@ https://ntrs.nasa.gov/search.jsp?R=19780022892 2020-03-22T03:16:14+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

e——
JPL PUBLICATION 78-67

Fault-Tolerant Building-Block
Computer Study

David A. Rennels

(NASA-CR~157%€4) FAULT-TCLEFANT N78-308235
BUILDING-ELOCK CCMEUTEF STULY (Jet
Propulsicn Lak.) 18 p HC AQ2/MF AQ1
CSCL O9E Unclas
G3,60 29118
V1795 3
July 15, 1978 /._:,_ Neteedsay.
; ALY R “g,,
N e T
Prepared for e W ¢
Naval Ocean Systems Center ".'3‘ o '.'7',\\., $a
o <)
\, o v-p Y
\Z 5

by

Jet Propulsion Laboratory Wp

California Institute of Technology
Pasadena, California

JPL PUBLICATION 78-67

Fault-Tolerant Building-Block
Computer Study

David A. Rennels

July 15, 1978

Prepared for
Naval Ocean Systems Center
by

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

CONTENTS

ERRCETINE SUMIRT & « « o o ¢ ¢ 5 & % & v 5 & 5 & & % s 5 € 6 5 &3 1
= DIMETIION & & o« « 5 6 5 5 & s s b e ® S B e & e 2
I1. THE SELF-CHECKING COMPUTER MODULE 3
il SISIEM CONFIURATIONS . ¢ . & « o « 6.6 o 5 o 5 5 5 % & & o » 7
IV. COST AND EFFECTIVENESS OF BUILDING-BLOCK
FAULT-TOLERANT COMPUTERS ¢ ¢ ¢« &+ v 0 ¢ o« o o 5 o o o 9
N LIRS - o e S ek w6 N S W ey e K 10
APPENDIX 1 - CHARACTERIZATION OF BASELINE (NON-REDUNDANT) AND
SCCRCOMPUTER MODULES « v ¢ ¢ o v oo o s 10
WROREIRT 0 & - & ¢« & ¢ i s e F e A e R 13
BEFEREREES - ooy i s e s a E R R d e e e s S E s s 13
Figures
1. Fault-Tolerant SCCM Configurations 1
2. A Self-Checking Computer Module 2
3. Self-Checking Computer Module Architecture 4
4. The Memory Interface Building Block 4
5. The Bus Interfece Building Block . . « . . « & v o ¢« 4 o o o & 5
$ - The Lore Bl O BIOBKE . . 5« v v & v eos o wE e e e
7. A Distributed SCCM Architecture 7
8. Reliability Improvement Using SCCMs 9
Tables
1. SCCM Cost and Reliability Example « 3
2. Computer Module Physical Properties 9
A-1. Complexity of Component Elements 11
A-2a. Characteristics of Computer Modules 12
A=Zh. Pachaging DERSIEY < 5c o 5 s s b v iie « ey 12
Pr2C,. GO MY i 5 i i e A S e L 12

ABSTRACT

The development of ultra-reliable core computers is a starting point
for improving the reliability of complex military systems. Such com-
puters can provide reliable fault diagnosis, failure circumvention, and,
in some cases serve as an automated repairman for their host systems.

This report describes a small set of building-block circuits which
can be implemented as single VLSI devices, and which can be used with
off-the-shelf microprocessors and memories to build Self Checking Com-
puter Modules (SCCM). Each SCCM is a microcomputer which is capable of
detecting its own faults during normal operation and is designed to com-
municace with other identical modules over one or more Mil Standard 1553A
buses. Several SCCMs can be connected into a network with backup spares
to provide fault-tolerant operation, i.e. autometed recovery from faults.
Alternative fault-tolerant SCCM configurations are discussed along with
the cost and reliability associated with their implementation.

iv

FAULT-TOLERANT BUILDING-BLOCK COMPUTER STUDY

EXECUTIVE_ SUMMARY

Reliability is a continuing problem in mili-
tary electronic systems. The cost of electronic
system failures shows up as reduced operational
readiness and requirements for logistics supply
chains and maintenance personnel. It is estimated
that the cost of supporting an electronic system
for its life is often more than its initial pro-
curement cost.

Today both the knowledge and the technology
exist to build highly reliable computers at only
small penalties of size, weight and cost. The
reliability of these computers is achieved through
a redundant or fault-tolerant architecture. VLSI
technology provides the capability of putting large
amounts of circuitry in small and inexpensive
packages. By using a standby redundant architec-
ture in which unpowered elements of the computer
are spare, computer system reliability can be im-
proved in increments by adding spares. The long
term potential result 1s systems which are suffi-
ciently reliable, that they do not require techni-
cian or logistic support for the life of their
mission. In the shorter term, systems can be built
which utilize a highly reliable core computer which
can significantly aid in the diagnosis and mainte-
nance of the entire system.'®

The purpose of this study is to define and
characterize the VLSI building blocks required to
combine existing microprocessors and memory into a
wide variety of self-checking and fault-tolerant
computing systems. Fault tolerance is the ability
to continue correct operation in the presence of
failures. Self-checking circuits are capable of
detecting their own malfunctions. This study has
resulted in the definition of four VLSI circuits
which allow the construction of a single or a dis-
tributed fault-tolerant computer system. The four
building-block circuits are: 1) an error detecting
(and correcting) Memory Interface, 2) a program-
mable Bus Interface, 3) a Core Building Block, and
4) an 1/0 building block. These circuits interface
with two commercial microprocessors and commercial
memory to form a Self-Checking Computer Module
(SCCM). This computer operates just like any reg-
ular microcomputer but additionally it signals its
own malfunctions and can disable its outputs upon
detection of an internal fault. It is designed to
communicate with other identical modules over one
or more Mil Standard 1553A buses.

The Self-Checking Computer Module (SCCM),
which is constructed using the VLSI building-block
circuits, is itself a much larger building block
which is combined with other SCCHs to form a vari-
ety of fault-tolerant computing systems. Examples
of fault-tolerant SCCM configurations are shown in
Figure 1. The first is a standby redundant con-
figuration. A single computer (SCCM) is backed up
by one or more spares. Upon failure of the primary
SCCM, a backup spare automatically takes over the
ongoing computations. The second configuration
represents a network of SCCMs operating as a

a) STAN REDUNDANT

|SCCM! !SCCN! !SCCMI
1/0

(s) - S'Al’! MODULE

5 M INTERCOMMUNIICATIONS BUS
HIM - HIGH-LEVEL SCCM
SSM - SCCMy IN SUBSYSTEMS

Figure 1. Fault-Tolerant SCCM Configurations
distributed system. In this case, redundant spare
modules can be employed to provide automated fault
recovery in critical functions as designated by
the system designer. This type of confiquration
is applicable to avionics and shipboard control
systems. In the third configuration, a number of
SCCMs perform the same computations simultaneously.
Their outputs are voted in peripheral devices.
This type of configuration is used for ~..remely
high reliability applications which are human-life
dependent, such as commercial aircraft control.

In summary, the important attributes of this
building-block approach to fault-tolerant comput-
ing are:

(1) Using the four VLSI building blocks, Self-
Checking Computer Modules can be constructed from
a variety of commercial microprocessors and
memories.

(2) The self-checking property of the SCCM
allows these machines to instantly detect and sig-
nal internal faults, thus allowing straightforward
implementation of automated recovery by backup
spares.

(3) Using the SCCMs as building blocks allows
the system designer to choose from a wide variety
of system architectures. He is allowed full flex-
ibility in the tradeoff between redundancy and

performance in adding or deleting computers in the
system.

The following report describes the individual VLSI
building blocks, the resulting Se'f-Checking Com-
puter Module (SCCM), fault-tolerant conficurations
of several SCCMs, and finally, an evaluation of
the cost and effectiveness of this approach.

DRIGINAL PAGE IS
OF POOR QUALITY

1. INTRODUCTION

Reliability and consequently maintenance are
a continuing problem in complex military systems.
The cost of failures shows up in many ways, includ-
ing reduced operational readiness, and high dollar
costs associated with the large number of personnel
involved in maintenance and logistics. It is esti-
mated that costs of ownership often exceed procure-
ment costs in major electronic systems. It is
likely that life-cycle costs can be significantly
reduced by increasing system testability, maintain-
ability, and adding self-repairing features in the
early stages of a system design. A moderate
increase of initial hardware costs can yield im-
proved system reliability and reduce maintenance
costs for a system's operational lifetime.

The computers within a system provide the
starting point for automated maintenance. If
computer reliability is assured, the computers
can be used for 1) subsystem testing and failure
diagnosis, 2) automatically replacing failed sub-
systems with spare parts, or 3) where no backup
spares are available, modifying on-board processing
to account for the degraded subsystem state.

Stated in another way, the computer becomes an
automated repairman which may bring within reach
the ultimate goal of maintenance-free systens. To
achieve the level of computer reliability required
for this goal, fault-tolerant design techniques and
extensive use of VLSI must be employed.

The use of VLSI circuitry enhances the basic
component reliability, and combining reliable com-
ponents with fault-tolerant design can lead to
failure-free operation. Using fault-tolerance
techniques, spare modules are included in a com-
puter which are automatically substituted for
faulty modules when a fault occurs. Discarded
modules can be replaced by a repairman at reqularly
scheduled maintenance intervals without disruption
in service. The number of spares can be adjusted
to provide fault-free operation over various re-
quired time intervals. Fault-tolerant computer
design is a mature discipline’, and the use of VLSI
technology makes the cost of such machines rela-
tively inexpensive,“*®

The purpose of this study is to define and
characterize the VLSI building-block circuits
required to combine existing microprocessors and
memories into a wide variety of fault-tolerant com-
puting systems. The study has resulted in the
definition of four VLSI building-block circuits
which allow the construction of single or distrib-
uted (multiple) computer systems. These systems
are fault-tolerant, and thus have the ability to
continue correct computation in the presence of
failures and transient malfunctions. Specifically,
the building-block circuits are connected with
existing ("off-the'shelf") microprocessors and
memory devices to form Self-Checking Computer
Modules (SCCM). Each SCCM contains a computer and
the circuits necessary to communicate with other
(SCCM) computer modules or with dedicated 1/90
circuits. Each SCCM is also Self-Checking in that
it is capable of detecting internal hardware faults
concurrently with normal operation. It generates
fault-alarm signals so that recovery can be imple-
mented and other, redundant, (SCCM) computer mod-
ules can take over in case of failure.

The four building-block circuits are desig-
nated the Memory Interface, Programmable Bus Inter-
face, 1/0 Block, and Core Block. They provide the
following important properties:

1. They can be used with a variety of existing
microprocessors. This means that standard
computers with existing software can be used
in constructing building-block computer
systems.

2. The building-block concept is oriented toward
current and future standards through the use
of standard interfaces and the ability to
accept different microprocessors and memory.

3. Computers can be arranged in a distributed
configuration. Modules can be added to aug-
ment performance or to provide redundancy for
fault-tolerant operation.

A typical Self-Checking Computer Module is
shown below in Figure 2. It provides a computer
building block with a great deal of computing
power. A 16-bit processor with instruction cycles
in the range of 1-2 microseconds would be provided
along with 32 thousand words of memory.

T T
23 RAMS MI CORE
uP uP
Bl 8l
o /0 1/0
M - MEMORY INTERFACE BUILDING BLOCK
] - BUS INTERFACE BUILDING BLOCK
CORE - CORE BUILDING BLOCK
1/0 - 1’0 BUILDING BLOCK
uP - MICROPROCESS OR

Figure 2. A Self-Checking Computer Module

Typical packaging would be a 50 square inch multi-
layer board containing 23 commercial RAMs and two
commercial microprocessors. The building-block
circuits are one Memory Interface (MI), one Core
circuit (C), three Bus Interfaces (BI), and two
1/0 devices (10).

A description of the individual building
blocks and the resulting self-checking computer
modules is presented in Section 2. This is fol-
lowed by a description of their use in multicom-
puter networks, presented in Section 3. Upon
definition of the building blocks, a study was
conducted to estimate the cost, physical charac-
teristics, and the reliability of the building-
block computers. This is presented in Section 4
and summarized below.

In order to evaluate the cost and reliability
of this approach, we postulated a hypothetical
Baseline Computer which has performance equivalent

to the SCCM, but does rot have any of its fault-
tolerant properties. This baseline machine was
estimated to cost between $8,000 and $10,000 when
constructed with high-rel VLSI parts. The Self-
Checking Computer Module was then compared with the
baseline computer. The relative increase in cost
for its fault-tolerant properties (over the base-
line machine) was tabulated, along with the rela-
tive improvement in reliability. An example is
shown in Table 1. For various design options, the
expected percentage of failures is shown for an
ensemble of machines.

Relative Expected Percent
Cost Failures in Ensemble
of Machines in:
6 Months 1 Year 2 Years

Baseline
Computer 1 22 39% 63%
Self-Checking
Computer
Module (SCCM) 1.5 67 16% 407
SCCM plus:

1 Spare 3 0.5 2% 16%

2 Spares 4.5 <0.1% 0.5% 6"

Table 1. SCCH Cost and Reliability Example

To assess the incremental cost of an SCCH,
we examine the additional features which must be
included in the Baseline Computer. The additional
logic for self-checking circuitry adds about 15?
to the complexity of the Baseline Computer. This
property is essential for fault-tolerant operation
since prompt and dependable detection of faults is
necessary for automated recovery. Each SCCM also
contains error correcting (SEC/DED) codes in
memory and a spare replacement bit such that most
single faults in memory can be corrected. Since
the memory is by far the least reliable portion of
the SCCM (using current technology), single-fault
recovery in this area significantly improves the
reliability of the whole module. More common than
hard failures are transient mistakes caused by
erroneous bits stored in memory. HMost of these
errors are also corrected by this error correction
capability which represents an addition of 25% to
the complexity of the SCCM.

Thus the SCCM is about 1.5 times as expensive
as a conventional computer of similar capability
but, due to its internal memory fault correction,
it is expected to have several times less failures
in the field. The self-checking property allows
the SCCM to be easily connected with one or more
backup spares which provide automatic fault recov-
ery. In this case, the expected failures can be
reduced one or more orders of magnitude.

When spares are used, their number is chosen
to assure reliable operation over some specified
time interval at which scheduled maintenance is
performed (e.g. 6 months, 2 years, etc.). At the

time when the maintenance person arrives, the
computer system indicates which SCCM modules have
been discarded as faulty and automatically re-
placed with spares. He then substitutes new SCCMs
for the faulty modules without disrupting computer
service. In the future, when the cost of VLSI
circuitry drops even farther, it is expected that
sufficient redundancy can be included so that the
core computers will function properly over the
entire operational life of their host systems
without any external maintenance.

The relative increase in internal gates and
registers to provide a self-checking and fault-
tolerant computer is relatively constant over
various levels of circuit integration (i.e. SSI,
MSI, LSI, VLSI). VLSI implementation makes this
type of design more attractive for several reasons.
First, packaging is more efficient. When a com-
puter is partitioned into chips, pin limitations
often do not allow full utilization of the poten-
tial gates inside. Extra space is often available
for a nearly "free" implementation of self-
checking logic. A side benefit is that the self-
checking chips are more easily tested by the manu-
facturer. The general reduction in circuit costs
associated with VLSI similarly reduces the incre-
mental costs of fault tolerance, i.e. checking
circuitry and spares. In past computers, fault
tolerance cost an additional $100,000 or more and
was only applied to one-of-a-kind problems such as
space missions. MWith VLSI technology, this incre-
mental cost is reduced by an order of magnitude
making fault tolerance applicable to a much wider
range of applications. This report is directed
toward this area of LSI and VLSI devices which can
currently be produced. Extrapolating to future
VLSI developments, the cost of fault-tolerant com-
puting will be reduced by an additional order of
magnitude. It is expected that self-checking com-
puters will be packaged on a single chip along
with redundancy for local fault recovery at a cost
of a few hundred dollars.

IT. THE SELF-CHECKING COMPUTER MODULE (SCCM)

The Self-Checking Computer Module, as previ-
ously described, is a small computer which is
capable of detecting its own malfunctions. It
contains 1/0 and bus interface logic which allows
it to be connected to other SCCMs to form fault-
tolerant configurations. The SCCHM contains com-
mercially available microprocessors, memories, and
four types of VLSI buildinc-block circuits as
shown in Figure 3. The building blocks are:

1) an error detecting (and correcting) Memory
Interface (MI-BB), 2) a programmable Bus Inter-
face (BI-BB), 3) a Core building block (Core-BB),
and 4) an 1/0 building block (10-BB).

The building-block circuits control and
interface the various processor, bus interface,
memory, and 1/0 functions to the SCCM's internal
bus. Each building block is responsible for
detecting faults in its associated circuitry and
then signaling the fault condition to the Core
building block by means of an internal fault
indicator. The Memory Interface Building Block
implements fault detection and correction in the
memory, as well as providing detection of faults
in its own internal circuitry. Similary, the Bus
Interface and 1/0 Building Blocks provide inter-
communications and input-output functions, along

with detecting faults within themselves and their
associated communications circuirtry. The Core
Building Block checks the processing function by
running two CPUs in synchronism and comparing
their outputs. It is also responsible for fault
collection and fault handling within the module.

EXTERNAL INTE RCOMMUNICATIONS

BUS 1553A) REDUNDANT MF MORY

A 6 BITS HANMING
BUS INTERFACE 168175 BITS |} i1 ShARE
BLILDING BLOCKS INTERNAL
xi TRI-STATE * 5
f BUS | OMEMORY INTERFACE INT FAULT
ey N BUILDING B10CK
) -
PR E HAMMING
r JRE 2} comrme CTION
- ea EUILDING | INTERRUPT
\ ‘ BLOCK
F) f
B C
alafa BUS CHECK | o EE
PROCESSOR | ARBITOR ROLLBACK
T 8A COMP ARE
(F)!
o}t INTERNAL
[]] FauLt
{) ceu P] INDICATOR®
S | t)
e ' 12
v L JUTPUT INHIBIT (ON F RROR)
L p. =
{ ; 1/0-88 | BA - BUS ADAPTOR
L i BC - BUS CONTROLLER
T l'r‘A'ur P BUS ASSIGNMENT
! PRIORITY SIGNALS
DMA 1/0-88
g i OMA GRANT Soecopibent J
1)
& J

Figure 3. Self-Checking Computer Module Architecture

The Core Building Block receives fault indi-
cators from the other building-block circuits and
also checks internal bus information for proper
coding. Upon detecting an error, the Core-BB dis-
ables the bus interface and 1/0 functions, isolat-
ing the SCCM module from its surrounding environ-
ment. The Core-BB can optionally 1) halt further
processing until external intervention, or 2)
attempt a rollback or restart of the processor, or
when fitted, 3) initiate a memory reload from a
local nonvolatile store and execute a program re-
start. Repeated errors result in the disabling of
the faulty computer module by the Core Building
Block. Recovery can be effected by an external
SCCM which is programmed to recognize the lack of
activity from an SCCM and take over the ongoing
computations.

An important attribute of the building blocks
is that they are interconnected via the internal
processor-memory bus. All I/0, external bus trans-
missions, reconfigurations, and external diagnoses
are commanded by reading from or writing into out-
of range addresses. This use of "memory-mapped
1/0" avoids dependence on processor-specific 1/0
operations, and thus allows use of a wide range of
existing microprocessors in the SCCM.

The following is a brief description of the
building-block circuits.

The Memory Interface Building Block (MI-B85)

The fault-detecting and correcting MI-BB
interfaces a storage array (consisting of a redun-
dant set of memory chips) to the SCCM internal bus.
It provides Hamming correction to damaged memory
data, replacement of a faulty bit with a spare,
parity encoding and decoding to the internal bus,
and detcction ot internal faults within its own
circuitry.

The MI-BB needs only to be capable of detect-
ing errors to satisfy the requirement of an SCCM.
However, memory is the source of the largest number
of failures within the SCCM, and single-fault
repair in this area will greatly improve the relia-
bility of the whole module, even though the basic
computer module is treated as a replaceable (throw
away) item with backup spares. A block diagram of
the memory interface building block is shown in
Figure 4,

-------- FAULT INDICATION LINES
————— CONTROL LINES

a -~ ADDRESS BIT, ¢ - DATA BIT
p - PARITY BIT, c - CHECK BIT

CONTROL | « - SPARE
BUS | 6
£RROR |
INDICATORS | 4
16a]
ADDRE §$ 2;: f !' :C(‘.[‘SSV E ; MEWRV 7] 165 | ADDRESS
BUS ELEMENT - CONTROL
“e) (MO J___l_ggvgnm.
7 : B !
‘ F4 8
i
| e s |
SCCM | ERROR ----,-.-..-_..:.J Pl . STORAGE
INTERNAL CONTROL =5 | ARRAY
BUS ! ((Ta) L . B
S P
22 E | 16
29 T
22 | L i 6c |
DATA DATA-BUS [~ 16¢+ b¢ I [oir- Ly DATA
BUS INTERFACE ._—.‘—.1 REPLACEMENT ;
081 e L

The Memory Interface Building Block

Figure 4.

The Access Element (AE) provides the address
parity checking and decoding required to select a
memory module (storage array plus MI-BB). It names
and validates the incoming address by means of a

self-checking parity checker circuit.

The Error Control element is responsible for
generation of Hamming code check bits and syndromes,
byte-parity generation and checking (for the SCCM
internal bus), and error analysis. The circuits
used in the EC are also self-testing. A single-bit
error is corrected by decoding the syndrome gener-
ated from the word read from memory, in order to
localize the faulty bit. The correction is per-
formed by complementing the fault bit.

The error analyzer collects various error indi-
cations such as single error, double error, and
circuit error, which are recorded in an Error
Status Yord and which can be transmitted over the
bus on system demand.

The Bit Replacenent (BR) element performs the
reconfiguration of the storage array. It contains
a multiplexer circuit which can replace any one bit
plane in the memory with a single standby spare.
The bit to be replaced is specified by external
command.

The Data Bus_Interface (DBI) contains a Memory
Data Register and the tri-state drivers and re-
ceivers used to interface with the SCCM internal
data bus. Bit inversion for Hamming correction is

performed in the Data Register.

The Memory Control (MC) element receives com-

mands from the SCCM internal control bus which

specifies "read" and "write" operations. For ad-
dresses less than 61,440, the commands are inter-
preted as normal memory operations. "Read" and
"write" instructions with addresses larger than
61,440 are reserved for memory-mapped 1/0. A set
of these out-of-range addresses is reserved for
commands to the MI-BB. Among these commands are:
1) read error status word, 2) read error position
of faulty word, 3) read address of last error, 4)
reset, 5) disable correction, 6) read redundant
check bits, 7) replace a bit plane with a spare,
and 8) set soft name.

From preliminary designs, the complexity of
the Memory Interface building block is estimated
to be equivalent to 2000 gates. This represents
a small failure rate with respect to the storage
array and is readily implemented as a single LSI
building block.

The Bus Interface Building Block (BI-BB)

The Bus Interface Building Block provides the
mechanism by which information is transferred be-
tween SCCMs via an intercommunications bus system.
This external bus system consists of several redun-
dant buses and is being designed to utilize MIL STD
1553A communications formats. Each BI-BB can be
microprogrammed to function as either a Bus Con-
troller or Remote Terminal (designated Bus Adaptor)
for a single 1553A bus. Several BI-BBs are em-
ployed in each SCCHM so that each computer module
can communicate over several buses simultaneously.

The Bus Controller and Adaptor functions pro-
vided by the BI-BBs are much more powerful than
those normally implemented for 1553A controllers
and terminals. These BI-BBs are capable of moving
data directly between the memories of the SCCMs
attached to a given data bus with a minimum of
software support. The controlier and adaptors on
a given bus operate together in a relatively auton-
omous fashion similar to the data channels on much
larger machines, as described below.

The SCCM which controls an intercommunications
bus contains a BI-BB which is microprogrammed to be
a Bus Controller. When it wishes to initiate a
data transfer between the memories of the SCCM
modules on its bus, it alerts the Bus Controller.

The Bus Controller reads a control table from
its host SCCM's memory which specifies the source
and destination of information required for the
bus transfer along with the length of the trans-
mission. The Controller then broadcasts the appro-
priate commands over the bus system to "set up" the
transmitting and receiving adaptor circuits. It
monitors the transfer of information, records
status messages, and notifies the host SCCM upon
completion of the transfer.

BI-BBs in other SCCMs connected to the same
intercommunications bus are microprogrammed as Bus
Adaptors. These Bus Adaptors serve as remote
terminals on the bus. The Bus Controller, in set-
ting up a transfer, specifies one adaptor as a
data source. It then specifies one or more Bus
Adaptors as data acceptors and names the data to
be moved.

The source Adaptor then finds and extracts
the specified information from its host SCCM's

memory, using cycle-stealing, and places this in-
formation on the bus. Simultaneously, the acceptor
Adaptor(s) takes this information off the bus and
loads it into its host SCCM's memory, via cycle-
stealing.

An SCCM can contain several bus adaptors to
provide an interface to a number of redundant
external buses. Communication can occur simultane-
ously over as many as three buses with an SCCM
without conflict (time delays) seen on any bus. A
Bus Adaptor cannot initiate a bus transfer, but
only responds to the commands of a Bus Controller.
Provision is made for sending discrete commands
through Bus Adaptors such as, power on, power off,
halt, interrupt, reconfiqure, etc.

The functioning of the Intercommunications Bus
System is further described in a following section.
A block diagram of the BI-BB is shown in Figure 5.
It consists of five major elements, a Manchester/
NRZ translator, a Microprogram Control Unit, a
Control ROM, a Data Path Element, and a DMA (direct
memory access) Controller.

INTERNAL BUS REQUEST,
HOST (SCCM) HOST (SCCM) FAULT (F) ACKNOWLE DGE,
ADDRE $S BUS DATA BUS SIGNALS

819 8’18

[
} DATA PATH ELEMENT
|
|
L

ﬂa W, CPL

l e
DMA
contrRoL [IF)

(DATA-ADDRE $ 5 REGISTERS,
ROM, COUNTERS, ADDE R) = -—ﬁi s
2 HOST b 10 [~ ”]
aby NRZ COMMAND§ Lﬁ‘ gg:«‘vam 20
TAT | =
ouTPLT DATA L, L - .
INHIBIT
.2 QUTPUT ENABLE ’ 10/ MICRO-
PROGRAM
! ADDRES S
[~ CODE ERROR
ouTPUT MANCH- | |
1 ORIVER [~ ESTER YN |
| NS TTTRANSMIT, MICROPROGRAM
e PE - L CONTROL UNIT
INPUT TRANS -

RECEIVER] LATOR | TONE, TZRO _j‘—
et el < RETZROS
I

cLock
ga;[RNAL LNIJSYNR;)
Figure 5. The Bus Interface Building Block

The Manchester/NRZ Translator translates in-
coming Biphase Manchester into commands and data
by supplying a bus-synchronized clock, command and
data word-sync indicators, NRZ data, and parity and
Manchester-error detection signals. It will also
accept NRZ data, encode it, and output Manchester
data for bus transmission, along with the associ-
ated command and data sync signals.

The “icroprogram Control Unit (MCU) is a
microproc:ar sequencer. A microprogram location
counter is started at one of several fixed addresses
by command sync, data sync, or a host processor
command (detection of an out-of-range address).

The location counter proceeds through sequential
addresses or branches on the basis of incoming data,
internal flags, or other internal circuit condi-
tions. The microprogram sequencer is programmed

to generate a unique set of address sequences for
each type of incoming bus command, data sequence,
or computer command. This output sequence is then
mapped through a Control ROM to generate the

BoREY Fagy 1
RE POOR QuALITY

detailed control signals required to drive the
Data Path, MCU, and DMA Control Elements.

The Control ROM maps the microprogram address

sequence into control signals for the various
circuit elements.

The Data Path element contains 1) registers
necessary to buffer addresses and data, 2) ROM to
store memory protection bounds, data keys, and
table addresses, and 3) an arithmetic logic unit
for addressing computations. This circuit is not
unlike existing bit slice processors, with the ex-
ception that serial-parallel conversion registers,
ROM, and several holding registers are required
for the unique bus interface and DMA functions.

The DMA Control element is responsible for
obtaining control of the host SCCM's internal bus
and transferring data between the BI-BB and the
host SCCM's memory.

The fault detection techniques employed in
the Bus Interface Building Block are based on
parity coding to protect memory information and
duplication with morphic comparison for most of
the logic circuitry.® Preliminary designs indicate
that this building block will have complexity
equivalent to 7,000-10,000 gates.

The 1/0 Building Blocks

Input-output requirements of host systems
vary widely in voltage ranges, currents, and timing
parameters. The approach best suited to building-
block development is to provide a standard set of
functions which serve a majority of general appli-
cations. The user is required to supply any addi-
tional functions unique to his applications.

To be consistent with the SCCM design, all
building blocks must provide memory mapped 1/0.
That is, each 1/0 building block must recognize
its identification and the function being requested
from an out-of-range address appearing on the host
SCCM's internal address bus. Data for output or
input is transferred over the data bus in response
to a processor write or read to the specified
address.

Candidate I/0 functions are: 1) 16-bit par-
allel data in and out, 2) 16-bit serial data in
and out, 3) a pulse sampling circuit, 4) a pulse
counter, 5) a pulse generator, 6) an adjustable
frequency generator, 7) an analog multiplexer with
A/D converter, and 8) a high-rate DMA channel.

The density of VLSI technology is sufficiently
high that a number of I/0 functions can be supplied
on a single chip. The specific function which is
required can be activated by connecting pins.

This approach can reduce the inventory of different
I/0 building blocks to one or two.

The Core Building Block (Core-BB)

The Core-BB is responsible for: 1) detecting
CPU faults by synchronizing and comparing two
duplex CPUs, 2) collecting fault indications from
itself and other building blocks, and 3) disabling
its host SCCM upon detection of a permanent fault.
Three options are provided for attempted recovery
from transient faults. These are: 1) Stop at

first fault indication; wait for outside help;

2) Roll back at first fault indication; stop if
the fault recurs; 3) Reload memory and restart;
stop if fault recurs. 1In all cases, Bus Controller
and I/0 outputs are inhibited as lTong as the SCCM
is suspect; e.g. before a rollback or restart has
been successfully completed. Specific functions
of the Core-BB are listed: 1) Compare two CPUs
for disagreement; 2) Parity encode CPU output for
internal bus transmission; 3) Check parity on the
internal bus; 4) Recognize Core-BB commands which
can be sent from an external module via a bus
adaptor as out-of-range address (these are com-
mands to halt and inhibit outputs, restart, and
enable outputs of the receiving module); 5) Allo-
cate the internal tristate bus among several DMA
requests from the Bus Controller, Adaptors, and
1/0-BBs; 6) Detect internal faults within the Core-
BB; 7) Collect internal fault indications from all
building blocks within the SCCM; 8) Disable SCCM
output under fault conditions; 9) Provide optional
rollback/restart compatibility for optional tran-
sient fault recovery; and 10) Halt computation on
recurring faults.

OP CODE PSEL RWL STR CLOCK

- ERROR

SELF CHECKED
COMPARE TREE

ADDRE SS OR ; TO CHECK CPU
ST =

> T0 MASTER CPU
a) PROCESSOR CHECK ELEMENT (x 2)

1 BUS REQUE ST (BR)

cLock 4 r/-- TO CHECK CPU
I 1 BUS AVAILABLE
5;%}5“ 7 FROM CHECK CPU
INTERNAL RE SOLVER U 4
BUS 1 | SELF || 18 pseL,BUS
REQUESTS #‘-ﬁf":L— ESE%'Z%‘E - AVAILABLE TO
(8 x 2 [COMPLEMENT® 5 REQUE STING DMA
PRIORITY =4S
RE SOLVER ‘——4—10 INTERNAL ERROR
—% BUS AVAIL. FROM
2 Coe ¢
Lotk L»BR To MASTER CPU MASTER CPU
b) BUS ARBITRATION ELEMENT
6 4
0P CODE S Z= RECOVERY

. RECOVERY
INTERNAL
ERROR —HSELF = S QUENCER ’_l.
SIGNALS —T{CHECKED
“TICOMPARE {IV {}

10x2 = 20 +||TREE RECOVERY

— SEQUENCER

OPTION STRAPS

8 . PROCESSOR RESET
RUN STOP, OUTPUT
INHIBIT BULK LOAD

¢) FAULT HANDLER ELEMENT

Figure 6. The Core Building Block

PN, TR oy o U]

R

Ay G,

The Core-BB consists of three elements as
shown in Figure 6. The Processor Check element
serves three functions: I) to compare the outputs
of two synchronous CPUs, 2) to encode and check
internal bus parity, and 3) to recognize and de-
code commands sent to the Core-BB through the in-
ternal bus. It contains self-checking parity
checkers, a duplex command decoder, and mcrphic
reduction trees."

The Bus Arbitration element accepts two-wire
bus request signals from the various DMA control-
lers on other BBs. It obtains release of the bus
by the CPUs, and arants access to requesting BBs
on the basis of hardware priority. The Bus Avail-
able signal is sent as a two-wire indicator to
each requesting BB.

The Fault-Handler element accepts morphic
fault indicators from the other BBs and from within
the Core-BB. It reduces these to a single two-wire
master fault indicator which indicates a fault
somewhere in the SCCM. This fault indicator
triggers the removal of power from bus controller
and output drivers, isolating the computer module
from the rest of the system. Duplex Recovery
Sequencers are employed to implement optional tran-
sient recovery sequences. They are checked with a
self-checking comparator.

The Building-Block Designs are all directed
toward developing a computer module which removes
itself from operation whenever a fault occurs
inside. The next section deals with the use of
these modules in a computer network.

I11. SYSTEM CONFIGURATIONS

The SCCMs can be used in a number of differ-
ent fault-tolerant configurations to support a
variety of applications. This includes single
computer applications which employ standby redun-
dancy (i.e. a single computer protected with back-
up spares) and hybrid redundancy (i.e. several
computers execute the same program and their out-
puts are voted; additional spares may also be
employed). The SCCMs may also be combined into
distributed computer networks in which the indi-
vidual computing functions can be protected with
standby or hybrid redundancy.

A distributed computer network architecture
has been developed at the Jet Propulsion Laboratory
for control and data handling applications, which
allows SCCMs to be connected into a variety of
configurations. This architecture, designated the
Unified Data System (UDS), has been constructed in
the form of a breadboard system. Software has
been developed, and the results have been widely
reported.”*’*® This distributed computing archi-
tecture provides a framework for a number of com-
puters to work together, performing a collection
of different dedicated computing tasks. Individ-
ual computer moduies may be protected by standby
redundancy or voting, and thus the architecture
provides a model for single computer confiqura-
tions by considering a single internal computer
with its redundant protection, or a model for dis-
tributed computer fault tolerance by implementing
the complete processing ensemble.

The next section describes the hardware and
intercommunications structure of the UDS

architecture. This is followed by a brief descrip-
tion of the fault-tolerant configurations that can
be constructed.

The UDS Architecture Using Self-Checking Computer
W v v (S
Modules

A fault-tolerant UDS architecture consists of
a set of Self-Checking Computer Modules connected
by a redundant set of intercommunications buses as
shown in Fiqure 7. There are two types of modules:
Terminal Modules (TM) and High-Level Modules (HLM).”

P v T W g

P
P‘GDAM P3 mu B [RAM || P2 ulRAM‘—
] [4F] et [F] HIGH
RT| 9o LEVEL
1 o1
o o & MODULES
ac |[sa]eAl5A sc | [ea] oA oA ac] [saTea]ea
i i W
L - o oo of o= | R -
BT L & 2R T (O sus
NO. 1
NO. 2
1 1 NO. 3
L '%‘J Lﬁ“ " <— TERMINAL MODULES
B - BUILDING BLOCK
Lef [P bod [F WP - MICROPROCESSOR
mEdu Rl R BC - BUS CONTROLLER
L Ped L1 BA - BUS ADAPTOR
” RTI - REAL-TIME
| o | [o INTERRUPT
1 ‘ ‘. .‘ ‘ ‘o oI Pi - PRIORITY CHAIN
FOR ith BUS
--- - BC CONNECTION FOR
SUBSY STEM "= BUS-SHARING

Figure 7. A Distributed SCCM Architecture

Terminal Modules (TM) are SCCMs located within
various subsystems which are responsible for con-
trol and data gathering within their associated
subsystem. The TM contains two microprocessors
(1uP), memory (RAM) with an MI-BB, 1/0-BBs, a Core-
BB, and several BI-BBs configured as Bus Adaptors
(BA). The TM interfaces with the other modules in
two ways: 1) It receives a single Real-Time Inter-
rupt (RTI) which is common to all modules and which
is used for timing and synchronization, and 2) Each
TM contains a Bus Adaptor interface to each of sev-
eral intercommunications buses. Data words can be
entered or extracted from the memory of the TM com-
puter using Direct Memory Access (DMA) techniques.
Each BA can be commanded over its bus to fetch or
deposit data into the TM memory. A TM cannot ini-
tiate bus communications but it actively supports
DMA transactions into and out of its memory. An
external High-Level Module enters commands, data,
and timing information into the memory of the THM.
The TM delivers information to the system by plac-
ing outgoing messages into predetermined locations
of its memory, which can then be extracted by the
HLM over the bus. The TM can be accessed through
several buses simultaneously. The associated BAs
provide hardware conflict resolution between com-
peting DMA requests from different buses.

High-Level Modules (HLM) are SCCMs which are
responsible for coordinating the processing which
is carried out in the remote TMs, for control of
intercommunications over the bus system, and for
high-level processing such as data compression and
decision making. They contain the same internal
components as the TMs, augmented by an additional
BI-BB which configured as a Bus Controller (BC).

BRIGINAT PAGE 13
QE POOR QUALITY

Each BC, which is unique to an HLM, can move blocks
of data between the memories of all computer mod-
ules connected to its bus via commands to their Bus
Adaptors. The BC specifies a source module, one or
more destination modules and identifies the data to
be moved. The BAs in the addressed modules then
move the specified data over the bus between their
host SCCM memories.

The computer in the HLM activates its BC by
presenting it with the address of a Bus Control
Table in the HLM memory. This table specifies the
source module, destination modules, data names, and
the length of the requested information transfer.
The BC initiates and controls the specified trans-
mission, monitors status messages to verify a cor-
rect transfer of information, and notifies the HLM
computer when it is completed. The BC is the mech-
anism by which the HLM can coordinate the proces-
sing in other computer modules by entering com-
mands into their memories and reading out informa-
tion to monitor ongoing processes.

The Intercommunication Bus System (IBS) con-
sists of several independent serial buses, each of
which provides a bandwidth of approximately 1 mega-
bit. Each bus is connected to one Bus Adaptor in
each of the computer modules (HLMs or TMs) to
which it is connected. To each bus is assigned a
primary Bus Controller whose HLM has complete con-
trol over that bus. It can relinquish control
over its bus to another HLM under two conditions:
1) it is not powered, or 2) its processor commands
release of the bus to lower priority Bus Control-
lers for a designated time interval. Thus, the
set of buses may be operated simultaneously with
each bus controlled by a different HLM or with
individual buses time-shared between several such
modules.

Access to each bus by the various HLMs is
based on a fixed hardware priority assignment be-
tween Bus Controllers. A daisy-chain structure is
utilized for each bus to establish this priority
assignment as shown in Figure 7. Modules of higher
priority signal release of a bus via its "daisy-
chain," which then activates the hardware necessary
to allow bus access within modules of lower prior-
ity. Thus spare modules can gain access to a bus
whose controlling HLM has failed, or if a bus
fails, another bus can be shared between two con-
trollers. The individual buses are physically
independent; each has its own set of hardware bus
access control circuits and a daisy-chain for
priority assignments. Therefore, no central bus
system controller exists as a potential catastroph-
ic failure mechanism. Similarly, there is no com-
mon clock. Each bus uses clock signals generated
by the transmitting module. The number of
buses within the IBS may be selected to meet re-
quirements of data throughput and redundancy. The
concept facilitates reconfiguring throughout a
mission if failures occur. In the extreme, a
single remaining bus can support essential
functions.

The UDS design is oriented toward removing
"hard core" items whose failure can cause cata-
strophic system failure. Intercommunications and
clocks have often presented significant problems
in this area. These are dealt with in the UDS in
the following ways. The buses are made independ-
ent to avoid any common failure mechanisms. Each

HLM or TM uses its own internal clock, and the
buses use the clock of whatever module is trans-
mitting. With independent clocks in each computer
module there is also a distributed mechanism for
protecting against failure of the common RTI. If
two or more independent RTI signals are generated,
each module can decide whether the RTI is correct
by comparing this signal with their own internal
clocks. If an RTI generator fails, the modules
will automatically switch to a backup, and if an
individual computer clock fails, damage is con-
tained to the faulty module.

Each SCCM, as previously described, is capa-
ble of detecting its own faults concurrent with
normal operation and will disable itself upon
detecting a permanent internal fault before dam-
aged information can propagate beyond the faulty
SCCM. This allows automated recovery to be imple-
mented with backup spares.

Fault-Tolerant Configurations

A number of fault-tolerant configurations can
be derived from the UDS arc. itecture using SCCMs
as HLMs and TMs. Several are described below.

a) Standby Redundant Uniprocessor. This configu-
ration consists of a set of HLMs. One HLM is des-
ignated the "primary" module, another is desig-
nated a "hot" spare, other HLMs may be employed as
additional spares which are maintained in a dor-
mant state. The primary module performs the re-
quired computations, generates outputs, and col-
lects inputs for both itself and the "hot" spare
module via the intercommunications bus system.

The "hot" spare performs identical computations

to the primary module but does not produce outputs.
At each Real-Time Interrupt these two modules
perform cross-checks via the bus to see if the
other is functioning properly. Failure of either
module triggers recovery by the "good" module.
Should either active module detect an internal
fault and disable its outputs, the other machine
continues the ongoing computations. At a later
scheduled time, the surviving machine diagnoses
the fauity module and activates a new "hot" spare
if additional spares are available. Under special
conditions two or more "hot" spares can be as-
signed to back up the primary module and provide a
greater degree of redundant protection.

b) Voted Uniprocessors. For applications demand-
ing extremely high reliability, thre:- #iMs can be
assigned to perform identical computztions, and
each communicates with peripheral devices with a
separate dedicated bus. Outputs are voted in the
peripheral devices. Backup spare HLMs may option-
ally be employed to provide hybrid redundancy.
This type of configuration provides voting in
addition to the self-checking features of the
HLMs. It has primarily been applied to systems in
which the cost of failure is clearly unacceptable,
such as flight control of commercial aircraft and
the Space Shuttle.

c) Distributed Systems. Since the computer mod-
ules in a distributed system are performing a var-
iety of different functions, the requirements for
fault recovery vary in the different modules of
the system. Some functions are deemed more criti-
cal than others and redundancy is employed in a
selective fashion. Some computer modules,

embedded in fully redundant subsystems, may not
require fault recovery: others performing critical
functions may be very heavily protected.

The HLM which serves ~. the system executive,
and in some cases other HLiis, must survive a fault
without interruption in computations. These criti-
cal modules are protected by standby redundancy
with "hot" spares as described above. There are
often other HLMs assigned to functions which are
deemed noncritical and which can tolerate a program
interruption of up to several seconds. These HLMs
do not have dedicated "hot" spares. Nhen one of
these modules develops an internal fault, the sys-
tem executive H'M replaces the faulty module with
a "blank" spare, loads the spare's memory, and re-
starts the internal programs. Since the HLMs have
nondedicated connections, a common set of spare
modules can back up a number of HLMs performing
different critical and noncritical computations.

The Terminal Modules are attached by a number
of wires to the specific subsystem in which they
are located so they must have dedicated spares
which are also connected to the same subsystem,
The number of spares is determmined by the critical-
ity and failure rate of its associated subsystem,
Since a Terminal Module does not have the ability
to initiate a bus communication, it can only halt
and sianal an error. Recognition of a failed ™M
and commands for reconfiguration are the responsi-
bility of a High-Level Module.

Each controlling HLM is responsible for poll-
ing the various modules under its control to deter-
mine if a module has isolated itself due to a
failure. This polling process can be carried out
nearly automatically, using the bus system every
few (10-100) milliseconds. (Bus system failures
are determined by rerouting suspeci messages
through a different HLM-bus combination.) The HLM
is then responsibie for issuing the reload and re-
configuration commands necessary to replace a
faulty module with a spare or reinitialize a
transient-disturbed module.

These commands are sent to the various UDS
modules through one of several redundant Bus
Adaptors, which provide the following functions
with respect to their associated HLM or ™: 1)
power or unpower the internal computer, 2) load or
read out memory, 3) halt or start the processor at
specified locations, 4) sample error status from
the BBs, and 5) send reconfiguration commands to
the BBs. Since there are several Bus Adaptors in
each UDS module which are connected to independent
bus systems, there are redundant paths for carrying
out reconfiguration. The Bus Adaptors are powered
at all times.

IV. COST AND EFFECTIVENESS OF BUILDING-BLOCK

FAULT-TOLERANT COMPUTERS

In order to establish the cost and effective-
ness of fault-tolerant SCCM configurations, it is
first necessary to examine the properties of indi-
vidual SCCM modules. The user determines how many
are used for a given system and the number of
spares which are to be employed, and thus his cost
and reliability results are quite system-specific,

Append i« 1 chavacterization of the cost,
weight, power, volume, and reliability of a single

SCCM. Also included is a hypotheticsz! basel ine
computer module which does not have any of the
error detection and memory-fault correction capa-
bilities of the SCCM. This baseline computer is
presented so that the relative increase in cost
for the SCCM can be determined. The cost increase
is what one pays for increased reliability and
fault tolerance.

The estimates in Appendix 1 are made for an
SCCM containing 1) two 16-bit microprocessors,)
32,000 words of RAM, 3) three bus interface
building blocks, 4) one Core building block, and
5) one Memory Interface building block., This cone
fiquration corresponds to a High-level Yodule
previously described. (A Terminal Module would
typically contain one less Bus Interface and two
additional 1/0 building blocks and is of similar
complexity,) The technology is assumed to be hi-
rel CMOS/SOS civcuits with up to 10,000 gates on &
single chip, The results are susmarized below in

Table 2.

Cost Power Weight Volyme
Baseline 3
Computer Module... $ 5.6k oW 31bs 18 in
Self-Checking :
Computer Module... S13.66 SN 2.2 I1tbs 23 im

Table 2. Computer Module Phyvsical Properties
Absolute estimates of SCCM properties are, at
best, an approximation since the VIS! devices have
not been developed. Our basis of estisation |ies
in projection of past and curvent esperience, The
relative estimates between tne properties of the
Baseline and SCCM modules should be more accurate,
since they are less Jependent upon specific assump-
tions. In a relative sense, the SCCM is 40 to
50 move expensive, more power consusing, and more
voluminous than a nonredundan® baseline module
This represents the “front-end” price which i
paid in order to reduce 1ife-cyvile maintenance
costs,

.[’)
| AROW
FAILUMES N A EPLOYED
| GROUP (8 COMPUTIRS .
| LACH COMPUTER 15 4 .
L s '
| NN M e
VISICOMPLTE WOOME
| ”

- = 4

i VN MY .
| -
L / /’ +
: / P
-
s Y - . ‘.i
o ¢ - 1 viee -
LAAREE AR)

Figure #,. Reliability lmprovesent Using SO0

Figure 8 shows the comparative reliability of
the nonredundant baseline computer, a single SCCM,
and a duplex pair of an SCCM backed up by a spare.

If a large number of nonredundant computers
are deployed in the field, the user can expect a
large percentage of them to fail in a year's time.
He must then support maintenance personnel and
their associated test equipment to correct these
fatlures. At an extra 50° initial investment,
SCCMs can be employed which, without backup spares,
reduce this failure rate by a factor between 2 and
3. At 3 times the price {an extra $10-$20K per
computer) he can employ backup spares and reduce
the fatlure rate 10 to 20 times. Additional spares
can be employed to reduce in-field failures to
extremely rare occurrences.

Futiae Irende

Through the use of LSI, the cost of hardware
has dropped to the point where a fault-tolerant
compyuter costs much less than a non fault-tolerant
computer did only a few years ago. Using LSI cir-
cuits, the intrinsic reliability of computer sys-
tems has improved greatly, but not enough to pro-
vide fault-free operation. This is achieved by
fault-tolerant, {.e. self-repairing, architectures
which offer fault-free operation of a year or more
with current technology. The current cost of
fault tolerance is on the order of an extra
$10,000-20,000 per computer. This is largely due
to the cost of the additional high reliability
parts which are many times more expensive than
commerc 12l quality devices. Current costs may be
nrmcutly reduced in two ways: 1) the use of
self-testing logic should make them much more
easily tested, thus reducing a large production
cost, and 2) using fault tolerance less component
screening s required since an occasional failure
15 sutomatically corrected,

VLSI circuit development is not static and by
the mid-1980s there should be major improvements
in this fault-tolerant computer technology. For
example, we can expect an SCCM to be packaged on
one or two chips at a cost of less than $1000,
Components can be expected to be several times
wore reliable, producing an equivalent increase in
the reliable 1ife of the fault-tolerant confiqgura-
tions. One can project conservatively that fault-
tolerant machines can be oullt in a few years
which provide 5-10 rs of maintenance-free oper-
ation at less than $1000 in increased costs.

V. CONCLUSIONS

This study has resulted in the definition and
preliminary design of 4 small set of VLSI building-
plock circuits, which, 1f implemented, would allow
the uyier to construct fault-tolerant computing
Systess out of existing processors in a straight-
forward fashion, VLSI circuitry s the key to
this implementation, The redundant circuitry re-
quired for faylt tolerance, which was once expen-
“ive, can now be obtained in small inexpensive
pach ‘
he VLS! butlding-block circuits are used to
constract small (SCCM) computers which are capable
of detecting their own internal faults (and cor-
recting some fTaults which are most likely to
occwr). These Self-Checking Computer Modules can
then be combined with backup spares to provide

automatic recovery from faults. A standard busing
system allows these SCCMs to be connected into a
variety of fault-tolerant distributed computing
networks.

The ultimate goal of this work is maintenance-
free systems. By providing an ultrareliable core
computing system, it can act as an automated re-
pairman, to provide automated testing and redun-
dancy management in complex systems.

The next phase of this effort will be to do a
detailed logic design of the building-block cir-
cuits and implement a breadboard consisting of
several self-checking building-block computers
interconnected by the redundant bus system. This
step will be completed in 1979 and will provide the
detailed experience necessary for a subsequent VLSI
implementation of the building-block circuits.

When this is accomplished, we hope that the
system engineer will have in hand the tools for the
immediate and routine use of fault-tolerant comput-
ing. This building-block development has a near
term goal of developing the enabling technology
(circuits) for the off-the-shelf use of fault-
tolerant computers. It is a first step in a long
term goal of using the increasing density and re-
liability of new VLSI circuit technologies to pro-
vide fault-free computing at lower and lower costs.

APPENDIX 1.

CHARACTERIZATION OF BASELINE (NONREDUNDANT)
“TAND SCCM COMPUTER MODULES

There are two approaches to evaluating the
fault-tolerant building-biock systems which are
of value to the potential user. First, there is
the absolute approach: "How much does it cost and
what are its reliability characteristics?" And
secondly, there is the relative measure: "How much
more does it cost than an equivalent nonredundant
structure, and what is the relative improvement in
reliability?" Both approaches will be examined.

The cost and reliability of each computer sys-
tem is highly dependent on the number of integrated
circuits which are required for implementing the
building blocks. Two levels of integration are
considered in estimating cost and reliability.
These correspond to the current and projected
state-of-the-art in device and technology as
listed below:

1. SSI MSI - Current breadboard technology

2. 10,000 gates/chip - Next generation custom VLSI
It should be recognized that absolute cost and re-
liability estimation results, at best, in a rough
approximation, This is because the VLSI devices
have not been developed, and thus our basis of
estimation lies in a projection of past and cur-
rent experience.

The following is an examination of the char-
acteristics of a Building-Block Self-Checking
Computer Module. These computers make up the
basic modules from which fault-tolerant networks
are constructed. In order to evaluate the addi-
tional costs of self-checking building-block cir-
cuftry, estimates are also included for a

nonredundant computer module of similar capability
and constructed out of similar technology.

The parameters to be studied are power,
weight, volume, cost, and reliability. Since the
computer circuits have yet to be constructed, est-
imates of these parameters must be regarded as only
approximations projected from current experience.
Underlying assumptions are given in the following
discussion in order to aid the reader in evaluating
the validity of the results.

Complexity of Functional Elements

Table A-1 examines the logical complexity of
the various component elements which make up 1) a
building-block self-checking computer, or 2) an
equivalent nonredundant machine. Complexity is
determined in terms of equivalent logic gates
e.g. IRAM cell = 1 gate, 1ROM cell = 1/4 gate,
1 bit of parallel-serial shift register = 6 cates)
for each element which makes up the computers. It

32,000 16-bit words. (This is admittedly small
for VLSI implementations, but it is expected that
memory development will not proceed as rapidly in
low power, hardenable technologies required by the
military.) An estimated component count is tabu-
lated for each of two implementations. The first
assumes that all circuitry surrounding the CPU and
Memory will be constructed out of existing SSI and
MSI circuits. The second implementation assumes a
VLSI technology with on the order of 10,000 gates
per chip.
Complexity of Computer Modules

Table A-2a is a tabulation of the component
requirements for self-checking high-level and
terminal (computer) modules along with equivalent
nonredundant computers.

Two patterns become obvious in these results.
First, as the level of integration is increased in
the building-block circuits, memory becomes the

is assumed that each computer has a memory of dominant cost in a number of devices. Second, as
IMPLEMENTATION
ELEMENT QUANTITY COMPLEXITY SSI-MSI VLSI (104 g/chip)
(equlva]ent qates) 128 pin pkg.
1. BUILDING-BLOCK, SELF-
CHECKING COMPUTER
a. BUS INTERFACE 2-4 2500-3000 gates 200 Chips 1 VLSI
12.000 Bits ROM 3 ROMs (512x8)
b. CPU 2 8000 qates 2 CPU 2 CPU
c. CORE BUILDING 1 1000 qates 150 ChlpS 1 VLSI
BLOCK i 5 . ‘
d. MEMORY INTERFACE n 1700 gates 150 Chips 1 VLSI
BUILDING BLOCK
(for 32K module)
e. MEMORY ?Kx;6 1 gate/bit 184 RAMs (@4Kx1) 23 RAMs (@ 32Kx1)
in
f. 1/0 BUILDING k 100-600 gates each 10-40 Chips 1 VLSI for 3 or 4
BLOCKS (10 types) (each type) I/O functions

. NONREDUNDANT COMPUTER - of similar technology and capability

~N

a. BUS INTERFACE 2-4 1700-2000 gates
10.000 Bits ROM
b. CPU 1 8000 gates
c. MEMORY (32Kx16) qate/blt
d. BUS ARBITER 1 100 gates
e. [/0 STANDARD k 75-400 gates each
CIRCUITS

(10 types)

Extra discrete logic folded into custom LSI circuits.

and bus drivers.

Table A-1.

130 Chips 1 VLSI
3 ROMs (512x8)
i CPU 1 CPU

136 RAMs (@4Kx1) 17 RAMs (0 3kal)

Included in VLSI
Bus Interface

16 Chips

8-32 Chips each 1 VLSI for several
functions (1 type)

Common elements are clock, power supply,

Complexity of Component flements

ORIGINAT FAGE IS
OE RPOQR QUALITY

the level of integration is increased, the relative
cost of a self-checking computer (over a nonredun-
dant computer) decreases dramatically.

If memory fault detection (but not correction)
is employed in the self-checking computer, the cost
of self-checking is negligible over the nonredun-
dant machine. If error correction is employed in
the memory of the self-checking computer (an addi-
tional feature to improve reliability), the incre-
ment in cost between machines is primarily related
to the cost of SEC/DED codes.

Several authors have demonstrated that self-
checking circuitry i1s relatively inexpensive if
used. One reason for this is because system par-
titioning, i.e., partitioning of a computer into
VLSI chips, does not occur on the basis of gate
count alone. It is based on separation of comput-
ing functions (I1/0 Processor, Memory Intercommuni-
cations) which results in breaking up the computer
at points where the number of interconnections and
the control interfaces are reasonable. When par-

A "TYPICAL" BUILDING-BLOCK
_COMPUTER MODULE __

COMPONENT - NUMBER - AREA - COST

(inz) $K (ICs only)
1. SSI/MSI VERSION: (14 1bs)
SSI/MSI 900 300 31.5
ROMs 9 7 1.4
CcPU 2 3 4 70.1
RAN 184 138 36.8 + 20.1*
A5 = = S SeE
1095 448 70.1
2. VLSI VERSION: (1.4 1bs)
SS1/MS1 0 0 0
ROMs 0 0 0 1.6
CPU 2 3 0.4 2‘0,
RANM 23 L 57 ; 9.2 13:6
VLSI 5 25 & 3
30 45 11.6
* Board & Fabrication Costs
Table A2-a.

1. VLSI 128 pin pkg. - 5 in

2. LSl 64 pin pkg. - 1.5 in’

ROM, RAM some MSI
20-24 pin pkg. - .75 in

4. SSI 14-18 pin pkg. - .25 in°

w

2

(avg. area for SSI/MSI = 1/3 in?)

Table A-2b. Packaging Density

Note:

$10,000, and 75 efficiency.

titioning is completed, the VLSI chips are seldom
used to full capacity, and enough area remains to
implement checking circuits at neqgligible cost on
each chip.

Packaging and Cost

The methodoloqy for estimating packaging
density is to assume the use of flat packs on
multilayer boards. The area for each circuit type
is shown in Table A-2b, and the resulting board
area is computed for each of the computers which
are being examined. The circuit boards require
about 1/2 inch of depth, and thus volume is esti-
mated at 0.5 times the circuit area requirements.

Cost is determined on the basis of three
items--parts costs, board costs, and assenbly
costs--as shown in Table A-2c. Assembly costs
are related to board area, which is in turn re-
lated to the number of pins to be soldered. From
our experience, a technician can assemble and
inspect on the average of one square inch/hour.

NONREDUNDANT COMPUTER MODULE W/
SIMILAR CAPABILITY AND TECHNOLOGY
COMPONENT - NUMBER - AREA - COST
2

(in%) SK
1. SSI/MSI VERSION: (8 1bs)
SSI/MSI 406 135 14.2
ROMs 9 7 1.4
CPU 1 2 .2 43.0
RAM 136 102 27.2 11.1*
LSI 0 0 0 58k
552 247 43.0
2. VLSI VERSION: (1.1 1bs)
SSI/MSI 0 0 0
ROMs 0 0 0
cPU 1 2 0.2 7.0
RAM 17 13 b.e 1. 6%
VLSI 4 20 1.6 8.6
22 35 7.0

Characteristics of Computer Modules

VLSI
LSI
RAM

$400/chip

$200/chip

$200/chip (4Kx1, or 8kx1)
RAM $400/chip (32Kx1)

ROM $150/chip (512x8)

SSI/MSI $35/chip, avg.

Multilayer board $25/in°
Assembly and Inspection $20/in°

Table A-2c. Cost Model

These estimations do not include the power supply, which is estimated at 4 1bs, 102.5 inj.

	GeneralDisclaimer.pdf
	0010A02.pdf
	0010A03.pdf
	0010A04.pdf
	0010A05.pdf
	0010A06.pdf
	0010A07.pdf
	0010A08.pdf
	0010A09.pdf
	0010A10.pdf
	0010A11.pdf
	0010A12.pdf
	0010A13.pdf
	0010A14.pdf
	0010B01.pdf
	0010B02.pdf
	0010B03.pdf

