52 research outputs found

    StressAware: App for Continuously Measuring and Monitoring Stress Levels in Real Time on the Amulet Wearable Device

    Get PDF
    Stress is the root cause of many diseases. Being able to monitor when and why a person is stressed could inform personal stress management as well as interventions when necessary. In this thesis, I present StressAware, an application on the Amulet wearable platform to measure the stress levels of individuals continuously and in real time. The app implements a stress detection model, continuously streams heart rate data from a commercial heart-rate monitor such as a Zephyr and Polar H7, classifies the stress level of an individual, logs the stress level and then displays it as a graph on the screen. I developed a stress detection model using a Linear Support Vector Machine. I trained my classifiers using data from 3 sources: PhysioNet, a public database with various physiological data, a field study, where subjects went about their normal daily activities and a lab study in a controlled environment, where subjects were exposed to various stressors. I used 73 data segments of stress data obtained from PhysioNet, 120 data segments from the field study, and 14 data segments from the lab study. I extracted 14 heart rate and heart rate variability features. With 10-fold cross validation for Radial Basis Function (RBF) SVM, I obtained an accuracy of 94.5% for the PhysioNet dataset and 100% for the field study dataset. And for the lab study, I obtained an accuracy of 64.29% with leave-one-out cross-validation. Testing the StressAware app revealed a projected battery life of up to 12 days before needing to recharge. Also, the usability feedback from subjects showed that the Amulet and Zephyr have a potential to be used by people for monitoring their stress levels. The results are promising, indicating that the app may be used for stress detection, and eventually for the development of stress-related intervention that could improve the health of individuals

    Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research

    Get PDF
    Psychiatric disorders are linked to a variety of biological, psychological, and contextual causes and consequences. Laboratory studies have elucidated the importance of several key physiological and behavioral biomarkers in the study of psychiatric disorders, but much less is known about the role of these biomarkers in naturalistic settings. These gaps are largely driven by methodological barriers to assessing biomarker data rapidly, reliably, and frequently outside the clinic or laboratory. Mobile health (mHealth) tools offer new opportunities to study relevant biomarkers in concert with other types of data (e.g., self-reports, global positioning system data). This review provides an overview on the state of this emerging field and describes examples from the literature where mHealth tools have been used to measure a wide array of biomarkers in the context of psychiatric functioning (e.g., psychological stress, anxiety, autism, substance use). We also outline advantages and special considerations for incorporating mHealth tools for remote biomarker measurement into studies of psychiatric illness and treatment and identify several specific opportunities for expanding this promising methodology. Integrating mHealth tools into this area may dramatically improve psychiatric science and facilitate highly personalized clinical care of psychiatric disorders

    Detecting Stressful Social Interactions Using Wearable Physiological and Inertial Sensors

    Get PDF
    Stress is unavoidable in everyday life which can result in several health related short and long-term adverse consequences. Previous research found that most of the stress events occur due to interpersonal tension followed by work related stress. Enabling automated detection of stressful social interactions using wearable technology will help trigger just-in-time interventions which can help the user cope with the stressful situation. In this dissertation, we show the feasibility of differentiating stressful social interactions from other stressors i.e., work and commute.However, collecting reliable ground truth stressor data in the natural environment is challenging. This dissertation addresses this challenge by designing a Day Reconstruction Method (DRM) based contextual stress visualization that highlights the continuous stress inferences from a wearable sensor with surrounding activities such as conversation, physical activity, and location on a timeline diagram. This dissertation proposes a Conditional Random Field, Context-Free Grammar (CRF-CFG) model to detect conversation from breathing patterns to support the visualization. The advantage of breathing signal is that it does not capture the content of the conversation and hence, is more privacy preserving compared to audio. It proposes a framework to systematically analyze the breathing data collected in the natural environment. However, it requires wearing of chest worn sensor. This dissertation aims to determine stressful social interaction without wearing chest worn sensor or without requiring any conversation model which is privacy sensitive. Therefore, it focuses on detecting stressful social interactions directly from stress time-series only which can be captured using increasingly available wrist worn sensor.This dissertation proposes a framework to systematically analyze the respiration data collected in the natural environment. The analysis includes screening the low-quality data, segmenting the respiration time-series by cycles, and develop time-domain features. It proposes a Conditional Random Field, Context-Free Grammar (CRF-CFG) model to detect conversation episodes from breathing patterns. This system is validated against audio ground-truth in the field with an accuracy of 71.7\%.This dissertation introduces the stress cycle concept to capture the cyclical patterns and identifies novel features from stress time-series data. Furthermore, wrist-worn accelerometry data shows that hand gestures have a distinct pattern during stressful social interactions. The model presented in this dissertation augments accelerometry patterns with the stress cycle patterns for more accurate detection. Finally, the model is trained and validated using data collected from 38 participants in free-living conditions. The model can detect the stressful interactions with an F1-score of 0.83 using stress cycle features and enable the delivery of stress intervention within 3.9 minutes since the onset of a stressful social interaction

    Non-Contact Monitoring of Dehydration using RF Data Collected off the Chest and the Hand

    Full text link
    We report a novel non-contact method for dehydration monitoring. We utilize a transmit software defined radio (SDR) that impinges a wideband radio frequency (RF) signal (of frequency 5.23 GHz) onto either the chest or the hand of a subject who sits nearby. Further, another SDR in the closed vicinity collects the RF signals reflected off the chest (or passed through the hand) of the subject. Note that the two SDRs exchange orthogonal frequency division multiplexing (OFDM) signal, whose individual subcarriers get modulated once it reflects off (passes through) the chest (the hand) of the subject. This way, the signal collected by the receive SDR consists of channel frequency response (CFR) that captures the variation in the blood osmolality due to dehydration. The received raw CFR data is then passed through a handful of machine learning (ML) classifiers which once trained, output the classification result (i.e., whether a subject is hydrated or dehydrated). For the purpose of training our ML classifiers, we have constructed our custom HCDDM-RF-5 dataset by collecting data from 5 Muslim subjects (before and after sunset) who were fasting during the month of Ramadan. Specifically, we have implemented and tested the following ML classifiers (and their variants): K-nearest neighbour (KNN), support vector machine (SVM), decision tree (DT), ensemble classifier, and neural network classifier. Among all the classifiers, the neural network classifier acheived the best classification accuracy, i.e., an accuracy of 93.8% for the proposed CBDM method, and an accuracy of 96.15% for the proposed HBDM method. Compared to prior work where the reported accuracy is 97.83%, our proposed non-contact method is slightly inferior (as we report a maximum accuracy of 96.15%); nevertheless, the advantages of our non-contact dehydration method speak for themselves.Comment: 8 pages, 9 figures, 2 table

    WiWear: Wearable sensing via directional wifi energy harvesting

    Get PDF

    Hand-breathe: Non-Contact Monitoring of Breathing Abnormalities from Hand Palm

    Full text link
    In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method

    The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings.

    Get PDF
    MotionSense HRV is a wrist-worn accelerometery-based sensor that is paired with a smartphone and is thus capable of measuring the intensity, duration, and frequency of physical activity (PA). However, little information is available on the validity of the MotionSense HRV. Therefore, the purpose of this study was to assess the concurrent validity of the MotionSense HRV in estimating sedentary behavior (SED) and PA. A total of 20 healthy adults (age: 32.5 ± 15.1 years) wore the MotionSense HRV and ActiGraph GT9X accelerometer (GT9X) on their non-dominant wrist for seven consecutive days during free-living conditions. Raw acceleration data from the devices were summarized into average time (min/day) spent in SED and moderate-to-vigorous PA (MVPA). Additionally, using the Cosemed K5 indirect calorimetry system (K5) as a criterion measure, the validity of the MotionSense HRV was examined in simulated free-living conditions. Pearson correlations, mean absolute percent errors (MAPE), Bland-Altman (BA) plots, and equivalence tests were used to examine the validity of the MotionSense HRV against criterion measures. The correlations between the MotionSense HRV and GT9X were high and the MAPE were low for both the SED (r = 0.99, MAPE = 2.4%) and MVPA (r = 0.97, MAPE = 9.1%) estimates under free-living conditions. BA plots illustrated that there was no systematic bias between the MotionSense HRV and criterion measures. The estimates of SED and MVPA from the MotionSense HRV were significantly equivalent to those from the GT9X; the equivalence zones were set at 16.5% for SED and 29% for MVPA. The estimates of SED and PA from the MotionSense HRV were less comparable when compared with those from the K5. The MotionSense HRV yielded comparable estimates for SED and PA when compared with the GT9X accelerometer under free-living conditions. We confirmed the promising application of the MotionSense HRV for monitoring PA patterns for practical and research purposes

    A review of privacy-preserving human and human activity recognition

    Get PDF
    • …
    corecore