38 research outputs found

    Design of an electric drivetrain for the Formula Student-class vehicle

    Get PDF
    Hlavním úkolem této diplomové práce bylo navrhnout a postavit funkční prototyp frekvenčního měniče pro použití ve vozidlech týmu eForce FEE Prague Formula, soutěžícího v mezinárodní inženýrské soutěži Formula Student. Práce je členěna do několika kapitol, kdy je nejdříve prozkoumán již minule provedený vývoj v týmu. Dále je vystavěna potřebná teorie pro vývoj frekvenčního měniče. Další kapitola detailně popisuje provedený vývoj zařízení. Poslední kapitoly se věnují zhodnocení navrženého měniče. Diplomová práce také prozkoumala nové možnosti v měření fázových proudů, umožňující vysokou přesnost při zachování nízké ceny a kompaktních rozměrů. Celkovým cílem bylo navrhnout jednoduché a robustní zařízení s nízkou výrobní cenou. Ověřování návrhu bylo provedeno v laboratořích fakulty pro ujištění připravenosti navrženého měniče pro nasazení do vozidla. Práce bude pokračovat na vylepšování řídícího algoritmu a postupné integraci do týmových vozidel.This thesis' main objective was to design and develop a functional motor controller for usage in a Formula Student competition vehicle of the eForce FEE Prague Formula team. Work is split into several chapters. Exploring a drivetrain development progression in the team, presenting a needed theory for a motor controller development and giving a detailed overview of the designed device. The last chapters are dedicated to evaluation of the design. Thesis had explored a new methodology in a phase current sensing, providing a significant precision while allowing for a low cost and compact design. Overall aim was to create a simple, robust and cheap solution. Verification of the design was performed in the laboratory environment of the faculty in order to ensure preparedness for integration into the vehicle. Further work will focus on control strategy improvements and final integration into the team's vehicles

    Doubly-fed induction generator used in wind energy

    Get PDF
    Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this work, a novel induction machine model is developed. This model includes the saturation in the main and leakage flux paths. It shows that the model which considers the saturation effects gives more realistic results. A new technique, which was developed for synchronous machines, was applied to experimentally measure the stator and rotor leakage inductance saturation characteristics on the induction machine. A vector control scheme is developed to control the rotor side voltage-source converter. Vector control allows decoupled or independent control of both active and reactive power of DFIG. These techniques are based on the theory of controlling the B- and q- axes components of voltage or current in different reference frames. In this work, the stator flux oriented rotor current control, with decoupled control of active and reactive power, is adopted. This scheme allows the independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. Conventionally, the controller type used in vector controllers is of the PI type with a fixed proportional and integral gain. In this work, different intelligent schemes by which the controller can change its behavior are proposed. The first scheme is an adaptive gain scheduler which utilizes different characteristics to generate the variation in the proportional and the integral gains. The second scheme is a fuzzy logic gain scheduler and the third is a neuro-fuzzy controller. The transient responses using the above mentioned schemes are compared analytically and experimentally. It has been found that although the fuzzy logic and neuro-fuzzy schemes are more complicated and have many parameters; this complication provides a higher degree of freedom in tuning the controller which is evident in giving much better system performance. Finally, the simulation results were experimentally verified by building the experimental setup and implementing the developed control schemes

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained

    Medical semiconductor sensors: a market perspective on state-of-the-art solutions and trends

    Get PDF
    The aim of this Master Thesis is to analyse the worldwide state-of-the art market solutions and trends in semiconductor sensors within medical applications; specially magnetic and pressure sensors, with the intention of developing a potential entry plan of Infineon Technologies AG into this market. For that purpose, a fit between a top-down and bottom-up qualitative and quantitative estimation of the medical semiconductor sensor’s market size has been made; with application units, sensor volumes and sensor revenues, with a horizontal scope of five years. Once understood the existing market, some insight into the competitive landscape is provided, where the key suppliers are analysed in terms of product portfolio and revenue share estimates, on an application basis. And also, a spotlight on innovation and trends at three levels – healthcare, medical devices and medical semiconductor sensors – is presented, to forecast a possible evolution of the fore-mentioned market. The research that has been conducted is based on three main sources of information; internal contacts (i.e. within Infineon), external contacts (most of them through internal references) and internet research. Access to market research company’s reports and interviews has been particularly helpful, to complement extensive internet research. Outcomes of this study indicate that the global medical semiconductor magnetic sensor market reveals low revenue potential; as most of the applications are yet innovation fields. Reed switch replacement in battery-powered medical devices can be an opportunity for magnetic switches. However, this project suggests that there is a key investment opportunity: magnetic beads for viral detection with spintronics sensors. The global medical semiconductor pressure sensor market seems a fairly mature market; the gross part of the revenue comes from blood pressure measurement. Blood pressure measurement might be an opportunity for existing automotive semiconductor pressure sensor products. Furthermore, this report suggests that the future of blood pressure measurement might tend towards implantable pressure sensors, with a non-significantly different technological basis. To conclude, this report unveils certain business opportunities for Infineon’s semiconductor magnetic and pressure sensor products; and puts special focus on the development of derivative products to pioneer the commercialization of innovative medical applications, with a forecasted huge revenue potential

    Modelling and practical set-up to investigate the performance of permanent magnet synchronous motor through rotor position estimation at zero and low speeds

    Get PDF
    This thesis provides a study for the rotor position estimation in SM-PMSMs, particularly at zero and low speeds. The method for zero rotor speed is based on injection of three high frequency voltage pulses in the motor stator windings. Then, the voltage responses at the motor terminals are exploited to extract the rotor position. Two approaches, modelling and practical implementations, are presented. The obtained results have showed a verification of a high-resolution position estimation (a position estimation of 1 degree angle), a simplicity and cost effective implementation and a no need for current sensors is required to achieve the estimation process. It should be noticed that the implementation of rotor position estimation at zero speed is only attended when the rotor is at standstill or very low speed. Therefore, the motor driver is not expected to be active at this condition. Thereby, the zero speed estimation does not provide a robust torque control. In future, this should be taking into consideration to overcome this drawback and to make the estimator more reliable. At low speed running, the primary goal is to start spinning the under test motors, and then the rotor position estimation is achieved. The motor spinning is based on adopting a virtual injected signal to generate the voltage components, Vα and Vβ, of the space vector pulse width modulation technique. Then, generating the eight space vectors is conducted through storing the standard patterns of the six space vector sectors in a memory structure together with the timing sequences of each sector. The presented strategy of motor running includes a proposed motor speed control scheme, which is based on controlling the frequency of the power signal, at the inverter output, through controlling the timing period of execution the power delivery program. The thesis presents a proposed method to achieve the estimation goal depends on tracking the magnetic saliency on one motor line voltage. Thereby, the rotor position estimation The introduced proposed method, for rotor position estimation at zero speed, verifies the following contributions: - Presents a simple and cost effective zero speed rotor position estimator for the motor under test. - The aimed resolution in this thesis is an angle 1 degree. IV - Adopting solely the measuring of motor terminal voltages. Eliminating the detection of the rotor magnet polarity as a necessary technique for completing the position estimation. At low speed running, the following contributions are verified: - Rather than a real frequency signal, a virtual injected signal is adopted to generate the voltage components, Vα and Vβ of the space vector pulse width modulation technique. - The proposed method for generating the eight space vectors is based on storing the standard patterns of the six sectors in a memory structure together with the timing sequence. - The strategy of motor speed control is based on controlling the period of execution the power delivery program. - The strategy of low speed rotor position employs one motor line voltage from which the low speed estimation is achieved

    Modelling, Fault Detection and Control of Fault Tolerant Permanent Magnet Machine Drives

    Get PDF

    Sensorless position estimation in fault-tolerant permanent magnet AC motor drives with redundancy.

    Get PDF
    Safety critical applications are heavily dependent on fault-tolerant motor drives being capable of continuing to operate satisfactorily under faults. This research utilizes a fault-tolerant PMAC motor drive with redundancy involving dual drives to provide parallel redundancy where each drive has electrically, magnetically, thermally and physically independent phases to improve its fault-tolerant capabilities. PMAC motor drives can offer high power and torque densities which are essential in high performance applications, for example, more-electric airplanes. In this thesis, two sensorless algorithms are proposed to estimate the rotor position in a fault-tolerant three-phase surface-mounted sinusoidal PMAC motor drive with redundancy under normal and faulted operating conditions. The key aims are to improve the reliability by eliminating the use of a position sensor which is one of major sources of failures, as well as by offering fault-tolerant position estimation. The algorithms utilize measurements of the winding currents and phase voltages, to compute flux linkage increments without integration, hence producing the predicted position values. Estimation errors due measurements are compensated for by a modified phase-locked loop technique which forces the predicted positions to track the flux linkage increments, finally generating the rotor position estimate. The fault-tolerant three-phase sensorless position estimation method utilizes the measured data from the three phase windings in each drive, consequently obtaining a total of two position estimates. However, the fault-tolerant two-phase sensorless position estimation method uses measurements from pairs of phases and produces three position estimates for each drive. Therefore, six position estimates are available in the dual drive system. In normal operation, all of these position estimates can be averaged to achieve a final rotor angle estimate in both schemes. Under faulted operating conditions, on the other hand, a final position estimate should be achieved by averaging position estimates obtained with measurements from healthy phases since unacceptable estimation errors can be created by making use of measured values from phases with failures. In order to validate the effectiveness of the proposed fault-tolerant sensorless position estimation schemes, the algorithms were tested using both simulated data and offline measured data from an experimental fault-tolerant PMAC motor drive system. In the healthy condition, both techniques presented good performance with acceptable accuracies under low and high steady-state speeds, starting from standstill and step load changes. In addition, they had robustness against parameter variations and measurement errors, as well as the ability to recover quickly from large incorrect initial position information. Under faulted operating conditions such as sensor failures, however, the two-phase sensorless method was more reliable than the threephase sensorless method since it could operate even with a faulty phase.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201
    corecore