technologies to pro-
vide fault-free computing at lower and lower costs.

APPENDIX I.

CHARACTER IZATION OF BASELINE iNONREDUNDANT)
AN D SCC^i C^IDUTER HODULES

There are two approaches to evaluating the
fault-tolerant building-block systems which are
of value to the potential user. First, there is
the absolute approach: "How much does it cost and
what are its reliability characteristics?" And

secondly, there is the relative measure: "How much
more does it cost than an equivalent nonredundant

structure, and what is the relative improvement in
reliability?" Both approaches will be examined.

The cost and reliability of each computer sys-

tem is hiqhly dependent on the number of integrated
circuits which are required for implementing the
building blocks. Two levels of integration are
considered in estimating cost and reliability.
These correspond to the current and projected
state-of-the-art in device and technology as

listed below:

1. SSI i1Si - Current breadboard technology

2. 10.000 gates/chip - Next generation custom VLSI

it should be recognized that absolute cost and re-
liability estimation results, at best. in a rough
approximation. This is because the VLSI devices
have not been developed, and thus our basis of
estimation lies in a projection of past and cur-

rent experience.

The following is an examination of the char-
acteristics of a Building-Block Self-Checkinq

Computer nodule. These computers make up the
basic modules from which fault-tolerant networks

are constructed. in order to evaluate the addi-
tional costs of self-Checkinq buildinq-block cir-

cuitr y . estimates are also included for a

(l
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nonredundant computer module of similar capability
and constructed out of similar technology.

The parameters to be studied are power,

weight, volume, cost, and reliability. Since the
computer circuits have yet to be constructed, est-

imates of these parameters must be regarded as only
approximations projected from current experience.

Underlying assumptions are (liven in the following
discussion in order to aid the reader in evaluating

the validity of the results.

.c'.	 ..J:Jtiop"4 Ci,	 nt8

Table A-1 examines the logical complexity of
the various component elements which make up 1) a
building-block self-checking computer, or 2) an
equivalent nonredundant machine. Complexity is

determined in terms of equivalent logic: gates
e.g. 1RAM cell = 1 gate, iROM cell = 1/4 gate,
1 bit of parallel-serial shift register - 6 pates)
for each element which makes up the computers. It
is assumed that each computer has a memory of

32,000 16-hit words.	 (This is admittedly small
for VLSI implementations, but it is expected that

memory development will not proceed as rapidly in
low power, hardenable technologies required by the

military.) An estimated component count is tabu-
lated for each of two implementations. The first

assumes that all circuitry surrounding the CPU and
Memory will be constructed out of existing SSi and

MSI circuits. The second implementation assumes a
VLSI technology with on the order of 10,000 gates

per chip.

Table A-2a is a tabulation of the component
requirements for self-checkinq hiqh-level and
terminal (computer) modules along with equivalent

nonredundant computers.

Two patterns become obvious in these results.

First, as the level of integration is increased in
the building-block circuits, memory becomes the
dominant cost in a number of devices. Second, as

IMPLEMENTATION

ELEMENT	 QUANTITY	 COMPLIXITY
	

SSI -MSI	 VLSI (10 4 g/ chip)

(equivalent gates)
	

128 pin pkg.

2-4	 2500-3000 qates	 200 Chips	 I VLSI
12,000 Bits ROM	 3 ROMs (512x8)

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

2	 8000 gates	 2 CPU	 2 CPU
.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

1	 1000 Yates	 150 Chips	 1 VLSI
.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

n	 1700 gates	 150 Chips	 i VLSi

8Kxi6	 1 gate/bit	 184 RAMS (ca4Kxl)	 23 RAMS (0 32Kx1)
(in)
.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

k	 100-600 gates each	 10-40 Chips	 1 VLSi for 3 or 4
(10 types)	 (each type)	 I/O functions

--------- --- -_	 - concurrently-

1. BUILDING-BLOCK, SELF-
CHECKING COMPUTER

a. BUS INTERFACE

b. CPU

c. CORE BUILDING
BLOCK

d. MWORY INTERFACE
BUILDING BLOCK
(for 32K module)

e. MI HORY

f. i/0 BUILDING
BLOCKS

I

t	 I 1.	 NONREDUNDANT COMPUTER - of similar technology and capability

t{ a.	 BUS	 INTERFACE 24	 1700-2000 qates 130 Chips 1	 VLSI
In,000 Bits ROM

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
3 ROMs	 (512x8)

.	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

r b.	 CPU 1	 8000 gates i	 CPLI 1	 CPU
.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

r

c.	 MEMORY	 (32Kxl6) 1	 (late/bit 136 RAMS	 (@4Kxl) 17	 RAMS	 (O	 32Kxl)

^I d.	 BUS ARBITER 1	 100 gates 16 Chips Included	 in VLSI

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .
Bus	 interface

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

e.	 1/0 STANDARD k	 75-400 gates each 8-32 Chips each 1	 VLSI	 for	 several

'.
CIRCUITS (10	 types)

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .
functions	 (1	 type)

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

Extra discrete	 logic folded	 into custom LSi	 circuits.	 Common elements are clock, power supply,
and bus drivers.

Table A-l. Complexity of Component Flements
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the level of integration is increased, the relative
cost of a self-checking computer (over a nonredun-
dant computer) decreases dramatically.

If memory fault detection (but not correction)

is employed in the self-checking computer, the cost
of self-checking is negligible over the nonredun-

dant machine. If error correction is employed in
the memory of the self-checking computer (an addi-

tional feature to improve reliability), the incre-
ment in cost between machines is primarily related

to the cost of SEC/DED codes.

Several authors have demonstrated that self-
checking circuitry is relatively inexpensive if

used. One reason for this is because system par-
titioning, i.e., partitioning of a computer into
VLSI chips, does not occur on the basis of qate
count alone. It is based on separation of comput-
ing functions (1/0 Processor, Memory Interconenuni-
cations) which results in breaking up the ^.omputer
at points where the number of interconnections and
the control interfaces are reasonable. When par-

A ''TYPICAL" BUILDING-BLOCK,
COMPl1TER MODULE

COMPONENT - NUMBER - AREA - COST

	

(in 2 )	 SK (ICs only)

I.	 SSIPISI VERSION:	 (14 lbs)

SSI/MSI	 900	 300	 31.5
ROM	 9	 7	 1.4
CPU	 2	 3	 .4	 70.1
RAM	 184	 138	 36.8 + 20.1*
LSI	 _ 0	 0--	 90.1K

	

1095	 448	 70.1

2.	 VLSI VERSION:	 (1.4 lbs)

SSI/MSI	 0	 0	 0
ROM	 0	 0	 0	

it 6
CPU	 2	 3	 0.4	

2 0*
RAM	 23	 17	 9.2	 13.6
VLSI	 5	 25	 2

	

30	 45	 11.6

* Board & Fabrication Costs

Table A2-a. Charac

1. VLSI 123 pin pky. - 5 in 

2. LSI	 64 pin pkg. - 1.5 in 

3. ROM, RAM some MSI
20-24 pin pkg. - .75 in

4. SSI 14-18 pin pkg. - .25 in

(avg. area for SSI/MSI = 1/3 in 2)

Table A-2b. Packaging Density

titioning is completed, the VLSI chips are seldom

used to full capacity, and enough area remains to
implement checking circuits at negligible cost on

each chip.

t'uaK.: _, , ..na

The methodolo g y for estimating packac^iny
density is to assume the use of flat packs on

multilayer boards. The area for each circuit type
is shown in Table A-2b, and the resulting board

area is computed for each of the computers which
are being examined. The circuit boards require
about 112 inch of depth, and thus volume is esti-
mated at 0.5 times the circuit area requirements.

Cost is determined on the basis of three

items--parts costs, board costs, and assembly
costs--as shown in Table A-2c. Assembly costs

are related to board area, which is in turn re-
lated to the number of pins to be soldered. From

our experience, a technician can assemble and
inspect on the average of one square inch/hour.

NONREDUNDANT COMPUTER MODULE 1.41

SIMILAR CAPABILITY AND TECHNOLOGY

COMPONENT - NUMBER - AREA - COST

	

(in 2 )	 SK

I.	 SSI/MSI VERSION:	 (8 lbs)

SSI/MSI	 406	 135	 14.2
ROM 	 7	 1.4
CPU	 1	 2	 .2	 43.0
RAM	 136	 102	 27.2	 11.1*
LSI	 0	 0	 0	 54.1K

552	 °47	 43.0

2.	 VLSI VERSION:	 (1.1 lbs)

SSI/MSI	 0	 0	 0
ROM	 0	 0	 0
CPU	 1	 2	 0.2	 7.0
RAM	 17	 13	 5.2	 1.6*
VLSI	 4	 20	 1.6	 8.6

22	 35	 7.0

VLSI 5400/chip
ISI 5200/chip
RAM 5200/chip (4Kxl, or 8Kxl)
RAM S400/chip (32Kxl)

ROI, 5150/chip (512x8)
SSI/MSI 535/chip, avg.

Multilaver board S25/in2

Assembly and Inspection S20/in`

Table A-2c. Cost Model

teristics of Computer Modules

i

i

i

r
	 , n

r

1

Note:	 These estimations do not include the power supply, which is estimated at 4 lbs, 102.5 in3,
$10,000, and 75 efficiency.

12
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