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Abstract

Stress is unavoidable in everyday life. Continuous, and repetitive stress can result

in several health related short and long-term adverse consequences. Previous research

found that most of the stress events occur due to interpersonal tension followed by work

related stress. Enabling automated detection of stressful social interactions using wearable

technology will help trigger just-in-time interventions which can help user cope with the

stressful situation. In this dissertation, we show the feasibility of differentiating stressful

social interactions from other stressors i.e., work and commute. However, collecting

reliable ground truth stressor data in the natural environment is challenging. This

dissertation addresses this challenge by designing a Day Reconstruction Method (DRM)

based contextual stress visualization that highlights the continuous stress inferences from

a wearable sensor with surrounding activities such as conversation, physical activity, and

location on a timeline diagram. This dissertation proposed a respiration based

conversation model to locate the interactions to support the visualization. Advantage of

respiration signal is that it does not capture the content of conversation and hence, is more

privacy preserving compared to audio. However, it requires wearing of chest worn sensor.

This dissertation aims to determine stressful social interaction without wearing chest worn

sensor or without requiring any conversation model which is privacy sensitive. Therefore,

it focuses on detecting stressful social interactions directly from stress time-series only

which can be captured using increasingly available wrist worn sensor. This dissertation

propose a framework to systematically analyze the respiration data collected in natural

environment. The analysis includes screening the low quality data, segmenting the

respiration time-series by cycles and develop time-domain features. It proposes a

Conditional Random Field, Context-Free Grammar (CRF-CFG) model to detect

conversation from breathing patterns. This system is validated against audio ground-truth

in the field with an accuracy of 71.7%. To detect stressful social interactions from stress

time-series data, this dissertation introduces stress cycle concept to capture the cyclical
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patterns and identifies novel features from it. Furthermore, wrist worn accelerometry data

in this study shows that hand gestures have a distinct pattern during stressful social

interactions. The model presented in this dissertation augments accelerometry patterns

with the stress cycle patterns for more accurate detection. Finally, the model is trained and

validated using data collected from 38 participants in free-living conditions. The model

can detect the stressful interactions with an F1-score of 0.83 using features obtained from

just one stress cycle and enable the delivery of stress intervention within 3.9 minutes since

the onset of a stressful social interaction.
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Chapter 1

Introduction

1.1 Motivation

Stress is unavoidable in our everyday life. There are numerous reasons for stress,

such as difficulties in interpersonal relationships, long-standing pressures at work, an

unsatisfying career, deadlines, test-taking, financial difficulties, health issues, care-giving,

etc. The Yerkes—Dodson law of empirical relationship between arousal and performance

states that humans perform at an optimal level under a certain amount of stress [1]. But

continuous, repetitive, and excessive stress can result in emotional distress, headaches,

back pain, elevated blood pressure, trouble sleeping, slower body recovery, and decreased

mental performance, among several other short and long-term adverse consequences [2].

Therefore, it is important to better manage stress in daily life for better physical and

mental health and well-being, relationship satisfaction, work performance, and an overall

better quality of life.

Prior work has investigated and organized different types of stressors. For

example, 1,031 participants were studied in [3]. They observed 4,000 stressful events

from the daily life of these participants and organized the stressors in seven broad

categories — interpersonal argument and tensions, work, home related stress, finances,

health, networking, and miscellaneous. Among them, interpersonal argument and tensions

occur most frequently (50% of the time) as people interact with partners, friends, family

members, colleagues, and supervisors regularly. This is followed by work related stress

(13.4% of the time) including work demand, overload, technical issues, and job security.

Another work studied 225 graduate students and found that academic or professional

demands, interpersonal demands, financial strains, and commuting were found to be the

most common stressors [4].

As interactions with partner, family, friends, colleagues are a fundamental aspect

of our daily life, stressful interaction is a major daily stressor for a large population.
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Healthy interactions can provide happiness, social support, and cause fewer health

issues [5, 6]. But, stressful interactions such as conflicts may lead to deleterious

consequences to physical and psychological health (e.g., depression, anxiety, and

substance abuse) and may affect the relationship quality, happiness, and overall life

satisfaction [7, 8, 9, 10]. Moreover, stressful conversations at work can adversely impact

productivity, job performance, and job satisfaction [11].

Therefore, it is important to understand the timing, frequency, and duration of

stressful conversations to reduce their harmful effect in daily life. Sensor-based automated

detection of stressful conversations from the natural environment can be used by

researchers to investigate the antecedents, dynamics, and consequents of stressful

conversations, potentially leading to novel therapies and interventions. Moreover,

real-time detection of such conversations can be used to trigger just-in-time mobile

interventions for deescalating a tense situation and for pacifying the users so that they can

recover and cope better with the situation.

For decades, extensive research has been conducted on developing and

implementing mindful stress management methods, such as deep breathing, yoga,

meditation, biofeedback, guided visualizations [12], voice feedback to slow breathing

pace, and guided body scans. They assist users in managing and manipulating their stress

arousal. Initially, these mindful interventions were delivered face-to-face by coaches

(including virtually), then delivered remotely over telephone, transitioning to delivery via

text messages, to now being delivered on smart phone and smart watches. However, most

of these mindful intervention methods requires active attention from the users and may

interrupt the ongoing tasks. Recent work has demonstrated feasibility of mindless

interventions which does not requires user’s active attention. Researchers showed that it is

possible to regulate user’s emotions by providing false feedback of a slow heart rate via

smart watch, or by using a voice modulation intervention that can change the emotional

tone of users’ own voices during test taking or while involved in an interpersonal
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conflict [13, 14, 15]. Other researchers have designed haptic interventions on car seats,

helping users do deep breathing exercises while driving [16]. Therefore, users can still

perform their tasks, and the technologies act in parallel in an unobtrusive way without

interrupting them. Thus, the effectiveness of an intervention during stressful social

interactions depends not only on the timing of interventions, but also the right choice of

intervention. If we can able to detect a stressful interaction, a proper intervention can be

delivered to minimize the intensity of the situation. For example, to deescalate an ongoing

conflict, his/her own modulated voice can be delivered via an ear bud or can be provided

with a haptic feedback using a wrist watch, which should be more appropriate and

effective than suggesting yoga at that moment. Starting a yoga session during an on-going

inter-personal interaction may interrupt the flow of that interaction. The critical missing

component of just in interventions is finding the moment of stressful social interactions.

Fortunately, both conversational interactions [17,18] and physiological response to

stress [19] can be detected from wearable respiration sensors data. Combining these two

inferences can potentially indicate the timing of stressful interactions or conversations.

However, this method suffers from several challenges. First challenge is that it requires

wearing of chest worn sensors to collect reliable respiration data. Second, it is unknown

how to combine these two modalities. Moreover, social interactions or conversations can

also be detected from audio signal which involves privacy concern in real life. Our goal is

to determine stressful conversations without wearing chest worn sensor or without

requiring any kind of conversation model either from respiration or audio. That motivates

us to explore stressful interactions directly from stress time-series.

In this dissertation, we demonstrate the feasibility of detecting stressful social

interactions or conversations from stress time-series data. In particular, we show that by

analyzing the dynamics of stress time series, we can detect whether the current stress

event is due to stressful conversations or other stressors such as commuting or work
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related stress. Automatic detection of stressful interactions or conversations from mobile

sensors involves several challenges.

1.2 Challenges and Contributions

In this section, we present four technical challenges that arise in detecting stressful

social interactions and our contributions to address each of them.

1. Challenges in obtaining ground truth labels to model stressful interactions.

The foremost challenge in developing stressful social interaction model from

stress time-series is to get fine-grained labeling of the stress events i.e., timing and

duration of the events. The traditional approach is to request users to proactively provide

labels by manually keeping a dairy [20], retrospectively via an interview [3], or ecological

momentary self-reports [4, 19]. However, these methods lack the temporal resolution and

reliability needed to develop a sensor-based model successfully [21]. Alternatively, an

observer can be assigned to follow each participant in their daily life. However, it involves

significant expense, burden, and may still not capture several real-life scenarios in order to

respect participants’ privacy.

To collect ecologically valid data from the daily life of participants with

unambiguous and temporally-precise labels, we designed and conducted a lab and a field

study. Stressful conversations usually involve two (or more) parties, both of whose

consent is generally needed, especially for capturing sensor data during stressful

conversations and other real-life stressors. As cohabiting couples typically spend a lot of

time together, we recruited couples to wear sensors and collect data concurrently. To

detect the timing of stress events, we used a previously validated model to passively infer

stress arousal from Electrocardiogram (ECG) and respiration signals that produce stress

likelihood for every minute [19]. To find the start and end times of stress events from the

continuous stress time-series data, we use the model presented in [22]. To overcome the

imperfection of machine learning models for stress detection, we developed an automated

stress visualization system utilizing Day Reconstruction Method (DRM) [23] concept to
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present the detected stress events to users with surrounding contexts (i.e., conversation,

location, and physical activity), all derived from sensor data. The visualization helped

users recall stressful events so they could confirm or refute a detected stress event and

remember the reason for the confirmed stress events, providing us labels of stressors for

each identified and confirmed stress event. As automated detection of conversations from

audio or respiration data is limited to an F1 score of around 0.7 [18], we collected

high-quality raw audio to verify the presence of conversations via human annotation.

Finally, as collection of raw audio poses privacy concern and burden because the

participants needed consent from anyone they talk to, we limited the data collection with

each couple to one full day, similar to other studies that also recruited couples and

collected wearable sensor and audio data from them [24, 25]. As one day of data consists

of between 2 and 3 detected stress events [26], we get sufficient data from each couple for

our modeling. To increase between-person and between-situation diversity in the data, we

recruited 38 participants (19 cohabiting couples) in the field. Upon completing data

collection, the participants were shown their own stress arousal data with other contextual

information. They were asked to first verify the occurrence of detected stress events and

then recall the reason of stress for each stress event detected correctly. After observing the

visualization, they were able to recall 97 stressful events. Participants recalled several

reasons for stress events such as meeting with a supervisor, having deadlines at work, job

interviews, conflict with their partner, driving on a busy road, assignment deadlines, etc.

We found majority of the stress events are due to interpersonal interactions.

To understand the nature of physiological response during stressful conversations,

we conducted a lab study with 12 participants (6 cohabiting couples) that was structured

to trigger stressful conversations among couples. The lab study ensures control of other

potentially confounding events in the field that may affect physiology (i.e., physical

activity), allowing us to discover the unique patterns of stress response in sensor data

during stressful conversations.
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2. Challenges in extracting features from respiration signal in field.

To enable stressful interaction or conversation detection model, we need dense and

continuous stress time-series data in field. Also, to label stressful events, we provide

conversation inference as a cue in the visualization system. Respiration signal can be used

to infer psycho-physiological stress [19]. Another benefit of respiration sensing is that

breathing kinematics can provide useful information about a person’s speaking status.

Conversation causes specific changes in breathing patterns in addition to generating

sounds. Therefore, we choose to use respiration signal over audio to measure stress and

conversation because this signal is less privacy sensitive.

We used a physiological sensor suite to collect respiration data continuously and

passively in natural environment. Respiration data has traditionally been collected in

controlled settings such as sleep labs and speech labs. But, the natural environment

introduces numerous challenges to the screening, cleaning, and processing of this data.

There are several challenges that prevent achieving good accuracy for detecting human

states and behaviors at the cycle-level of granularity in respiration data collected in the

field environment.

A first challenge is the accurate identification of breathing cycles, i.e., pinpoint

several interesting points of a cycle such as onsets of inspiration and expiration that

demarcate change in phases of breathing and are critical to accurate computation of

features along both time and amplitude dimensions. Cycle identification is challenging

due to voluntary control of breathing, the baseline shift in the respiratory data, daily

activities, short breaths, end expiratory pauses or breath holds, and others. Second

challenge is to handle the effect of activity and postures. Respiration signal can be easily

influenced by movements of limbs and torso, changes in posture (i.e., sitting, supine), and

physical activity (walking). To handle these challenges, we present a rigorous method for

screening, cleaning respiration signals and developed moving average based algorithm for

identifying respiration cycles captured in both lab and field settings. Among 1,934

6



respiration cycles collected in lab in presence of conversation, the proposed cycle

identification method can identify 94.4% cycles correctly. Among 1,500 cycles collected

in natural environments, the proposed method identified 96.34% cycles correctly in the

presence of physical activities (walking) and in different postures (e.g., sitting and

standing).

3. Challenges in developing conversation model from respiration signal.

Developing respiration based conversation model involves several challenges. A first

challenge is to get fine-grained labels for each cycle (speech and non-speech) which are

necessary to train and validate a classifier. Most existing approaches for labeling data are

inadequate for our study: a) requesting self-reports from the users is impractical, i.e., users

cannot label each breath cycle when they are engaged in a natural conversation, b) having

an observer annotate each cycle. Further, turn taking can occur swiftly, making it

impossible to keep track of and synchronize the labels to the sensor data. A second

challenge is segmenting the respiration signal into periods of conversation, which consists

of both speech and non-speech cycles. For example, silence during a conversation may be

due to all parties engaged in thinking or may mark the start of a new conversation episode.

A third challenge is to generalize the conversation model built using controlled lab data to

naturally occurring conversations in uncontrolled field environments, which may have

different distributions of speech/non-speech durations. The final challenge is to validate

the model in the field against a widely-used gold standard.

We present a Conditional Random Field, Context-Free Grammar (CRF-CFG)

based conversation model to classify respiration cycles into speech or non-speech, and

subsequently infer conversation episodes. Our model achieves 82.7% accuracy for

speech/non-speech classification and it identifies conversation episodes with 95.9%

accuracy on lab data using a leave-one-subject-out cross-validation. Finally, the system is

validated against audio ground-truth in a field study with 38 participants. This model

identifies conversation episodes with 71.7% accuracy on 254 hours of field data.These are
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comparable with conversation detection from high-quality audio recordings from the

LENA device [27].

4. Challenges in developing stressful conversation model from stress

time-series.

Next challenge is to to identify signatures that can distinguish stressful interactions

or conversations within a stress time series. To the best of our knowledge, there exists no

model to detect stressful interaction using physiological or inertial sensors. For better

generalizability of the model, our goal is to discover features from stress time-series only.

So that it can work irrespective of how stress is detected (e.g., from electrocardiogram,

optical sensing on wrists, or sensing of electrodermal activity) and can be easily and

widely deployable in tohe field.

In the lab data, we observe that the stress time-series follows a cyclical pattern that

results from the interplay between the sympathetic and parasympathetic nervous system

during a stress response, similar to that found in physiology during stress [28, 29]. To

develop this model, we first develop a method to automatically identify this cyclical

pattern or cycles in the stress time-series data. We use the cycle as a dynamic, natural

window to segment the stress time series during a stress event. We then identify

discriminative features from each stress cycle and train a machine learning model to

determine whether a stress event is due to stressful conversations.

We show that using features from one stress cycle, the model can identify whether

a stress is due to stressful interactions or conversation with an F1 score of 0.74. We also

observe distinct patterns in hand gestures during stressful conversations. By augmenting

the model with hand gesture features (derived from wrist-worn inertial sensors) within

each stress cycle, the F1 score improves to 0.83. A stressful conversation usually consists

of multiple stress cycles. Using all cycles improves the F1 score to 0.89, providing a

trade-off between accuracy and how early since the start of a stressful conversation, an

intervention can be delivered.
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1.3 Dissertation Outline

In this dissertation, we develop machine learning methods and models to address

the above challenges described above.

In Chapter 2, we review existing works for physiological response to different

stressors, how physiology acts differently for different stressors in lab settings and

existing conflict detection model in field.

In Chapter 3, we describe the procedure of data collection in lab and field settings.

The lab data is mainly used to develop to respiration cycle identification algorithm and

conversation model from the sequence of respiration cycles. Next we describe field study

that is needed to model stressful interactions or conversations from stress time-series data.

In Chapter 4, we describe the algorithm to detect respiration cycles. We propose

several metrics to evaluate the performance of the algorithm. We finally compare the

performance with two existing models.

In Chapter 5, we present a CRF-CFG base conversation detection model developed

using lab data. We then implement a lab to field generability model to improve the

performance of this model in field. Finally, we compare the result with audio based

conversation model.

In Chapter 6, we propose a stressful social interaction model using stress

time-series data. We extract several novel features from the cyclical pattern of stress

time-series. Later, we augment the performance of the model using wrist motion features.

Finally, we describe the implication of this model for just-in-time intervention.
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Chapter 2

Literature Review

We review the existing works for physiological responses to different sources of

stress, detection of stress using mobile and wearable devices, and detection of social

interactions and conflicts from physiological and audio signal.

2.1 Background on Physiological Response to Stressors

A stressor presents a challenge, opportunity, or threat to users. To help users

prepare for stress response, their autonomous nervous system (ANS) activates their

physiology that includes the cardio-respiratory system (i.e., heart and lungs), endocrine

system (e.g., hormone secretion), and the thermoregulatory system (e.g., temperature and

sweating). ANS comprises of the sympathetic nervous system (SNS) and the

parasympathetic nervous system (PNS) [30]. The SNS elevates the physiology, preparing

the body for a ‘fight-or-flight response. To provide the needed energy, SNS stimulates

several physiological parameters (e.g., heart rate, respiration rate, blood volume, body

temperature, etc.). To limit any damage to the end organs, PNS acts as a counterbalance

mechanism to restore calm and thus maintain homeostasis. Its strength is usually

proportional to the increase caused by SNS, and it eventually brings the physiology back

to a resting state.

The interplay of SNS and PNS can be illustrated by considering the impact on the

cardiovascular system. In response to a stressor, the SNS increases the heart rate (HR).

Once the threat is over, the PNS reduces HR, bringing it back to a resting state [31]. Heart

rate variability (HRV) is a common measure to quantify the interaction of SNS and PNS.

The HRV is defined as the variation in the beat-to-beat intervals. An increased/decreased

HRV indicates increased activity of the PNS/SNS, respectively. Therefore, HRV is a

simple measure to quantify the contributions of the PNS/SNS and has traditionally been

used to estimate stress response. Heart rate variabilities (HRV) have been found to follow

cyclical patterns in lab settings [28, 29]. De Geus, et al., showed that the heart rate
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increases when users face stressors [32]. For stressors, they used a tone avoidance task, a

memory search task, and a cold pressor test. They found that the heart rate remains high

as long as the stressor is present and goes back to the pre-stress level with the removal of

stressors, resulting in a cyclical pattern.

The stress response can also be explained in terms of endocrine response to stress,

i.e., salivary cortisol levels. In [33], authors investigated the cortisol level in 124

heterosexual dating couples during a conflict negotiation task. The cortisol was assessed

at 7 points before and after the task, creating a trajectory of stress reactivity and recovery

for each participant, resulting in a cyclical pattern.

The interplay of SNS and PNS can be distinct when presented with different

stressors as the persistence of stress stimuli can differ. For example, during a cold pressor

test, the initial stress response can be high due to shock from cold temperature, but

physiology can gradually recover as the body gets used to the temperature difference. But,

in a stressful conversation, there can be highly stressful moments, that may be followed by

either further escalation or de-escalation, which can drive the activation of SNS and PNS

differently than from a cold pressor test. In fact [34] showed that the stress responses to

three different stressors (i.e., cognitive, emotional, and physical) are sufficiently distinct

that they can be detected using a machine learning model. In another recent work, [35]

showed that respiration pattern during stressful conversation is different than that during a

stressor not involving conversation (i.e., cognitive). Both of these works used controlled

lab experiments to show the distinction in stress response due to different stressors. We

build upon these works to observe the physiological responses to real-life stressors

occurring in daily life (in a field study) and develop a model that can successfully identify

when a stress response is due to stressful conversations.

2.2 Stress Monitoring Using Wearable Sensors

There has been extensive work in detecting stress, first in the lab settings using

ECG and respiration [36], gradually moving to ambulatory field environment (carrying
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Holter Monitors in backpacks) [37], then to selected tasks in the field environment with

wearable sensors [38], and finally to free-living environment with unobtrusively wearable

wireless sensors [19, 39]. Recent works present stress detection from pulse

plethysmograph (PPG) in conveniently-worn wrist devices [40, 41]. The focus of the

machine learning models in these works was to develop a single model that can detect

stress irrespective of the type of stressor. They mostly use diverse stressors in the lab

settings, e.g., using a cold pressor as a physical stressor, mental arithmetic as a cognitive

stressor, and public speaking as a social stressor. But, the goal for modeling has been to

extract commonality in stress response captured by sensor data so that a single trained

model can detect all stress events. Our goal here instead is to discover uniqueness in the

stress responses due to different stressors.

There have been limited works in developing models to distinguish among

different stressors. It was shown in [34] that stress responses during different stressors

show discernible differences. Using lab data, they developed a Gaussian mixture model to

cluster the physiological signals (consisting of heart rate, electrodermal response, and

oxygen saturation) captured during cognitive stress (counting backward by sevens

beginning from 2,485 and Stroop test), emotional stress (watching horror movie for 5

minutes), exercise (walking on a trade-mill for two minutes), and a resting state. They

report an accuracy of 84% for the four class classifier, demonstrating the feasibility of

developing models to distinguish among different stressors and rest state. As this work

was limited to lab stressors, it did not show how well these patterns can distinguish among

real-life stressors in field settings.

A recent work [35] collected respiration data in the lab settings, where they

included a non-verbal relaxer (watched 10 minutes neutral movie), a verbal relaxer (talked

in mother language for 5 minutes on a chosen topic), a verbal stressor (prepared and

participated in an interview), and a non-verbal stressor (took part in a cognitive task). In

order to improve the accuracy of stress detection, they developed a two-stage model. In
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the first stage, they detect whether a conversation is taking place, and depending on the

outcome, they apply different stress models to detect whether the signals exhibit a stress

response. They showed that using a two-stage classifier, they achieve 83% accuracy

compared to 76% when using a one-layer classifier that does not detect conversations,

demonstrating that stress response in respiration is different during stress events with or

without a conversation. As their goal was to improve the detection of stress model similar

to other works in stress detection, they did not address the issue of distinguishing verbal

stressors from non-verbal stressors on their lab dataset. In Section 6.8, we construct a

baseline model motivated by this work that uses an automated detection of conversation

and automated detection of stress and combines both to detect stressful conversations. We

find the best performance from such a model is limited to an F1 score of 0.6.

2.3 Detection of Conflicts using Audio and Physiological Data

Finally, [24] showed the feasibility of detecting whether an interpersonal conflict

occurred in each hour (reporting accuracy of 69.2%) using wearable sensor and audio data

for that hour from romantic couples who wore sensors for a day in field. As the focus of

this work was to detect for each hour whether any conflict occurred or not, they did not

present any model to distinguish among different stressors or find different sources of

stress.

Our work builds upon, contributes to, and complements the above works by

presenting new methods to identify distinguishing patterns in stress dynamics of an

individual in daily life using mobile sensors, and demonstrating that it is feasible to detect

stressful interactions from other daily stressors. In summary, to the best of our knowledge,

our work is the first attempt at demonstrating that stressful conversations can be detected

automatically from wearable physiological sensors in daily life, without the need for audio

data.
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Chapter 3

Study Design and Data Collection

For development, training, and testing of stressful interaction or conversation

model, we collected data in both lab and field settings. The project recruited couples living

together to maximize the occurrence of interpersonal interactions, including stressful ones.

The lab study was designed to capture elicited and fully observable interpersonal conflicts,

whereas the field study captured conflicts naturally occurring in daily life. All studies

were approved by the Institutional Review Board (IRB) at University of Memphis, and all

participants provided written informed consent. We now describe details of both studies.

3.1 Lab Data Collection to Model Conversational Interaction

We designed the lab study to serve two purposes- (1) to develop a model to detect

conversation from respiration data and (2) to collect clean confounder-free data (e.g., due

to physical activity) during stressful conversations that can be used to find any

distinguishing pattern in the stress time-series signal. The lab tasks were designed to

create difficult communication situations and thus induce interpersonal conflicts.

Conversational interaction data is collected in two settings - (1) in a true laboratory setting

and (2) in natural environment. Interaction data collected in true laboratory setting is

designed to collect conversation data in sitting position and to validate the performance of

the chest band sensor with a hospital grade system. Later on, chest band sensor is used to

collect data in field. Participants engaged in several vocal and conversational tasks in the

University of Memphis Social Interaction Laboratory. Moreover, interaction data is

collected in natural environment to enhance the generalizability of the model to detect

conversation in presence of free-living activity since activity also affects respiration

measurements.

3.1.1 Participants

In true laboratory setting, data is collected from 12 individuals (6 pairs of

cohabiting couples) from students, full-time professionals and part-time employees at a
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Fig. 3.1: Lab equipment and lab setup.

Fig. 3.2: (a) Chest band sensor (captures respiration, ECG, and accelerometer signal). (b) Samrt
watch. (c) LENA audio recorder, and (d) Study phone (Sony Ericsson Xperia X10, Android Smart
phone).

university. Participants included 7 women (mean age: 29.9 ± 7.4 years) and 5 men (mean

age: 27.2 ± 2.9 years).

To acquire conversation data in presence of activities, labeled quiet breathing and

speech breathing data were collected in presence of physical activity (i.e., walking) from 5

healthy adults (mean age: 30.9 ± 1.3 years) in natural environment, .

3.1.2 Devices

In the lab, respiratory activity was measured with two types of Respiratory

Inductance Plethysmography (RIP) bands. The first one is a hospital grade Inductotrace

band which quantifies changes in the rib cage and abdomen cross-sectional areas by

means of two elastic transducer belts placed at the level of the armpits and the navel (see

Figure 3.1a). Inductotrace bands were connected to a calibration unit (Inductotrace
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system, Ambulatory Monitoring Inc.) via a transducer oscillator. A Data Translation

DT381 analog-to-digital (A-D) converter operated by TF32 software was used to convert

this signal into digital form on a computer.

The Inductotrace system, however, is not suitable for collecting data in the field as

it is bulky, requires a fixed setup, and is not wireless. To monitor respiratory behavior in

the field, we use the AutoSense chest suite of sensors [42] that collects Electrocardiogram

(ECG), respiration and 3-axis accelerometer signals (Figure 3.2a). In this experiment, we

are able to compare the performance of the field instruments to well calibrated

hospital-grade respiratory monitoring equipment to provide ground truth data and improve

the potential of field sensors for modeling conversational behaviors in the field.

A headset microphone as shown in Figure 3.1b was placed in front of the

participant’s mouth and processed through an analog amplifier. Participants also wore a

throat microphone (see Figure 3.1c), which captures the vibration of the throat that occurs

during speaking and helps to isolate very low level speech that might otherwise be

overlaid by airborne cross talk (PentaxMedical model 7184-9700). In this setting, we

obtained video with both face and side views of the conversational partners. Figure 3.1d

shows the whole lab setup where conversation partners were seated face-to-face, as

captured using the side view video camera.

In natural setting, participants wore the chest band sensors (Figure 3.2a) and a

wristband on their dominant wrist (Figure 3.2b). They wore a LENA audio recorder [27]

to detect conversation events (as shown in Figure 3.2c). They were instructed to carry the

recorder in a pouch placed around the abdomen to reduce occlusion of microphone and

other audio artifacts. Each participant was provided with an Android smartphone shown in

Figure 3.2d that receives and stores data from all wearable sensors.

3.1.3 Lab Study Protocol

The lab study tasks were designed to capture both regular and difficult

communications and therefore possible interpersonal conflicts. Each couple took part in
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Fig. 3.3: The sequence of tasks in true laboratory setting.

several interaction tasks in a sitting position with limited or no movement. So the variation

in stress likelihood probably corresponds to physiological arousal. To capture baseline

measures, participants remained seated face-to-face in a comfortable chair silently for five

minutes. Next, they were asked to read an interactive script that was created using

previously recorded spontaneous conversation as a ‘Scripted Dialogue’ task. This lasted

for approximately five minutes. The third phase of lab recording then utilized a task that

involved recreating a map [43] which elicits goal-oriented conversation. Both participants

were given maps that had been used in prior literature, one presenting a pre-printed route

with a starting and finishing point for the Instruction Giver and the other presenting a map

with only a starting point for the Instruction Receiver. The Instruction Follower attempted

to recreate the Instruction Giver’s pre-printed route based on verbal directions from the

Instruction Giver. In the maps, several mismatches in the route between the two partners

map were intentionally included to induce conflict between them. A (blocking) screen was

placed between them for visual separation. They then switched roles and were given

another set of maps to generate another conversation to complete the task (Map Task 2).

The Map task lasted for approximately twenty minutes. After that, participants took part

in a five minute debriefing conversation; as the nature of the map task tended to induce

some conflict between partners which they were motivated to resolve. Finally, to obtain

spontaneous natural dialogue, participants were encouraged to engage in continuous

speech on their chosen topic for fifteen minutes.
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Fig. 3.4: Design of phone interface to collect conversation data in natural environment. Also
participants could able to see the quality of collected signal (i.e., ECG, respiration) in the phone
interface.

To collect interaction data in natural setting, participants were given a phone

interface with labels: Walk-Talk and Walk-NoTalk. They were asked to mark the timing of

different activities i.e., walking and high level conversational state, i.e. talking or not, on

the study phone interface by choosing the appropriate label (shown in Figure 3.4a). Also

they could able to see the quality of the collected physiological data, ECG and respiration

in the phone interface(shown in Figure 3.4b,c).

3.2 Field Study Design to Capture Interpersonal Interactions

To understand the nature of stress patterns during stressful conversations and

collect ecologically valid sensor data with precise labels for model development, we

designed and conducted a field study. The ‘Field’ study was designed to (1) capture

interpersonal interactions including stressful ones and other stressors in real life and (2)

evaluate the performance of the conversation model in the natural environment.

Participants wore the sensors for a day during their awake hours.

3.2.1 Field Study Requirements

To facilitate successful model development for detecting stressful conversations,

we sought a study design that satisfies the following requirements to produce the

necessary sensor data and associated labels.
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Fig. 3.5: Data collected in their natural environment. Both partners semantic locations, physical
activity, conversation and stress data is inferred from the sensor data and feed to develop a
visualization

1. Ecologically Valid Sensor Data: The study should capture physiological sensor

data from the field environment during real-life stressors of different types.

(Section 3.2.2)

2. Stress Event Localization: The start and end times of each stress event should be

located precisely in the sensor data stream. (Section 3.2.3)

3. Stressor Labels: Each stress event should have an assigned label of reason, i.e.,

stressor. (Section 3.2.4)

4. Resolving Ambiguity in Stressor Labels: Each detected stress event, especially

stressful conversations, should be independently confirmed so as to remove any

ambiguity due to machine learning models or recall errors by the participants.

(Section 3.2.6)

5. Coverage of Stressful Conversations: The study should have appropriate consent

and sensor data available from both the conversing partners, including during

stressful conversations. (Section 3.2.5)
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In the following, we describe how the study we conducted satisfies each of these

requirements.

3.2.2 Wearable Devices for Ecologically Valid Sensor Data

To capture reliable physiological data in the field, participants wore a chest band

(Figure 3.2a) with Electrocardiogram (ECG) and respiration sensors [42]. To capture

physical activity that can confound the inference of stress form physiological sensors and

to provide physical activity context surrounding stress events, the chestband included

3-axis accelerometer signals. To capture hand gestures during conversations, the

participants also wore a wristband consisting of a 3-axis accelerometer and a 3-axis

gyroscope on their dominant hand (Figure 3.2b). To unambiguously verify the occurrence

and timing of stressful conversations, they wore a LENA audio recorder [27] to capture

high-quality audio (Figure 3.2c). They were instructed to carry the recorder in a pouch

placed around the waist to reduce occlusion of the microphone and to increase the

likelihood of capturing high quality audio.

To capture the location context, each participant was provided with an Android

smartphone that collected GPS-traces (Figure 3.2d). For time synchronization among all

sensor signals, the smartphone also received and stored data from all wearable sensors.

Participants were asked to carry all the devices during their waking hours except during

showers and contact sports, to maximize the opportunity to capture sensor data during

stress events.

3.2.3 Stress Detection and Stress Event Localization

To meet the requirements of precisely locating the start and end times of stress

events, we employed previously validated algorithms on the collected sensor data. We first

use the cStress model [19] to obtain a stress state from each minute of ECG and

respiration signals that represent the physiological response to a stressor. The model

outputs a probability measure of stress scaled between 0 and 1, termed as ‘stress

likelihood’ as shown in Figure 3.6. From ECG, the model computes the mean, median,
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Fig. 3.6: Inferences of continuous stress likelihood using ECG and respiration signal.

20th, and 80th percentiles of heart rate, variance, and quartile deviation of HRV and energy

of HRV in different frequency bands (0.10.2Hz, 0.20.3Hz, 0.30.4Hz). From respiration

signals, it computes mean, median, 80th percentile, and quartile deviation from inhalation

(I), exhalation (E) duration, ratio between I/E, stretch, and inspiration volume, computed

in each breath cycle within a minute. In cross-subject validation using SVM on lab data,

the cStress model classified stress and non-stress minutes with an F1 score of 0.81 in

(n = 21) participants who were subjected to three validated stressors public speaking,

mental arithmetic, and cold-pressor tasks. When tested on a dataset from another group of

participants (n = 26) subjected to the same lab stress protocol, the model was able to

classify stress and non-stress minutes with an F1 score of 0.9. The model was also

evaluated against self-reports collected in the field. In the first study of (n = 20) healthy

adults who provided 1,060 self-reports in a 7-day study, the model reported an F1-score of

0.71 for the median participant. On a second field study with (n = 38) polydrug users who

wore the sensors for four weeks, the model reported a median F1 score of 0.72 [22]. In a

third field study of (n = 53) newly-abstinent smokers who wore the sensors for 4 days, the

model reported a median F1 score of 0.65 [26].

The cStress model only provides a stress likelihood for each minute, which does

not indicate the start and end time of a stress event. To obtain stress events from the noisy

and largely discontinuous (due to missing data or confounding from physical activity)

time series of stress likelihoods, we apply the stress event detection model presented
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in [22]. This model first generates stress likelihood in minute-windows using the cStress

model, but sliding every 5 seconds, to reduce the noise in the stress likelihood time series.

Second, it excludes any data when participant may be recovering from physical activity

(after accelerometer signals show no activity). Third, it uses k-nearest neighbor approach

to impute any missing values of stress likelihood that is ‘missing at random’. Fourth, it

applies a moving average convergence divergence (MACD) method to find the cross over

points that partition the continuous stress likelihood time-series into stress events, clearly

marking the start and end times, as shown in Figure 3.6. Fifth, it excludes any windows

that have more than 50% of stress likelihoods imputed. Finally, it applies a density

threshold (to the area under the stress likelihood curve) to decide which windows are

stressful events. In the field-collected data, between 2 and 4 stress events per day were

detected [22].

3.2.4 Context Inferences and Visualization for Stressor Label Assignment

To obtain stressor labels for each of the detected stress events in the field, we

wanted to assist the participants in recalling the surrounding contexts for the detected

stress events so that they can confirm or refute the detected events and then recall the

reasons for stress. To aid their recall, we detected several contexts such as location from

GPS, conversation status from respiration signal, and activity status from accelerometers.

This information was presented to the participants so that they could reconstruct those

moments of stress events and recall the stressor responsible for that stress event. We first

describe how we process the sensor data to obtain the surrounding contexts and then

present the visualization.

Inferring Significant Locations Using Historical Map-Based Visualization:

Location is an important memory cue. When it is annotated with a time range, this

information can help users to reconstruct their day and facilitate self-reflection [44].

Locations of interest are places where a user spends a significant amount of time. We

adopted the spatio-temporal clustering algorithm proposed in [45] to infer significant
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Fig. 3.7: The circles represent significant locations visited by a user in a day. At a given location,
the thickness of the circle corresponds to the duration of time spent and its color indicates the
intensity of the average stress. Significant places can be labeled by the user. Clicking on a pushpin
displays the frequency of visit to the location, start and end times of the last visit, and the duration
of time that the user was stressed at that location. Users can edit and relabel the unknown
locations, as shown in the picture.

locations, arrival time, departure time, duration of stay, and sequence and frequency of

location visits throughout the day, all from GPS traces. A distance threshold of 100 meters

and a time threshold of 10 minutes were used to find the spatio-temporal clusters.

We utilized a map-based visualization technique (as shown in Figure 3.7)

developed in [46] to observe the location clusters on Google Earth. Labeling of the

location clusters was semi-automated. The two most common location clusters, home and

work, were automatically labeled based on the address provided by the participants at the

beginning of the study. To label the remaining location clusters, the participants were

asked to provide the semantic labels during the data review session. This helped resolve

ambiguities for co-located places (e.g., grocery store and a restaurant). Distinct semantic

locations thus obtained included: own home, parent’s home, others home, work,

restaurant, store, grocery, religious place (e.g., church, mosque), and recreation center

(e.g., gymnasium).

Inferring Commute:

Driving episodes are detected from GPS-derived speed by applying a threshold for

maximum gait speed of 2.533 meters/second [47]. A driving session is composed of

driving segments separated by stops, e.g., due to a traffic light. The in-between stops

usually are of short duration unless there is traffic congestion. The end of a driving session

is defined as a stop (with speed equal to zero) for more than two minutes. Driving
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segments, separated by less than two minute stop, are considered to be part of the same

driving episode [48].

Inferring Physical Activity:

For activity inference, we use the on-body accelerometer based activity detection

approach presented in [49]. The pre-processing steps include filtering of raw data and

removal of gravitational acceleration and drift from the filtered data. Finally, we compute

the standard deviation of the magnitude of acceleration (amag =
√
a2
x + a2

y + a2
z), which is

independent of the orientation of the accelerometers. We use this measure to perform

activity detection for each 10-second segment.

Inferring Conversation Episodes:

For detecting conversations from respiration data, we used the method proposed

in [17]. This model extracts features in respiration cycles in each 30 second window,

trains a machine learning model to produce speaking, listening, or quiet states, and then

applies a Hidden Markov Model (HMM) to construct the conversation status for each 30

seconds window of respiration data. It achieves 87% accuracy in distinguishing

conversation from non-conversation.

Contextualized Timeline Visualization to Assist in the Recall of Stressors

We developed a contextualized timeline visualization by building upon stress

visualizations presented in [50]. In order to help the participants reconstruct the moments

surrounding the stress event, we made several adaptations in the visualization, guided by

the Day Reconstruction Method (DRM) [23].

We incorporated three design qualities for effective health data representation [51].

(1) the design must feel familiar to users, mirroring their own experience, (2) creating

designs that leave space for users’ own interpretation of their bodily data, and (3) the

modalities used in the design do not contradict one another, but instead harmonize,

helping users to make sense of the representation.
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Restaurant 
12:11 PM 

Fig. 3.8: Stress timeline visualization consists of four channels of inferences. Significant
locations are marked with corresponding semantic location labels (e.g., Home). Dark
color represents the presence of conversation (blue) and activity (purple) and grey color
implies its absence. The bar display for Stress has three colors (Green = No stress, Yellow
= Medium stress, and Red = High stress). Gaps in any of the channel indicate unavailable
data. The interface has zoom-in (e.g., restaurant is zoomed-in in the lower figure) and
zoom-out plus info-tip features (shown in black box with exact time in the lower
zoomed-in part) to precisely pinpoint each stress events and corresponding contexts.

We created a stacked timeline visualization shown in Figure 3.8 for individual

users. We used horizontal and vertical placement along with color coding as our visual

encoding channel as these channels are most effective in supporting the comparison of

multiple data streams [52]. In the timeline, the horizontal axis shows the time of day, and

vertical axes is divided into four channels that represent four inferences (location,

conversation, activity, and stress likelihood). We use hue as the color component to code

different levels of stress — green represents no stress, yellow stands for medium, and red

indicates high levels of stress likelihood (based on perceived stress categories reported

in [53]). Deeper shades of color for conversation and activity time series show the
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Fig. 3.9: Phone interface for the field data collection. User can select the type of data they don’t
want to share selecting the radio button and duration from the drop down menu.

occurrence of conversation and physical movement, respectively, and grey color indicates

the absence of conversation or absence of movement. Significant locations are marked

with corresponding labels. If a transition between locations takes place using a motorized

vehicle, then the transition is labeled as commuting. For all the four data streams, the

presence of a gap implies missing data for that time period. Aligning all data streams

using the same timeline facilitates understanding of the role of different contexts such as

location or conversation on stress events.

It is difficult to pinpoint a stressful event when the data is on the scale of several

hours (e.g., over 12 hours of data was collected per day). Therefore, we use interaction to

provide users the ability to zoom in and out at different temporal resolutions. By

providing details-on-demand, we allow users to view precise stress likelihood levels and

associated contexts (e.g., location, conversation, and physical activity status). To help

them in recalling a specific event, we use tool-tip texts displayed at the time of occurrence

of each event.

3.2.5 Participant Selection and Protocol To Capture Real-Life Stress Events

We recruited couples to wear sensors and collect data concurrently to maximize

the coverage of stressful conversations. The field study included 38 individuals (19 pairs

of cohabiting couples). Field study participants included 20 women (mean age: 28.53 ±
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4.89 years) and 18 men (mean age: 28.92 ± 2.10 years). Eighteen participants were

Caucasian and the rest were Asian. Twenty participants (10 pairs) participated during

weekdays and the rest participated during weekends.

The field study consisted of three phases — (1) an enrollment session, (2)

free-living data collection, and (3) a data review session to label detected stress events

using the visualization. During the enrollment session, participants gave consent and

completed a demographic questionnaire, a dyadic adjustment scale [54], and a pre-study

questionnaire. Participants were shown an example visualization generated from

previously collected sample data. This was designed to help them understand how the

field data collected would help them understand their own stress patterns and identify

daily stressors for potential stress management in daily life. This orientation was also

designed to motivate the participants for careful data collection when they were in

free-living condition.

Afterward, participants were shown how to wear the sensors and monitor the status

of sensor data collection. They then proceeded to collect sensor data in the field. After

completing at least 24 hours with the sensors since the start of the data collection, both

partners came back to the lab next day to review stress visualizations generated from their

own data and annotate the automatically detected stress events captured in the field. Each

individual was compensated at a rate of $2.50 an hour for up to 12 hours for field session

data. The maximum amount of compensation each individual could earn for the field

session was $30 (12 hours x $2.50/hour). Also, each individual received $10 for the data

review session. Thus, each individual earned $60 for participating in the study.

Because the field study involved collection of continuous audio, location, and

physiological data from the participants, they were given an option to pause data

collection during their private moments. They could proactively pause data collection

using the “Stop” button in the smartphone software (see Figure 3.9) during data collection

in the field. Also, they were given the option to retroactively delete data during private
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Table 3.1: Summary of stress events captured in participant’s daily life.

Stressors Number of Average event What’s going on
stressful duration during stressful
events (Minute) events

Stressful 53 22.68 (3.83) Conversations with
Conversations partner, friends,

colleagues, supervisor
Commute 30 12.74 (2.28) Time pressure, other

driver’s behavior,
construction on road

Work 14 18.23 (3.54) Deadline, answering
work related email/text

Fig. 3.10: Distribution of stress events throughout the whole day.

moments during the data review session. The data collection was limited to 24 hours to

reduce privacy concerns associated with the raw recording of audio data in the natural

environment; participants were instructed to get verbal consent from conversation

partner(s) other than their romantic partner before recording audio conversation involving

them. If any partner(s) declined the request, participants were instructed to stop recording

the audio.

3.2.6 Stressor Labels Collected and Confirmed

To resolve any ambiguity in stress event detection due to the usage of machine

learning models from sensor data, including the elimination of any false detection, the

participants were asked to confirm each stress event in the visualization of their data. To

further confirm the stress events and to contextualize it, several follow up questions were

asked such as “what’s going on?”, “ where were they?”,“who were they with?”.
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Participants were asked to rate the usability of the visualization interface on a

5-point Likert scale. We asked them if the interface was “Easy to understand”, if they felt

that “Visualization helped understand both risks and benefits”, and finally, if “they

thought that most people would learn to use the visualization quickly”. All the

participants either agreed (6 out of 38) or strongly agreed (32 out of 38) that the

visualization was easy to understand. Thirty out of 38 agreed or strongly agreed that most

people would learn to use these visual representations quickly. We also asked each of

them an open ended question: “What things did you Like and Dislike in the study”.

Twenty seven participants responded to this question, and 20 mentioned that they liked the

stress visualization system. For example, C4F commented, “[I] Liked visualization of the

day, disliked wearing all the sensors”.

Participants recalled several reasons for stress events (i.e., stressors) such as

meeting with a supervisor, having deadlines at work, job interviews, conflict with their

partner, driving on a busy road, assignment deadlines, etc. For the 12 events, they either

disagreed with the visualization output or could not remember whether the stress event

occurred. In addition, we asked all the participants whether they recalled any stress event

that happened during the study that was not identified by the system (false negative). Two

participants (out of 38) reported three such false negative events (over 38 person days of

data collection). These three stress events missed by the sensors were not included in our

model training or testing as the start and end times of these events could not be determined

precisely.

To resolve any ambiguity in the start and end of stressful conversations, we

verified the occurrence of conversations by listening to the raw audio. We find that each

stress event attributed to stressful conversations were correctly labeled. It may be because

of our contextualized visualization that showed the participants whether they were having

conversations at the time of a detected stress event and where they were, e.g., at home or

office.
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Participants were able to recall 97 stressful events, during which sensor data was

available and not confounded by physical activity and hence usable for sensor-based stress

inference. We find that all such detected stress events belong to three major categories —

stressful conversations, commute, and work-related stress. Table 3.1 shows the number of

stress events in each category, the average duration of stressful events, and what’s

happening during these moments. In our data set, we find that 53 stressful events were due

to conversations with partner, friends, parents, colleagues, supervisors, etc., accounting for

almost 54% of all stress events. We also found 30 stressful events during commute and 14

events due to work. Any stress event that involved a conversation whether at home, work,

or anywhere else, is included in the category of stressful conversation. The same would be

the case for work-related stressor, unless it involved a conversation, in which case it

belongs to the stressful conversation category. We note that the percentage of stress events

in each category matched with the percentage reported in [3]. The distribution of stress

events in our dataset in these three categories is shown in Figure 3.10.

Participants reported several stress events that did not belong to the above three

categories. For example, they mentioned household chores (8), stress during shopping or

grocery (5), and miscellaneous (15) stress events that included feeling sick, another family

member is sick, worrying about the partner, water leaking inside house, cleaning the

house, etc. We were unable to use these stress events in our modeling because the sensor

data collected during these events were confounded by physical activity. Hence, they were

excluded from our modeling.
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Chapter 4

Processing of Respiration Signal

To develop stressful social interaction model from stress time-series, we need a a

stress model that outputs a continuous stress probability for the whole day. We also need a

conversation model to develop the visualization system. In this work, we aim to use

respiration signal to develop those models. To achieve these goals, first we need to

identify each breathing cycle from the respiration time-series. Next we need to compute

features from each breathing cycle that work for both models. In this chapter, we present a

rigorous method for screening, cleaning respiration signals and improved algorithms for

identifying respiration cycles captured in field setting.

4.1 Data Screening and Processing to Locate Each Breath Cycle

Data collected in field environment are subjected to various sources of artifacts,

losses, and degradation in quality. The first challenge is, accurate identification of a

breathing cycle i.e., pinpoint several interesting points of a cycle such as the onset of an

inspiration, the onset of an expiration. Second challenge is to handle the effect of activity

and postures. Respiration signal can be easily influenced by movements of limbs and

torso, changes in posture (i.e., sitting, supine), and physical activity (walking). To support

the physiological need for various activities, inhalation and exhalation duration and

magnitude of the signal may change significantly (see Figure 4.1). Rigorous data

Fig. 4.1: Effect of postures, physical activity and vocalization on breathing cycles.
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Fig. 4.2: Effect of postures, physical activity and vocalization on breathing cycles.

processing is essential to obtain usable results from the data collected in the field. Here,

We describe a series of methods to screen, clean and process to locate each breathing

cycle.

4.2 Background of Respiration Signal Morphology

Rib bones in combination with diaphragm help us breath air in and out from our

lung. During inhalation, external intercostal muscles (tiny muscles located in between

each rib) nearest the sternum contract and lift the rib cage up and out to make more room

for the lung. As we exhale, the internal intercostal muscles contract and allow the weight

of the ribs to move back down. On the other hand, the diaphragm can operate as a

voluntary muscle or involuntary muscle, thus allowing us to hold our breath or slow our

breathing if we wish to. When the diaphragm contracts, it moves down towards the

stomach. This creates a vacuum in the cavity containing the lungs. This vacuum causes

the lungs to expand and pull air down and in. When we breath out and the diaphragm

relaxes and moves up again.

Respiratory Inductive Plethysmograph (RIP) sensor around the chest captures the

above phenomenon and generates breathing signal shown in Figure 4.2. Waveforms of the

breathing signals varies based on the current context and underlying activities of the user.

For example, breathing, while user is sitting quietly, looks similar to sinusoidal wave.

However, duration of the waveform decreases due to physical activity. Speech breathing
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Fig. 4.3: Unacceptable signal looks flat and saturated at the top, whereas legitimate signal follows
sinusoidal pattern. Each cycle is segmented using moving average based peak- valley detection.

becomes more similar to saw-tooth shape [55]. Respiration also varies across

demographics such as, age and weight, due to weather conditions,etc.

4.3 Quality Screening of Respiration Signal

Breathing dynamics can be captured using respiratory inductive plethysmograph

(RIP) by tracking the rhythmic motion of ribcage during breathing. Thus respiration

signals are largely affected by physical movement and positioning of the chest band, we

mark the signal acceptable as long as the signal follows rhythmic pattern. Another

challenge is, slipping of the band from its expected location which sometimes results in a

low amplitude signal, still considered acceptable if it retains the characteristic morphology

of a respiration signal. Detaching of sensor from body results in a low variation which is

considered unacceptable.

4.4 Cycle Identification

The first stage in detecting conversation from respiratory waveforms is the

automated detection of individual breath cycles. Manual data labeling of each respiration

cycle is hard and time-consuming, especially for 12 hours of respiration data per

participant which consists of on average 10,000 breath cycles. Hence, an automatic

method is needed to identify breath cycles without human intervention. In this section, we

describe a method to identify respiration cycles automatically in both the lab and field

settings.
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Fig. 4.4: (a) Raw and smoothed signal during sitting. (b) Raw and smoothed signal during
walking. (c) The moving average curve (MAC) closely follows the trend in the respiratory signal.
Peaks and valleys are respectively determined by the maximum and minimum between pairs of
alternating up intercepts and down intercepts. (d) There is a breath hold near the peak region which
results in a wrong peak position. The peak is automatically shifted towards the left to a point where
majority of inspiration has completed. (e) A new cycle is found above MAC as it satisfies all
properties of a breathing cycle. (f) Taking a minimum results in a wrong valley due to the presence
of an end expiratory pause. The valley is automatically shifted towards the right to a point where
signal starts rising monotonically. (g) A new cycle is detected below MAC as it satisfies all
properties of a breathing cycle. (h) Spurious valley-peak pairs are automatically removed if they
are too close. (i) Final peaks and valleys identified by the algorithm.

4.4.1 Cycle Identification Algorithm

Step 1: Signal Smoothing. The first step is to smooth the raw signal using a

moving average filter of M points. Let x be a respiration signal with M number of

samples in the moving average, and y the smoothed signal. Larger values of M flatten the

fluctuations in the signal. Respiration signals exhibit fewer bumps or small oscillations

while the wearer is sitting or standing (see Figure 4.4a) as compared to walking. During

walking, the body shakes or hands move back and forth for each step, causing visible

bumps in the respiration signal as depicted in Figure 4.4b. Larger values of M reduce the

impact of bumps in walking cycles and reduce the number of spurious cycles detected by
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the algorithm. If M is chosen to be too large, we risk over-smoothing and losing

sharpness around points of interest (e.g., peaks and valleys).

We chose a value for M that balances the proportion of correctly identified cycles

against the amplitude reduction due to smoothing. We iteratively tuned the value of M by

applying the algorithm on field data. The most appropriate value of M was found to be 5

(250 ms) for sitting and standing signals, and 11 (515 ms) for walking. The equation for

smoothing respiratory raw signals appears in Equation 4.1.

y(t) =
1

M

(M−1)
2∑

j=
−(M−1)

2

x(t+ j) (4.1)

Step 2: Moving Average Centerline (MAC). The next step is to compute a moving

average centerline (MAC) curve using Equation 4.2, where y is the smoothed respiratory

signal, L its duration, t is time, and y(t)|t+Tt−T the average value of y during [t1, t2]. The

MAC appears as a center line (shown as red dotted line in Figure 4.4c) that intercepts each

breathing cycle twice, once in the inspiration phase and then in the expiration phase. T is

the average cycle duration. The average cycle duration is 2.94 seconds.

MAC(t) = y(t)|t+Tt−T , if T < t ≤ L− T (4.2)

After visual inspection we found that, in cases of large baseline drift in field data,

T = 3 seconds setting takes time to cope with the drift and results in missed cycles. We

visually confirmed that T = 2 seconds is fast enough to keep track with the signal drift

and intercepts more cycles in baseline shifted region. However, in the cases of

regular/quiet breathing cycles, we found the T = 2 and T = 3 result in nearly the same

performance and chose T = 2 for the window width.

Step 3: Intercept Identification. Next, we identify the points where the MAC

curve intercepts the smoothed signal. The following equations are used to find the up

intercepts where the MAC crosses the inspiration branch. Similarly, down intercepts are
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the points where the MAC curve crosses the expiration branch of the signal. Ideally, there

should be exactly one up intercept and one down intercept for each breath cycle as shown

in Figure 4.4c.

Iup = y(t− 1) ≤MAC(t) ≤ y(t)

Idn = y(t− 1) ≥MAC(t) ≥ y(t)

Step 4: Intercept Screening. To avoid spurious intercepts, if there are more than

two consecutive intercepts with the same label, only the last one is kept. The resultant

sequence becomes: Idn(1) < Iup(1) < Idn(2) < Iup(2)... < Idn(m) < Iup(m) where m is

the number of up (down) intercepts.

Step 5: Peak (Expiration onset) Detection. The peak or onset of expiration of a

breathing cycle is determined by finding the maximum between consecutive up and down

intercepts using the formula,

peak(i) = max(y(Iup(i)) : y(Idn(i+ 1))),

where i = 1, 2, ..., p and p = number of peaks. In cases of a regular breathing

signal (as Figure 4.4c ), taking a maximum provides the location of exact peak position.

However, breathing signals may not always be so rhythmic (e.g. during speaking), thus

the maximum value may not represent the actual peak position. If there exists one or more

notches in the peak region as seen in Figures 4.4d and 4.4e, two things can happen —

either the peak needs to be adjusted to its actual position or another cycle must be

considered. In the first case where a peak needs to be adjusted, the maximum point among

all the notches is considered as a candidate peak. We consider the maximum value as a

peak if 70% of inspiration of that cycle is done up to that point. The value 70% was tuned

from the annotated data collected in the lab.

However, if the MAC line fails to intersect small cycles at the top as shown in

Figure 4.4e, there is a possibility that there exists another cycle within the detected cycle,

thus shifting the peak to left may not suffice. To address this issue, we look for a portion

within a cycle that looks like a breathing cycle, i.e., it has ascending and descending
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trends resembling inspiration and expiration phases. Then, we split the cycle into two. We

detect the points of interest in the two newly formed cycles. If both cycles’ inspiration and

expiration durations are greater than 0.4 seconds [56, 57], and total cycle duration lies

within the range of 0.8 seconds to 12.5 seconds [19, 57], we consider both cycles as valid

cycles. If any of the newly formed cycles fail to meet these criteria, we assume there is

only one cycle and the position of the peak is adjusted if required.

Step 6: Cycle’s Start and End Point Detection (Valleys). In general, a valley is the

minimum point between a down intercept and the following up intercept for a regular

semi-sinusoidal breathing cycle. However, if a cycle has an expiratory pause, the

minimum point may not represent the actual valley. Therefore, we consider the minimum

as a candidate valley. From this candidate valley to the next up intercept, we compute all

the slopes. By examining the slopes, we determine the point from where the signal

monotonically rises towards the next peak and consider that as the actual valley (see

Figure 4.4f).

However, the MAC curve may not intersect a cycle if the amplitude changes

dramatically. For example, if the baseline shifts abruptly or there lies a small cycle

adjacent to a larger one, a moving average can’t cope with the change so quickly and may

not intersect, as depicted in Figure 4.4g. Similarly, as described above, we look for a

portion within a cycle that looks like a breathing cycle and detect the interesting points of

the new cycle. If all the durations satisfy the standard durations [19, 56, 57], we consider

both cycles as valid cycles.

Step 7: Peak-Valley Screening. When searching for peaks and valleys, only those

where time intervals of more than 0.4 seconds [57] exist, from a peak to the next valley or

from a valley to the next peak, assuming that the minimum breathing period is around

0.8s. Otherwise, the peaks and valleys are considered to be spurious are removed as

shown in Figure 4.4h. Second, if an inspiration or expiration amplitude is too small, 10%
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Fig. 4.5: Example of (a) Spurious cycle in the expiration region resulting in splitting of a true
cycle into two. (b) A missing cycle resulting in one long duration cycle. (c) Mislocated peaks, (d)
Mislocated valleys.

of the mean cycle amplitude, the associated cycle is not considered to be of good quality

and is screened out.

4.4.2 Evaluation Metric

It is usual to compute the number of correctly identified peaks and valleys. They

suffice when only the respiration rate is to be computed. However, they do not indicate the

accuracy in features related to respiration rhythm (e.g., inhalation, exhalation) that are

needed in inferences of speaking or smoking events from respiration signal. This is

because even if the number of peaks and valleys are identified correctly, their respective

locations in the signal waveform may introduce errors in the resultant features. For

accurate inferences, the locations of peaks and valleys along both time and amplitude

dimensions are important. Therefore, we use the following metrics.

1. Spurious cycle rate. A spurious cycle can affect the inspiration/expiration duration

depending on where it is detected (see Figure 4.5a).
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Spurious cycles Rate: Percentage of cycles that are spuriously detected with respect

to the total number of actual cycles (N ). N is the number of actual cycles annotated

by human rater.

Error(%) =Number of spurious cycles/N ∗ 100

2. Missed cycle rate. Missing of one or more cycles results in elongated cycle duration

as shown in Figure 4.5b.

Missed cycles Rate: Percentage of cycles that are missed with respect to total

number of actual cycles (N ). Error(%) =Number of missed cycles/N ∗ 100

3. Error in Inspiration duration due to Mislocated Peaks. Mislocated Peaks

introduce error in the corresponding cycle’s inspiration and expiration duration

although cycle duration may still be correct (see Figure 4.5c). Thus, a cycle’s

inspiration duration may decrease (increase) and that cycle’s expiration duration

may increase (decrease) depending on the peak position. This error can’t be

captured using the respiration duration. This absolute duration error is measured in

seconds and defined as Error in Inspiration duration (∆I)

4. Error in Cycle duration due to Mislocated valleys. Incorrect positioning of a valley

affects both the current and the next cycle duration as shown in Figure 4.5d which

either underestimate or overestimate the durations of neighboring cycles. A

mislocated valley decreases (or increases) the current cycle’s duration and increases

(or decreases) the next cycle’s duration. This absolute duration error is measured in

seconds and defined as Error in Cycle duration (∆C).

4.4.3 Algorithm Evaluation and Performance Comparison

We implemented two other widely used methods to compare with the performance

of our algorithm. The first one is a threshold based method [17] where the threshold is set

by taking the average of the signal for every 30 second window. The second one is a
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Table 4.1: Performance comparison of the current method with the state-of-the-art cycle
identification methods with lab data (with 1,938 respiration cycles). Paired t-test shows significant
reduction in inspiration duration error with respect to the existing methods and the base method
(p-value < 0.001). The cycle duration error is significantly higher in the Threshold method,
compared with other methods.

Methods Spurious missed Error in Inspiration Error in Cycle
cycles cycles duration (second) duration (second)

Threshold based 1.5% 61.7% 0.81± 0.02 6.59± 0.04

Maxima-Minima 6.6% 4.0% 0.42± 0.01 0.45± 0.41

Base Method 2.1% 12.2% 0.44± 0.02 0.68± 0.06

Current Method 3.1% 5.6% 0.29± 0.01 0.43± 0.04

change point detection method described in [58]. We also present the performance

evaluation of the semi-automatic method [59], which we call the ‘base method’.

Evaluation on Lab Data.

We compare the performance of the current method on lab data (1,938 marked

respiration cycles) with the base method [59] as well as two other methods i.e., the

threshold based and Maxima-Minima based methods. The results are presented in

Table 4.1. In comparison with the base method, percentage of missed cycles reduces from

12.2% to 5.6 % though spurious cycles increase by 1% in the current method. The

Maxima-Minima based method detects extra 6.6% as spurious cycles and misses 4%

cycles. The original threshold based method [17] was developed using filtered respiration

signals. This might be one reason for so many missed cycles i.e., 61.7% using our

unfiltered respiration signals.

Paired t-tests show significant reduction in inspiration duration error (p-value

< 0.001) with respect to the base method and the existing methods. However, in the case

of cycle duration, error has significantly dropped with respect to the base method and the

threshold based method (p-value < 0.001), but no significant difference is found with

Maxima-Minima based method.
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Evaluation on Data from a Natural Setting.

To measure the performance with field data, we applied all the methods on data

that includes several postures and activities, such as sitting, standing, walking and

conversation. Two human raters annotated these data independently and inter-rater

agreement between them was > 0.81.

Evaluation on real-life data shows that among 1,500 respiration cycles (around 2

hours) that occurred in the presence of physical activity, overall, the current method

accurately identified 96.34% cycles, missed 3.66% cycles and identified extra 1.9% cycles

as spurious (Table 4.2). Overall performance of the Maxima-Minima method revealed that

it could identify 99.64% cycles accurately and detect an extra 16.71% cycles as spurious.

The base method identified 89.83% cycles correctly while it missed 10.16% cycles and no

spurious cycles were found. Table 4.2 shows that most spurious cycles were found during

walking for both the Maxima-Minima method and the current method. Spurious rate was

higher during walking because of the presence of bumps in the respiration cycle as shown

in Figure 4.4b.

Table 4.3 shows that the performance of cycle detection methods vary in presence

of conversation. Maxima-Minima method located 99.22% true cycles with 35.95%

spurious cycles. the base method detected 82.63% cycles correctly with a miss of 17.37%.

However, our current method identified 94.84% cycles correctly with a miss of 5.16% and

4.17% spurious cycles.

4.5 Related Work

In this section, we discuss the traditional approaches to process and identify

breathing cycles. The simplest procedure for detecting breaths is a threshold level

detector [17, 60, 61, 62]. In this approach, a breath is detected when the waveform passes

through a predetermined threshold level in a given direction (i.e., up or down). The

difficulty in this approach is finding an appropriate threshold that works across diverse

participants and diverse contexts e.g., conversation, physical activity. Using too small of a
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Table 4.2: Performance evaluation of breathing cycle identification methods in presence of
physical activity and postures. Here, spur.= spurious.

Walking (%) Sitting (%) Standing (%) Overall (%)
Methods True Miss Spur. True Miss Spur. True Miss Spur. True Miss Spur.

cycle cycle cycle cycle cycle cycle cycle cycle cycle cycle cycle cycle
Threshold 69.03 30.97 0.79 71.99 28.01 0.69 75.96 24.04 0.00 72.15 27.85 0.54
based
Maxima- 98.99 1.01 40.55 100 0.00 6.73 99.74 0.26 7.99 99.64 0.36 16.71
minima
Base 85.64 14.36 0.00 94.10 5.90 0.00 87.37 12.63 0.00 89.83 10.16 0.00
method
Current 97.14 2.86 4.68 97.17 2.83 0.83 94.20 5.80 0.79 96.34 3.66 1.90
method

Table 4.3: Performance evaluation of breathing cycle identification methods in presence of
conversation collected in field.

Conversation (%) Non-conversation (%)
Methods True Missed Spurious True Missed Spurious

cycles cycles cycles cycles cycles cycles
Threshold based 72.36 27.64 1.42 72.03 27.97 0.00
Maxima-minima 99.22 0.78 35.95 99.89 0.11 5.46
Base method 82.63 17.37 0.00 94.02 5.98 0.00
Current method 94.84 5.16 4.17 97.21 2.79 0.58

threshold may create spurious peaks whereas too large of a threshold may lead to missed

peaks. Moreover, body orientation may shift the signal baseline. To allow for changes in

mean level, a moving baseline can be used, but even then sudden mean level changes will

still result in missed breath detection.

Another popular technique to find respiration cycles is to use a change-point

detection algorithm (i.e., track local maxima and minima) [58, 63, 64]. However, there can

be a large number of change points even within a cycle, especially in the presence of

activity (e.g., walking,). Hence, more sophisticated methods are needed to discard excess

peaks.

A semi-automatic method was developed for peak and valley detection in

free-breathing respiratory waveforms in [59]. Breath cycles are identified by locating the

intercepts of a moving average with the inspiration and expiration branches of the signal
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and finally manual adjustments are applied. Because manual selection is not practical for

a dataset containing a large number of respiration cycles, a computerized method is

desirable. Another semi-automatic method for detecting breathing cycles is proposed

in [65], which also needs user intervention to make a decision either to: keep,

adjust/move, delete or add points of interest.

None of the above mentioned methods are validated in natural environments to

identify breath cycles in different situations e.g., in the presence of physical activity or

conversation. We build upon the method proposed in [59]. We make several

improvements to clean, screen, and detect breath cycles accurately in the natural

environment. Our current method shows the feasibility of identifying breath cycles in both

lab and field data, and to locate points of interest within a cycle, e.g., peak, start and end of

a cycle. Among 1,934 respiration cycles collected in lab in presence of conversation, the

proposed cycle identification method can identify 94.4% cycles correctly. Among 1,500

cycles collected in natural environments, the proposed method identified 96.34% cycles

correctly in the presence of physical activities (walking) and in different postures (e.g.,

sitting and standing). In the presence of conversation, this method correctly identifies

94.84% of cycles collected in the field environment.

4.6 Conclusions

Reliable detection of respiration cycles results in accurate feature calculation. In

the following chapters, these features are used to model behaviors, such as conversation

and stress inferences from respiration signal.
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Chapter 5

Conversation Detection from Respiration Signal

In this chapter, we explore the potential for detecting conversations from

respiratory measurements. As respiratory cycle is a unit of speech breathing, cycle-based

classification is the finest granularity for speech modeling from respiration data. Each

respiration cycle dynamically varies in duration. Hence, cycle-based dynamic windowing

is an appropriate approach for the respiration based speech modeling as presented in the

current model. To generate labels, speech/non-speech cycles were carefully marked based

on audio, video, and hospital grade respiratory inductive plethysmograph bands with

synchronized channels in the lab setting and by using audio processing from LENA and

confirmation from human raters in the field. The details of data collection is described in

section 3.1. Here, we describe the development of machine learning model to detect

conversation in field.

5.1 Speech Detection Using Conditional Random Field-Context Free Grammar

Given a sequence of respiration cycles, we now turn to the problem of labeling

each cycle as corresponding to speech or not and segmenting these cycles into period of

conversation. We achieve this using a Conditional Random Field Context Free Grammar

(CRF-CFG) model. In this section, we begin by reviewing the CRF-CFG model [66] and

then describe how we apply it to speech detection and conversation episode segmentation.

The CRF-CFG model was first used in mHealth to extract heart-beat signal morphology

(QRS complex) in ECG time-series data [67]. To the best of our knowledge, ours is the

first work to apply CRF-CFG model for detecting conversation episodes on respiration

time-series data. We begin by reviewing the conditional random field (CRF) model [68]

and context free grammars (CFGs) and then describe how a CRF can be used to

parameterize a distribution over parse trees. Finally, we present the CFG used for speech

detection and conversation episode segmentation. In section 5.5, we present experiments

validating this model on the lab and field data described in previous sections.
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q q q s s q s q q q

O O O C C C C C O O

β α βγ

q q q s s q s q q q

non-conv. conv. non-conv.

Fig. 5.1: An example parse (left) using the grammar described in equation 5.2. Also shown is the
mapping from the parse to a labeled segmentation (right) where q and s stand for quiet and
speaking respectively.

5.1.1 Conditional Random Fields

Conditional random fields (CRFs) are a sub-class of probabilistic graphical

models [69] that encode correlations between label variables. A CRF defines a conditional

distribution over a set of L label variables Y = {Y1, ..., YL} given a corresponding set of

M feature variables X = {X1, ...,XM}. We assume each feature variable Xi ∈ RD is a D

dimensional real vector and label variable Yi take values in a set Yi; however, there may

be additional constraints on the set of possible joint configurations, denoted by Y.

Throughout this work, we will use upper-case to refer to random variables (e.g., Y) and

lower case to refer to particular assignments to those variables (e.g., y).

A general log-linear CRF is defined through a linear energy function that takes the

form of a weighted sum of K feature functions fk involving values of Y and X:

Eθ(y,x) = −
K∑
k=1

θkfk(y,x)

These feature functions are typically sparse in the sense that they involve few label

and feature variables. The set of label and feature variables referenced in function fk is

referred to as its scope Sk. If Sk contains at most two variables for all k, then the model is

referred to as a pair-wise CRF, and it can be represented using a graph G where an

undirected edge connects each pair of variables that share a scope. If the graph G is a tree,

then the resulting CRF is referred to as a tree-structured CRF.

45



The joint probability Pθ(y|x) of a setting of the label variables y = [y1, ..., yL]

conditioned on the observed feature variables x = [x1, ...,xL] is given below. ZW(x) is

referred to as the partition function and is the normalization term of the probability

distribution.

Pθ(y|x) =
exp(−Eθ(y,x))∑

y∈YL exp(−Eθ(y,x))
(5.1)

The parameters of a CRF can be estimated using either maximum likelihood

estimation (MLE) or max-margin learning [70]. Importantly, the inference routines

required to learn the parameters for a tree-structured CRF can be computed exactly in time

linear in the number of variables in the model using the belief propagation algorithm [69].

Chain-structured CRFs are an important special case of tree-structured CRFs. The main

weakness of chain-structured models is that they cannot model long-range dependencies.

In the next section we describe the context free grammar conditional random field model

which remedies this problem.

5.1.2 Context Free Grammars

A context free grammar (CFG) is defined by a set of production rulesR that map

from a set of non-terminal symbols I to strings of terminal and non-terminal symbols. We

call the set of terminal symbols V . Beginning with a special “start” symbol, these rules

can be recursively applied until only terminal symbols remain. A sequence of such

recursive applications produces a tree structure referred to as a parse tree. Given a

grammar G, the set of strings of terminal symbols that can be produced in this way is

referred to as the language defined by this G. Each production rule can be written as

A→ BC or A→ a where capital letters denote non-terminal symbols and lower-case

letters denote terminal symbols1. Formally, a grammar is defined as the tuple

G = (I,V ,R, α) where I is the set of non-terminal symbols, V is the set of terminal

symbols,R is the set of production rules, and α ∈ I is the “start” symbol. For example,

1We assume a slightly relaxed form equivalent to Chomsky normal form.
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consider a simple CFG with I = {γ,A,B}, V = {a, b} and the production rules

γ → AB, A→ aA, A→ a, B → bB, B → b.2 The recursive application of these rules

produces strings that contain any number of a’s followed by any number of b’s.

The problem of parsing a string is the problem of identifying the parse tree used to

generate the string. In the simple example described above, every string in the language

has a unique valid parse, but this is not the case in general. In cases where multiple trees

are possible, a weight can associate each rule with a large weight indicating that a rule is

more likely to be observed. Then parsing becomes the problem of finding the parse tree

with the maximum weight. Finally, a weighted CFG can be interpreted as defining an

unnormalized distribution over parse trees given the input string where the maximum

weighted parse tree is the most probable parse tree under this distribution. The conditional

random field context free grammar (CRF-CFG) model presented in the next section

further conditions weighted CFG on features of the input sequence.

5.1.3 The CRF-CFG Model

The conditional random field context free grammar (CRF-CFG) model is a CRF

model that defines a distribution over parse trees given a grammar G = (I,V ,R, γ) and a

length L feature sequence x = [x1, ...,xL] [66]. The set of all parse trees is represented by

a set of binary random variables Y = {yA,BC,i,j,l | A→ BC ∈ R, 1 ≤ i ≤ j < l ≤ L}.

yA,BC,i,j,l takes the value 1 if and only if the parse contains the sub-tree rooted at A

covering positions i through l, A’s left child is B covering positions i through j, and A’s

right child is C covering positions j through l. Otherwise, yA,BC,i,j,l takes the value 0.

As in all CRFs, the CRF-CFG model is defined by a set of feature functions. In

this case, there are a set of Kr scalar feature functions for every production rule r ∈ R:

f rk (yr,i,j,l, i, j, l,x) for k = 1, ..., Kr. f rk (yr,i,j,l, i, j, l,x) takes the value 0 if yr,i,j,l = 0

2For brevity, we will write production rules using “|” to denote multiple possible productions from
the same non-terminal symbol. Using this notation, we can write the example grammar as A → aA|A and
B → bB|B.
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otherwise it may be any function of the input sequence x and the indices of the production

rule i, j, and l which leads to tremendous flexibility.

Finally, the probability of a parse tree y given an input sequence x is given by

Pθ(y,x) ∝ 1y∈Y exp

(∑
r∈R

∑
i≤j<l

Kr∑
k=1

θrkf
r
k (yr,i,j,l, i, j, l,x)

)
,

where 1 is the indicator function and Y is the set of all valid parse trees. While this

model is substantially richer and more complex than the linear chain CRF, it has the

important property that the maximum probability parse can still be computed in

polynomial time given a setting of the weights θ. Specifically, the maximum probability

parse can be computed in O(L3) time using the inside-outside dynamic programming

algorithm originally developed for the weighted CFG model [71].

5.1.4 Context-Free Grammars for segmentation

In the speech detection task, we are interested in jointly labeling the sequence of

respiration cycles as corresponding to speech or not and segmenting the cycles into

contiguous, non-overlapping segments of conversation and non-conversation activities. In

this section, we use the CFG formalism to describe the set of all such segmentations and

labellings of a sequence and then use the CRF-CFG model to induce a distribution over

these segmentations given features available from the sensor data. The complete speech

detection grammar is described below and an example parse is shown in Figure 5.1.
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γ → α | β

α→ Cβ | C

β → Oα | O (5.2)

O → sO | qO | s | q

C → sC | qC | s | q

In this case, the set of terminals is V = {s, q} which indicate whether a respiration

cycle contains speaking (s) or not (q). The symbols C and O are structural symbols that

indicate whether we are currently in a conversation or other state respectively. The α and

β symbols represent the roots of conversation and non-conversation segments respectively.

There are a few noteworthy structural characteristics of this grammar. First,

speaking symbols are allowed in both conversation and non-conversation segments to

allow for short duration speaking events outside of conversations. Second, the sequence

labels and segmentation interact only through the weights on the terminal producing rules

such as O → sO, which means that the probability of a cycle label conditioned on the

segment it is in, is independent of all other cycle labels in the segment. One possible

extension to this model is to allow for Markov type interactions between labels within a

segment, but we leave this for future work. It is further worth noting, that while the

number of parameters in a CRF-CFG model scales linearly with the number of production

rules in the grammar, the proposed grammar is relatively small and adds minimal model

complexity relative to structure. Finally, because this model only provides a single layer

of segmentation, marginal and MAP inference can be performed in O(L2).

We estimate the parameters of this model using loss-augmented max-margin

learning [70, 72]. For the augmentation loss, we use the Hamming loss between the true

and predicted sequence labels.
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Fig. 5.2: (a) A snippet of AACT screen which was used to label respiration data from inductotrace
band. The screen contains five different time synchronized signals. The video is also synchronized.
From the top, the signals are from — headset microphone, contact microphone, ribcage
inductotrace band, abdomen inductotrace band and summed ribcage and abdomen signal. All the
signals were utilized to label each respiration cycle as well as the duration of vocalization
occurring within each cycle. (b) The top panel shows the ribcage inductotrace signal with the
annotated labels, cycle start and end position, peak position etc. The vocalization location is
indicated by the red color in the signal and duration of vocalization is written on top of it within the
speech cycles. The bottom signal is the AutoSense chest band respiration signal, which is
synchronized with the inductotrace signal. The ground truth annotation of the inductotrace signal
serves as a reference to label AutoSense signal.

5.2 Data Labeling

For development, training, and testing of the conversation model, we need to label

each respiration cycle as speech and non-speech and as well as the conversation episodes.

5.2.1 Lab Data Labeling

To get fine granularity labeling of the data collected in lab, we utilized the

information from headset microphones, throat microphones and video to precisely mark

the speech status of each cycle. We trained four coders to label the Inductotrace signal

using the Action Analysis Coding and Training software (AACT; Delgado and

Milenkovic, 2017), which gave the coders access to the time-synchronized audio and

video recordings as well as the respiratory signals. This multi-modal analysis environment

allowed both rib cage and abdominal signals as well as their sum to be inspected in

synchrony with audio to certify when speech related exhalation was occurring, and often

when non-speech exhalations and inhalations occurred as well. Furthermore,

synchronized video recordings of the lab conversations also allowed coders to observe

when respiratory signals were affected by motion. A snippet of AACT screen is shown in
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Figure 5.2a. All displays and sound signals were considered when marking the onsets and

offsets of inspiration, expiration, and utterances produced by each conversation partner.

After a training period, coders labeled respiratory and audio data for the same four

sessions. Inter-rater reliability was assessed: all reliability kappas were significant and

greater than 0.8. Coders were then assigned to label individual sessions for the rest of the

dataset. This training was conducted by a speech scientist with 30+ years of experience

examining conversational speech and 15+ years of experience examining respiratory

kinematics during conversation.

Next, AutoSense chest band sensor data, which was worn simultaneously with the

Inductotrace bands, was labeled. As these two systems are independent, participants were

told to take three quick breaths before each task, afterwards, to sync the signals from both

types of bands. First, we aligned the Inductotrace signal and the AutoSense respiration

signal as shown in Figure 5.2b. The top panel in this figure shows the Inductotrace sum

signal plotted with manually labeled start and end time for each cycle. The manual

marking of the Inductotrace signal serves as a reference to label the AutoSense chest band

signal.

5.2.2 Field Data Labeling

In the field, we collected respiration and audio data from 38 participants to

evaluate the lab-to-field generalizability of the proposed rConverse model. On average,

we collected 12 hours of audio data/day from each participant (sampling rate 16 KHz).

Among the 38 participants, audio data was lost from 5 participants due to file corruption.

Additionally, respiration data from 1 participant was of poor quality. We were able to

analyze data from the remaining 32 participants.

Labeling field conversation data from the audio stream presented several

challenges. First, since our dataset contains around half million respiration cycles and

each cycle varies in fine-grained time-granularity (milliseconds to seconds), it is not

practical to annotate each respiration cycle as containing speech or not. Therefore, we
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focus on marking start and end of conversations. To label the time-series for conversation,

we used audio from LENA as an indicator of the presence of conversation and corrected

false positives generated by LENA using the raw audio signal.

Second, there is a time drift (up to 1 minute) between the audio device and the

respiration sensor and it is difficult to build in explicit synchronization actions as in the lab

due to intermittent data loss from exercise of privacy control by the participants. Third,

the large volume of audio data (over 200 hours) requires extensive time and effort for

human raters to annotate, especially to mark each turn-taking in the conversation. Rapid

turn-taking inside the conversation aggravates this challenge. Fourth, it is difficult to mark

the start and end boundaries of a conversation episode when both conversing parties are

silent (e.g., thinking) in a conversation.

Therefore, when annotating the beginnings and endings of conversations, we

assumed that a pause of greater than one minute constituted the start of a new

conversation. We labeled 254 hours of audio data, on average 8 hours per participant.

5.3 Feature Extraction and Selection

In the previous section, it was assumed that input signal had been discretized into a

sequence of respiration cycles, and that features had been extracted from each cycle to

form a feature sequence x. In this section, we present the feature extraction methods used

to derive features from each respiration cycle. Further, we present a series of feature

selection strategies to minimize covariate shift between the lab and field domains.

5.3.1 Feature Extraction and Normalization

We compute the duration, amplitude, area and several other features for the

inspiration, expiration and respiration segments of each cycle as depicted in Figure 5.3

Duration features. These features measure the duration for the segments of each

cycle: inspiration, expiration and respiration phase. Inspiration duration (TI). The process

of actively drawing air into the lungs is defined as inspiration. Inspiration time is measured

as the time between the beginning and end of inspiration phase as indicated by an upward
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Fig. 5.3: Features of interest in a theoretical quiet and speech cycle. TI=Inspiration duration, TE=
Expiration duration, TC= Respiration Cycle duration, MI= Inspiration magnitude, ME=
Expiration magnitude, AI= Inspiration area, AE= Expiration area.

slope from left to right in the respiration signal. Expiration duration (TE). Expiration is

normally a passive process where air leaves the lungs. Expiration time is defined as the

time from the end of inspiration to the beginning of inspiration of the next cycle. Cycle

duration (TC). The time it takes to complete a breathing cycle, calculated as (TI + TE).

Magnitude features. The amplitude of a cycle varies for different activities,

postures and conversation shown in Figure 5.3.

Inspiration magnitude (MI). is defined as the vertical distance between the

maximum and minimum of each inspiration phase. Expiration magnitude (ME) is defined

as the vertical distance between the maximum and minimum of each expiration phase.

Magnitude Difference is defined as the difference between inspiration magnitude and

expiration magnitude. During quiet breathing, difference of magnitude is small compared

to speech breathing cycles. Stretch is defined as the vertical distance between the

maximum and minimum point within a cycle.

Area features. The change in air volume during the inhalation and exhalation

stages is reflected with these features. Inspiration area (AI) is defined as the area under

the curve between the beginning of inspiration to the end of inspiration phase for each

cycle. Expiration area (AE) is defined as the area under the curve from the end of

inspiration phase of a cycle to the start of inspiration phase of the next cycle. Mean
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inspiratory flow rate (AI+AE)/TI or drive is defined as a ratio of cycle area to inspiration

duration.

Flow rate features. We measure the instantaneous flow rate for both inhaling and

exhaling phases. Inspiratory Flow rate (VI) is described as the time requires to inhale the

amount of air during the inspiration phase. Expiratory Flow Rate (VE) is described as the

time requires to exhale the amount of air during the exhalation phase.

Ratio features. We use several ratio features. Ratio of inspiration to expiration

duration, area and flow rate is presented as IET , IEA, IEV respectively. Fractional

inspiratory time or effective timing ratio is defined as a ratio of TI to Ttot.

Power in Frequency Bands. We calculate the spectral power in several frequency

bands, 0.01-0.2 Hz, 0.2-0.4 Hz, 0.4-0.6 Hz, 0.6-0.8 Hz and 0.8-1 Hz. We further measure

the LF to HF spectral power (LF/HF) ratio where spectral power is calculated in the low

frequency band between 0.05 Hz and 0.15 Hz (LF) and high frequency band from 0.15 Hz

to 0.5 Hz (HF).

Breath-by-Breath Correlation. From the lab data, we see that the correlation

between two neighboring cycles is high when both of them are non-speaking cycles.

Otherwise, correlation is mostly low when adjacent cycles are either speaking-speaking or

speaking-quiet. Thus we measure the cross-correlation of a cycle with its previous cycle

and with the next cycle and using them as features.

Other Features. We also calculate the energy, entropy and skewness of each

cycles.

Additionally, we apply a simple non-linear transformation to these features by

finding five equal sized percentile bins for each feature and compute the distance from the

center of each percentile bin to the input feature value. Finally, we z-normalize all feature

values.
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Fig. 5.4: (a) Covariate shift between lab and field feature distributions is 95.6± 0.1% with all
features. (b) After applying feature selection method, covariate shift is reduced to 76.1± 0.4%. (c)
Adding activity data with the resampled lab data has further reduced the covariate shift to
63.4± 0.02%.

5.3.2 Feature Selection to Reduce Covariate Shift for Lab to Field Generalization

Covariate shift refers to a significant difference between the lab and field feature

distributions. This difference can result in decreased generalization performance of

models trained on lab data to a field setting. While several methods exist to address

covariate shift in the independent classification setting (e.g. [73]), these methods do not

generalize to the structured prediction setting where objective functions do not decompose

over individual variables. Instead, we propose a feature selection method to select cycle

level features that balance class discrimination against domain discrimination. We did this

by training the importance weighted logistic regression model and selected 20 features

with the highest absolute weights in the resulting model.

Specifically, [73] used the following importance weighted logistic regression

model:

argmin
x

N∑
i=1

δ(yi, xi) log(1 + exp(−yi(wTxi + w0))) + λ||w||2 (5.3)

where λ controls regularization strength and the importance weights δ(yi, xi) are

given by a second, unweighted, logistic regression model trained to discriminate the lab
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Fig. 5.5: Proportion of time spent on conversation and non-conversation tasks in lab and field
respectively.

and field data. Let Q(xi) be the output from a logistic regression model trained to

discriminate the lab data from the field data. Then,

δi(yi, xi) = 1/(1−Q(xi)) (5.4)

The regularization parameter was tuned over a logarithmic grid using

leave-one-subject-out cross-validation on the training set.

We tested the effectiveness of this method by training a logistic regression model

to discriminate the lab and field datasets and evaluating the accuracy of this model. Using

the raw features, a logistic regression model can discriminate the lab and field data with an

accuracy of 95.6%. After applying feature selection, this accuracy goes down to 76.1%

indicating that the covariate shift was substantially reduced. To demonstrate this visually,

we took the feature weights learned by a logistic regression model trained to discriminate

lab and field data and plotted the distribution of weighted sums of feature vectors.

Figure 5.4a shows this distribution for all features and Figure 5.4b shows this distribution

for selected features.

5.3.3 Resampled Lab Data - Handling Prior Probability Shift

The way participants spent time within conversations in lab environment may not

be representative of their behavior in the field. Figure 5.5 shows the amount of time

participants spend in conversation activities in the lab and field. A smaller fraction of time
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is spent in conversation in the field (about 26%, which is about 3 hours out of 12 hours),

while the training data collection protocol significantly over-represents the proportion of

time spent in conversation (about 62%) in lab. To address the issue of prior probability

shift, the non-conversation data in lab is resampled to match with the conversation

distribution in field. On average, 3 hours of conversation per day in the collected dataset

may seem high. Several factors can help explain the large quantity of conversation in

field: 1) cohabiting couples were recruited to maximize conversational interaction; 2)

most of the couples conducted their field recordings on weekends when they were

spending most of their time together; 3) these participants were aware that we are seeking

conversational interaction so they may have produced even more than typical (few

participants mentioned this in their exit interviews).

5.3.4 Conversation in Presence of Activity

Data collected in lab typically exercises a very limited number of contexts relative

to field environment. Physical activity is a common phenomenon which is absent in data

collected in lab settings. This factor can lead to significant differences in between lab and

field feature distributions [73], which can be accounted for by covariate shifts.

To see the effect of activity, the training- Field data collected in presence of

physical activity (i.e., walking), is combined with the resampled lab data. The activity

enriched data with resampled lab data adds significant variability and the covariate shift of

the resultant dataset reduces to 63.3% (Figure 5.4c).

5.4 Empirical Protocols

In this section we describe the details of data preparation, training protocols, and

evaluation metrics.

5.4.1 Tasks

There are two tasks of interest in the speech detection problem: Cycle level speech

labeling (Task 1) and conversation episode detection (Task 2). Cycle level speech

labeling entails labeling each individual respiration cycle as corresponding to speech or
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not. Conversation episode detection entails segmenting each sequence of respiration

cycles into contiguous periods of conversation and non-conversation activities.

5.4.2 Data Preparation

As described above, labeled respiration data was collected from 12 subjects in the

lab. We dropped the data from 1 participant due to poor data quality. In order to create a

single, long session for each subject, we concatenated the data for each subject in a

random order. The resulting dataset contains 11 separate respiration waveforms which we

process using the feature extraction methods described above to create a training set with

11 unique labeled feature sequences.

5.4.3 Baseline Models and Hyper-parameter Selection

We compare our the CRF-CFG model against two common baselines: Logistic

Regression (LR) and a linear-chain conditional random field model (CRF-LC). All models

are trained using max-margin learning and all models include `2 regularization on the

parameters [70]. For all models, the regularization strength parameter, λ, was tuned over a

logarithmic grid, {10−1, 100, ..., 105}, using leave-one-subject-out cross-validation on the

training set. We selected the value of λ that maximized cycle level accuracy averaged

across all folds and then trained a final model on all of the training data using this λ value.

5.4.4 Evaluation Metrics

Evaluation on Lab Data: We assessed the performance of all models on Task 1

(cycle labeling) using standard classification metrics such as accuracy, precision, recall,

and F1 score. To evaluate conversation episode detection performance (Task 2), we

compare the predicted segmentation with the true segmentation by projecting each

segmentation onto the input sequence and calculating the performance metrics on the

resulting binary sequences.

Evaluation on Field Data: We compare the performance of our model for

detecting conversation with that from audio data by the speech classifier of the LENA

foundation. To account for the time drift of up to one minute between respiration
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Fig. 5.6: Cycle labeling performance of different models on training data. LR: Logistic
Regression, LC-CRF: Linear Chain CRF, CRF-CFG: CRF with Context Free Grammar.

Table 5.1: Confusion Matrix for cycle labeling on training lab data with CRF-CFG model
using leave-one-subject-out validation; Cycle labeling Accuracy=82.7%,
Precision=81.5%, Recall=85.4%, F1=0.83, and False Positive Rate=20.1%.

Classified by Model
Speech non-speech Total

A
ct

ua
l Speech 833 (85.4%) 142 (14.6%) 975

Non-speech 189 (20.1%) 753 (79.9%) 942
Total 1022 895 1917

time-series and the audio time-series, we segment both the time-series into one minute

windows. If both ground truth annotated conversation and model detected conversation is

present in any one minute window, we consider that window to be a true positive (TP).

Similarly, we calculate true negatives (TN), false positives (FP), and false negatives (FN).

Finally, we compute the accuracy, precision, recall, F1-score, and false positive rates

(FPR).

5.5 Results

5.5.1 Experiment 1: Comparison Against Baseline Models

To evaluate the CRF-CFG model against the classification baselines, we performed

a leave-one-subject-out evaluation using the lab data for which we have detailed

respiration cycle level labels. The leave-one-subject-out prediction results for Task 1

(cycle labeling) for each model averaged across subjects is shown in Figure 5.6.
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The accuracy, precision, recall and F1-score of CRF-CFG model for cycle labeling

using lab data is 82.7%, 81.5%, 85.4%, and 0.83, respectively. Table 5.1 contains the

confusion matrix of the cross-subject validation for CRF-CFG model. Whereas, accuracy

of LR and CRF-LC models are 76.9% and 77.6% respectively. The fact that improvement

of CRF-LC over LR indicates that there are reasonable correlations between adjacent

respiration cycles; however, the CRF-CFG model improves further over CRF-LC,

indicating that the Markov assumption may not hold in this context. That is, a cycle

labeling benefits from knowing whether it is in a conversation and not just what its

neighbors labels are. The accuracy, precision, recall, and F1-score of CRF-CFG model for

Task 2 (episode detection) on the lab data is 95.9%, 91.28%, 96.0%, and 0.94 respectively.

5.5.2 Experiment 2: Conversation Detection in the Field

In order to test the various feature selection and data augmentation methods

proposed in Section 5.3 we perform an ablation study, adding in each proposed

augmentation one at a time. Then, using all augmentation methods, we compare the

performance of the CRF-CFG model against both human annotated ground truth and

LENA model on the task of conversation episode detection (Task 2).

Performance using lab data trained on all features

The lab data model trained with all features can identify the conversation episodes

in field with an accuracy of 52.03% (Figure 5.7). The precision and recall is 43.02% and

97.02%, respectively.

Performance using lab data trained on selected features

Deploying the lab model trained with selected features that reduce covariate shift

from lab to field data, the conversation episode detection accuracy in field is 60.8%,

precision is 58.6% and recall is 98.01% (Figure 5.7) while the false positive rate is 87.5%.

Thus, feature selection method has improved the accuracy by 8.8% in field. The F1 score

is 0.72 for this model.
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Fig. 5.7: Model performance comparison to detect conversation episodes on field data. First bar
indicates the performance of model trained on lab data with all features. Second bar indicates the
performance of model trained on lab data with selected features after covariate shift reduction.
Third bar indicates the performance of model trained on resampled lab data with selected features.
Fourth bar indicates the performance of model trained on activity enriched resampled lab data with
selected features. The fourth model shows better performance (higher accuracy, lower false
positive rate) over other models to detect conversation episodes on field data.

However, in comparison with the performance with lab data, conversation episode

detection accuracy drops from 95.9% (see Figure 5.6) to 58.6% on the field data using this

model. Still there is a large gap of performance between lab and field.

Performance using resampled lab data trained on selected features

The resampled lab data model can identify the conversation episodes with an

accuracy of 62.5% in field. The precision and recall are 59.6% and 98.4%, respectively.

The false positive rate has been reduced to 84.4%. Thus, data resampling has improved

the accuracy by 2% and reduced the FPR by 3.1% in field.

Performance using resampled lab data and activity data trained on selected features

The accuracy of the model using activity enriched data with resampled lab data is

71.7% and false positive rate is 30.03% in the field. The precision, recall and F1 score is

69.8%, 68.9% and 0.69. Thus accuracy is increased by 8.5% and FPR is reduced by

54.4%.
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Table 5.2: Performance comparison between CRF-CFG model and LENA model that includes
state-of-the-art algorithm to detect human speech on audio data.

Models Accuracy (%) Precision(%) Recall(%) F1-score FPR(%)
CRG-CFG model 71.7 69.8 68.9 0.69 30.0
LENA model 71.9 73.4 66.5 0.69 26.6

Performance Comparison with Audio-based Conversation Model (LENA)

We compare the model performance with audio recorder (LENA) that also detects

human speech and distinguishes human vocalization from electronic sounds (e.g., TV).

Final model (Resampled lab with activity included) predictions and LENA predictions are

compared with human annotated ground-truth on field data for performance comparison.

Accuracy to detect conversation by CRF-CFG model and the audio based model is

similar (around 72% as shown in Table 5.2). We note that the audio recording used in this

study capture high quality audio and it was not subject to occlusion, unlike audio capture

on smartphones that may subsample or be occluded due to being in pocket or purse.

5.6 Related Work

Conversation modeling, based on acoustic data captured with smartphone

microphones [74] or with wearable microphones [75] has been a fertile area of research

for decades. Advanced research has been done in audio sensing not only to distinguish

conversation episodes from ambient sound or music [74], but also to model various

characteristics of a conversation, including turn-taking behavior [76], group size

estimation [77], and speaker identification [78, 79]. Furthermore, acoustic researchers

have also addressed speakers’ emotions [80] and stress levels [81]; and developed

socio-therapy applications [76] for children with autism.

In this work, we explore the potential for detecting conversations from respiratory

measurements that can be useful when respiration data is collected in context of health

related research (e.g., smoking cessation, asthma) or self-monitoring (e.g., biofeedback).

A model for detecting conversations from respiration can be applied to such data collected

to infer conversation episodes which play an important role in stress management,
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smoking lapse, depression, etc. An advantage of respiration based models is that they are

more specific to the speaker and less privacy sensitive [17].

Respiration-based conversation modeling is, however, underexplored, perhaps due

to the lack of reliable respiration signals collected in field setting. The emergence of

connected wearable and contactless smart technologies have made it feasible to capture

respiration data reliably and comfortably in everyday life.

Two common methods for continuous respiration rate monitoring in clinical

settings are impedance pneumography and capnography, which require the use of a nasal

probe [82]. These methods are expensive and intrusive, and therefore not useful for daily

use. In order to minimize the discomfort, researchers developed pressure-based bed

sensors [83, 84] for long-term and continuous respiration monitoring while users are lying

down.

Several methods have been developed to measure respiration continuously in

indoor settings (e.g., home, office) while users are mobile and not confined to a bed or any

furniture [85, 86]. For example, Adib et al., developed a radar based, contactless

Vital-Radio [85] to track respiration rhythm while the user is 8m away from the sensor,

co-located with multiple other subjects, regardless of whether she is sleeping, watching

TV, or typing on her laptop. In order to make the contactless respiration measurement

infrastructureless and cost-effective, researchers have developed several methods based on

commodity sensors, such as camera [87] and WiFi [88]. The basic idea of such systems is

to measure displacements of the chest of human subjects during breathing. These methods

can capture breathing depth, location, orientation, and respiration rate from a distance,

making them viable for long-term respiration monitoring in indoor settings.

Wearable wireless sensors make the respiration signal continuously available in

mobile settings. Commercial releases and research prototypes of wearable

chestband [42, 89] and smart garments [90] have been developed to continuously measure

respiration 24/7. They are either piezoelectric-based or inductance-based sensors to
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reliably capture respiration rhythms in natural settings. These straps are sometimes

reported to be uncomfortable for the wearers.

Recently developed wearable devices enable respiration data to be captured more

easily and comfortably in our daily lives. For example, commercially available

accelerometer-based small devices (clipped with clothing) such as Spire or Prana [91]

help users capture breathing information and visualize on a smartphone to aid in breathing

regulation. The Philips Health Watch [92], an FDA3 approved commercial product, makes

respiration rate accessible from a comfortable, easy-to-wear smartwatch. A popular

consumer device, Apple Watch, introduced the Breathe app in WatchOS3, and the Fitbit

Charge 2 added a guided breathing tool called ‘relax’. The increasing number of devices

and associated smartphone apps that feature respiration data capture and usage

demonstrates that respiration data is becoming more accessible and can be collected

unobtrusively in user’s natural environment.

We note, however, that capturing accurate respiration waveforms today still

requires wearing a belt around the chest that may not be comfortable for long-term

wearing. But, despite such constraints, chest-worn respiration sensors are being used to

collect over 10,000 person days (over 100,000 hours) of data from over 1,000 participants

at five sites across the US4. We have used a similar chestband sensor to collect reliable

respiration data continuously in wide variety of field settings. Although our model has

been developed on waveforms collected from a respiration belt worn around the chest in

natural settings, they can be suitably adapted for other emerging respiration sensing

modalties.

The closest work to ours is mConverse [17] that captured respiratory

measurements from a chestband sensor to infer conversation events. However, as

described in Section 1, this early model could only operate on 30-second windows. For

training and validation, each 30-second window of respiration data was labeled based on a

3US Food and Drug Administration. https://www.fda.gov/
4See https://md2k.org/studies for a list of these deployments.
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majority of speech or non-speech duration within the window as marked by a human

observer. Consequently, this work either overestimated or underestimated speech and

non-speech durations in a conversation.

Because respiratory cycle is a unit of speech breathing, cycle-based classification

is the finest granularity for speech modeling from respiration data. Each respiration cycle

dynamically varies in duration. Hence, cycle-based dynamic windowing is an appropriate

approach for the respiration based speech modeling as presented in the current model. To

generate labels, speech/non-speech cycles were carefully marked based on audio, video,

and hospital grade respiratory inductive plethysmograph bands with synchronized

channels in the lab setting and by using audio processing from LENA and confirmation

from human raters in the field. Moreover, we present a CRF-CFG model which both

classifies cycles into speech and non-speech, and further segments cycles into

conversation episodes. This model is evaluated against gold-standard acoustic data

collected in the natural environment.

On the modeling side, segmentation based models have been successfully used for

a wide variety of activity recognition tasks [67, 93, 94, 95]. For example, Tang et al., [93]

and Sung et al., [94] use conditional segmentation models for labeling and segmenting

activities in video streams. Adams et al., [95] use a hierarchical segmentation model to

label and segment smoking activities in respiration data. Most closely related to our

approach, [67] use a CRF-CFG model for ECG morphology extraction. In this work, we

develop a grammar for a CRF-CFG model to detect conversation episodes, which has

different characteristics than prior works on ECG morphology or smoking, demonstrating

wider applicability for the CRF-CFG approach.

5.7 Conclusions

This work presented a conversation episode identification model from respiration

signals by classifying each breathing cycle into speech and non-speech. Audio captured in

the field is used to validate the models. For these classification, we describe several
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intuitive time domain features from respiration which are different from the traditional

features. These features can be of interest in detection of other daily behaviors such as

laughing, singing, eating, drinking, etc. Previously, detection of momentary behaviors

from respiration data collected in the field setting hadn’t been realized. This work can

contribute a comprehensive approach to processing of respiration data in the field setting

and lead to momentary detection of various daily behaviors from respiration data and

enhance the growing utility of respiration sensing.

Numerous real-life applications can be pursued using this method. First, turn

taking can be observed in group conversations and analyzed to improve turn taking in

meetings. The speaking turn has been defined as an uninterrupted series of speech

segments from a single speaker. Second, back-channels can also be studied. They are

unplanned, small vocalization, produced by the listener to give short feedback to the

speaker. Some studies say, the cycle that contains back-channel is not a speech breath,

because he/she has no intention to take floor. In future, we would analyze the effects of

back-channels using our models. Third, using this method in real-life can help enhance

the scientific studies of social interactions and help individuals reflect upon and improve

their social interactions. Its usage together with processing of audio data captured on the

microphone can help further characterize the content of conversation.
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Chapter 6

Stressful Social Interaction Detection

To develop a model to distinguish stressful interaction or conversation from other

daily stressors such work and commuting related stress, we designed the field study to

collect interaction data in natural environment that is describe in Chapter 3. To handle the

challenge of collecting labeled stress events, we designed a Day Reconstruction based

visualization that helps participants to recall the stress events from the stress likelihood

time-series. In this chapter, we describe how we extract distinguishing patterns from the

stress event along with the wrist motion sensor data to detect stressful conversations. First,

we describe our proposed method to identify cyclical pattern in a stress event followed by

wrist motion patterns. Second, we describe feature extraction from the stress and wrist

motion data to train a machine learning model for detecting stressful conversations.

Finally, we evaluate our models and discuss implications of the models.

6.1 Key Ideas and Overall Approach

Input to the model is a continuous stress likelihood time-series, with one data point

every few seconds. The time-series is annotated with the start and end times of stressful

events. Assuming that each of the stressful events is attributed to one source of stress, the

goal is to determine whether each event is due to stressful conversations or interaction.

6.1.1 Key Ideas

Our model development is based on three key ideas. First, we notice that stress

time-series signal during stress event is episodic and often periodic, exhibiting peaks and

troughs that can be used to naturally segment the data. Second, we identify several novel

features from these cycles. Third, we observe that the pattern of hand gestures when stress

occurs due to personal interactions is distinct in nature, as compared to when stress is due

to work or commute. With increasing adoption of smartwatches and fitness trackers, it is

increasingly feasible to capture hand movement patterns continuously. We also note that

with recent improvements in optical sensing in smartwatches, stress may also be detected
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from smartwatches [40, 41], making for a complete sensor suite on which our model can

be implemented.

6.1.2 Overall Approach

Our model development consists of the following major steps.

1. Cyclical Pattern Identification: Cyclical patterns in stress time-series are different

than that in regular physiological signals such as respiration cycles. Respiration

cycle is well defined by inhalation and exhalation phases associated with each

breath but stress cycles do not have any such naturally defined phases. Therefore,

existing methods for detecting peaks and troughs are not directly applicable to stress

cyclical pattern identification. We propose a new method to detect cycles in the

stress likelihood timeseries and characterize portions of interest from which

distinguishable features can be computed.

2. Intra-cycle Feature Extraction: Unlike respiration, there is no natural

phenomenon of inspiratory and expiratory time. Therefore, we need to discover new

features that can characterize and interpret a stress cycle.

3. Inter-cycle Feature Extraction: To capture any patterns that span multiple stress

cycles within a stress event, potentially covering all stress cycles within a stressful

event, we compute features spanning multiple stress cycles.

4. Wrist Motion Features: Wrist motion sensors data have been researched

extensively for activity and posture detection. We compute these features within

each stress cycle to determine their utility in capturing the distinct signatures of

hand gestures observed during stress events, to improve the accuracy of detecting

stressful conversations.

6.2 Observation and Characterization of Stress Likelihoods Within Stress Events

We expect the physiological response during a stress event to exhibit a cyclical

pattern. To investigate whether we observe a cyclical pattern during stressful
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Fig. 6.1: (a) Cyclical pattern of stress likelihood observed in lab data. The vertical solid black and
dotted red lines depict start and end times of each tasks. Stress cycles are visible during scripted
reading, Map Task2 and debrief session. In between 15 and 25 minutes, we observe a portion of
missing data. (b) Variation in stress likelihood pattern during stressful and non-stressful
conversations in field. The horizontal blue dotted line shows the daily average of stress likelihood.
During stressed conversation, we observe numerous high arousal stress cycles.

conversations, we analyzed the physiological data collected during the lab study, where

stressful conversations took place and the physiological data was mostly free of any

confounders. As described in Section 3.2.3, we apply the cStress model on physiological

data to convert the physiological sensor data into stress likelihoods (in sliding

minute-windows, starting every 5 seconds) as shown in Figure 3.6. We also mark the start

and end of stress events.

We observe that the cyclical patterns previously observed in the physiological

response during stress tasks (due to the interplay between SNS and PNS) is also observed

in the stress likelihood time series within a stress event. The activation of SNS results in

the elevation of physiological arousal which is captured by an increase in the stress

likelihood produced by the cStress model. We define this point as stress ‘Rising point’

where stress arousal starts to elevate from its pre-stress condition, i.e., an average of daily

stress likelihood as shown in Figure 3.6. Concurrently, each time SNS activates, the PNS

gets activated as well to provide the corresponding counterbalance so as to keep the

physiology in homeostasis balance. When the influence of PNS exceeds that of SNS, then

it reaches a ‘Saturation point’, after which the stress arousal starts to decay, indicated by

the ‘Decay point’ when the effect of stressor starts to mitigate. Finally, it reaches the

pre-stress value or below the daily average of stress likelihood denoted by the ‘Recovery
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point’. We define this structure as a ‘stress cycle’, where stress cycle begins at a ‘Rising

point’ and ends at a ‘Recovery point’.

The cycle repeats if the current episode continues to produce new stress triggers

(e.g., conflicting words spoken by the conversation partner). A stress event may consist of

one or more stress cycles depending on the repetition of stress triggers within a stress

event. In Figure 3.6, the depicted stress event consists of three stress cycles.

We illustrate the cyclical patterns in the stress likelihood time-series data during

lab tasks in Figure 6.1a. It shows that stress likelihood was low during the baseline

session. Stress likelihood rises during the scripted dialogue task as the individual was

waiting for his/her turns, and they were focusing on their performance to make the

dialogues look more natural. As the nature of the map tasks tended to induce some

informational conflict between partners, we see high arousal stress cycles during Map

Task 2 and during the debrief session when they were trying to resolve their conflict.

Stress arousal in Map Task 1 is not as visible due to missing data.

We observe a similar cyclical pattern during stress events in the field data.

Figure 6.1b depicts the stress arousal of a participant in the field during two separate

conversational interactions at two different times. The first interaction (left portion) was a

non-stressful conversation , where stress likelihood remains below the daily average. The

second interaction (right portion) presents a stressful conversation, where we observe

several stress cycles that rise above the daily average of stress likelihood. This particular

stressful conversation consists of five stress cycles. In the following section, we describe

how we identify stress cycles automatically from the stress time-series data.

6.3 Stress Cycle Identification Algorithm

As we assume stress cycle is the smallest unit inside a stressful event, this cycle is

used to segment the day long stress time-series. To identify each stress cycle with all four

interesting points — stress rising, saturation, decay and recovery point, we propose a

moving average based method. For that, we build upon the cycle identification model used
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Fig. 6.2: (a) Moving average based cycle identification method to identify all four interesting
points- (1) stress rising point; (2) stress saturation point; (3) stress decay point; and (4) stress
recovery points are detected. (b) Summary of detected stress cycles for interaction, work and
commute related stress. Median numbers of stress cycles/event are 4, 2.5 and 3 minutes for
interaction, work and commute, respectively, where number of cycles/event is significantly higher
for interaction related stress compared to other two stressors. Median stress cycle duration’s are
3.5, 4.2 and 4.0 minutes for interaction, work and commute related stress, respectively. Significant
difference is found is found between interaction and interaction related stress cycle duration.

to detect other physiological phenomena such as breathing cycle [18]. The method

developed for breathing cycle identification will not be directly applicable for stress cycle

identification. Breathing signal follows some specific structure with inspiration and

expiration phases driven by the physiological phenomenon. On the other hand, stress

cycle is guided mostly by the stressful situation and may not have any specific rules.

Therefore, we have modified the algorithm to identify stress saturation and decay point.

First, we smooth the stress likelihood time-series using a 15 seconds moving

average to remove spikes. Then another moving average centerline (MAC) curve is

computed using a moving average of 2 minutes. The MAC appears as a center line (shown

as red dotted line in Figure 6.2a) that intercepts each stress cycle twice, once in the rising

trend and then in the falling trend. Next, we identify the up and down intercepts where the

MAC curve intercepts the rising and falling branch of smoothed stress time-series

respectively. The ‘rising point’ is the rightmost local minimum that lies below daily

average found between consecutive down and up intercept pair. From this point, signal

rises monotonically towards saturation point.
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The ‘saturation point’ lies between the up intercept and the following peak of that

cycle where rising trend reaches the peak. This point is the leftmost local maximum and

must be above the up intercept and MAC curve line.

‘Decay point’ lies between the saturation point and the following down intercept

when signal starts monotonically decreasing. This point is detected as the rightmost local

maximum and must lie above the following down intercept and the MAC line. The falling

trend reaches to ‘recovery point’ when it decreases to first local minimum value below

daily average of stress likelihood.

Performance Evaluation: We annotated total 160 stress cycles from several stress

events including interaction, work and commute. We use the following metrics to evaluate

the performance of the algorithm — percentage of actual cycle detected, percentage of

extra or spurious cycle found, and error in cycle duration due to mislocated rising and/or

recovery point. Two coders independently labelled all the interesting points of a cycle.

Inter-rater reliability was around 0.9 between the coders. The algorithm could identify

96% cycles accurately and detected 3% cycles as extra or spurious. The mean absolute

error in identifying cycle start or rising point is 8.86 seconds. The mean absolute error in

identifying cycle end or recovery point is 6.9 seconds. Therefore, mean error in cycle

duration is 8.16 seconds. The rationale for calculating error in cycle duration is even if a

rising point and a recovery point are identified correctly, their respective temporal position

in the signal may introduce error in the resultant duration.

After applying this algorithm on all stressful events, we find the average number of

stress cycles are 4.42, 3.6, and 2.9 for stressful interaction, work and commute,

respectively as depicted in Figure 6.2b. Number of cycles per event for interaction related

stress is significantly higher compared to both work and commute related stress cycles at

5% significance level (using t-test). But, no significance difference is found between work

and commute related number of stress cycles. Average stress cycle duration is 3.7, 4.8,

and 4.02 minutes for interaction, work and commute, respectively depicted in Figure 6.2b
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Fig. 6.3: (a) Several duration values for individual stress cycle. (b) Rising and falling normalized
area. (c) Rising and falling intercepts of stress cycles.

(right portion). The cycle duration for interaction is significantly lower compared to work

related cycle duration with p-value of 0.002 (using t-test).

6.4 Distinguishing Patterns in Wrist Motion Sensors

Researchers have studied the role of gestures during conversational interaction in

assessing stress. The more stressful the situation, the higher the proportion of speech that

is accompanied by hand gestures [96]. We observe distinct patterns in the wrist-worn

motion sensor signals (accelerometer and gyroscope) during stressful interactions

compared to work and commute related. We observe frequency of wrist movement is

higher during stressful interpersonal interactions. While someone is working at a

computer, motion will be more guided towards typing or mouse movement. Similarly,

hand motion during driving is expected to be dominated by the steering wheel movement.

On the other hand, wrist motion is more random during an interaction, possibly due to

communicative gesturing. We hypothesize that wrist motion energy will be higher during

a stressful interaction compared to a non-stressful interaction. Based on these insights, we

extracted motion sensor features under each stress cycle to compare those differences in

order to detect stressful interactions in daily living.

6.5 Feature Computation

To capture differences in stress cycle characteristics during stressful interactions

compared to work and commute related stress, we identify new features from each stress

cycle. From each cycle, we compute features from stress likelihood time-series and those

from wrist-worn inertial sensors. In addition to computing features from individual cycles,
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we also compute features from two or three consecutive cycles, and all cycles in a stress

event.

6.5.1 Features from Individual Stress Cycle

We compute the following features from each stress cycle of a stress event:

fractional rising and fractional falling time, rising and falling normalized area, ratio of

rising and falling normalized area, elevation above daily average, rising and falling slopes

and intercepts, skewness, kurtosis, and entropy. We now describe these features and how

they are computed.

To compute these features, we first calculate the following duration measurements

from each stress cycle — cycle duration, saturation duration, and successive cycle

distance as depicted in Figure 6.3a.

Let Sj be the stress likelihood at time tj with new values produced every

∆t = tj − tj−1 = 5 seconds. A stress cycle is defined by four 2D points, i.e.,

Ci = (ri, si, di, r
c
i ) (as shown in 6.3a). Here, ri = 〈tri , Sri〉, si = 〈tsi , Ssi〉, di = 〈tdi , Sdi〉,

and rci = 〈trci , Srci 〉.

Stress cycle duration: Stress cycle duration is defined as the temporal distance

between stress rising and recovery point,i.e., CDi = trci − tri .

Saturation duration: Saturation duration is the duration when the stress

likelihood time-series stays in the upper region after reaching the saturation point before

starting to decay, i.e., SDi = tdi − tsi .

Successive cycle distance: Successive cycle distance is the distance between

ending of one cycle and starting of next cycle, i.e., SCDi = tri+1
− trci .

With these duration measurements, we compute the following features from each

stress cycle.

1. Fractional rising and falling time: Fractional rising time is defined as the ratio of

rising duration to stress cycle duration where rising duration is defined as the

temporal distance between stress cycle start and saturation point. Similarly,
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fractional falling time is defined as the ratio of falling duration to stress cycle

duration. Falling duration is the temporal distance between decay and recovery

points. More specifically, trisei = (tsi − tri)/CDi and tfalli = (trci − tdi)/CDi.

2. Rising and falling normalized area, Ratio of rising and falling normalized area:

Rising normalized area is computed as the area under rising region divided by the

rising duration. Similarly, falling normalized area is computed as the area under

falling region divided by the falling duration. We also use the ratio of these two

values as a feature. The variation of this feature values are depicted in Figure 6.3b

for different stressors, i.e., Arisei =
∑si

k=ri
Sk

trisei
and Afalli =

∑rci
k=di

Sk

tfalli
.

3. Elevation above daily average: The amplitude difference between maximum value

or the peak of a cycle and the daily average is defined as elevation above daily

average. Peak amplitude of a cycle Ci is peakAmpi = max(Sri , Sri+1
, ..., Srci ).

Then, elevation above daily average is Ei = (peakAmpi − Avg(Sj,∀j)).

4. Rising and Falling slope and Intercepts: We fit a least square regression line in the

rising phase. That is, we find slope m and intercept c of equation y = mx+ c using

the sequence of points (tk, Sk) between tri and tsi . Similarly, falling slope and

intercept are computed in the decay region. The variation of intercept values are

depicted in Figure 6.3C for different stressors.

5. We also compute skewness, kurtosis, entropy for each stress cycle. Since, a stress

cycle is defined by four points, i.e., Ci = (ri, si, di, r
c
i ) therefore all the stress

likelihood within the cycle Ci are Sri , Sri+1
, ..., Srci . More specifically, skewness is∑rci

i=ri
(Si−S̄)3

‖rci−ri‖∗std3
and kurtosis is

∑rci
i=ri

(Si−S̄)4

‖rci−ri‖∗std4
.

6.5.2 Wrist Motion Features in Each Stress Cycle

From inertial sensor data coinciding with each stress cycle, we compute several

time domain features from both accelerometer and gyroscope signals — mean, median,
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standard deviation, quartile deviation, skewness, and kurtosis of three axes of

accelerometer and gyroscope. For wrist orientation features, we compute roll, pitch, and

yaw that provide information about the orientation of the wrist with respect to gravity on

the window of data. We also computed energy as the magnitude of the accelerometer and

magnitude of the gyroscope (amag =
√
a2
x + a2

y + a2
z).

6.5.3 Whole Stress Event Features

To compute features from the entire stress event, we compute number of stress

cycles per event, duration of stress cycles per minute, and average stress likelihood across

the entire event.

6.5.4 Features from Multiple Stress Cycles

We compute features from consecutive stress cycles (i.e., two cycles or three

cycles) to determine the degree of performance improvement with more information. We

note that using features from the entire event may delay the detection of stressor until after

the stress event is over. The combination features include differential features from

successive individual stress cycle features and statistical features such as mean and

standard deviation across selected number of cycles. For wrist motion features, we

compute only statistical features across selected number of cycles.

6.6 Model Selection and Training

We have grouped the stress events into two categories — interaction and

non-interaction. Interaction group includes all the stressful social interactions.

Non-interaction group includes all the stress events due to other common daily stressors

i.e., work and commute. Our aim is to identify whether a stress cycle is induced due to

interaction or non-interaction related stress activity. To do so, we identify each stress cycle

automatically from the continuous stress time-series using previously mentioned stress

cycle algorithm. Next, we compute the features from each stress cycle and train a machine

learning model to identify whether the current stress event is due to interpersonal

interactions.
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In total, we obtain 13 features from stress cycles and 42 features from the motion

sensor data. But, to avoid overfitting (as there are only 152 interaction stress cycles and

129 non-interaction stress cycles), we use selected features for modeling. The idea behind

feature selection is to remove highly correlated and noninformative features. In this work,

we used the Correlation-based Feature Selection (CFS) to select a subset of the features

(15) as in other detection based work [22]. CFS selects features that are mutually

uncorrelated but highly indicative of the interaction and non-interaction classes.

We use basic Logistic Regression model (LR) and Random Forest (RF) to train the

model to discriminate stressful interaction from non-interaction related stress event.

Logistic regression is a statistical model that in its basic form uses a logistic function to

model a binary dependent variable. Mathematically, a binary logistic model has a

dependent variable with two possible values labeled as “0” and “1”. In the logistic model,

the log-odds (the logarithm of the odds) for the value labeled “1” is a linear combination

of one or more independent variables (stress cycle features). Random Forest is an

ensemble learning method for classification. It constructs a collection of decision trees

trained with random subsets of features and outputs the class which is the consensus of

classes output by individual trees. Random forests are a combination of tree predictors

such that each tree depends on the values of a random vector sampled independently and

with the same distribution for all trees in the forest. The generalization error for forests

converges to a limit as the number of trees in the forest becomes large. The generalization

error of a forest of tree classifier depends on the strength of the individual trees in the

forest and the correlation between them.

We assess the performance of the model using standard classification metrics such

as precision, recall, and F1 score. We use labelled stress cycles to train the model and run

the model with several combinations of features.
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Fig. 6.4: (a) Performance of LR (Logistic Regression) and RF (Random Forest) models using
individual stress cycle features and then fusing wrist motion features. (b) Performance of whole
stress event features fusing with individual stress cycle features and wrist motion features.

6.7 Model Evaluation and Results

In this section, we evaluate the impact of design choices on the model performance

and also compare it with a baseline model.

6.7.1 Performance Improvement by Using Wrist Sensor Features and Whole Stress

Event Features

We compare the model performance using both logistic regression and random

forest, when using stress cycles features in each cycle, performance improvement when

adding features from wrist-worn inertial sensors, and further performance gain when

features from the entire stress event are used.

1. Performance using individual stress cycle features: The logistic regression (LR)

classifier can distinguish whether a stress cycle belongs to interaction class with an

F1 score of 0.77 using stratified 10-fold cross validation method using stress cycle

features from one cycle (see Figure 6.4a). Precision and recall values are 0.65 and

0.95 respectively. On the other hand, Random Forest (RF) classifier achieves

precision, recall and F1-score of 0.66, 0.85, and 0.74, respectively. We consider a

stress cycle as the smallest unit for detecting an on-going stressful event. Therefore,

to detect a stressor, we need to observe at least one stress cycle in a stress

time-series data.
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Fig. 6.5: (a) Whether a stress event is due to interpersonal interaction depending on the overlap
ratio between detected conversation and stress events. Here conversation is measured from the
LENA audio device. (b) If conversation is measured using respiration based model, then the
accuracy of finding whether a stress event is due to interaction.

2. Performance using individual stress cycle and wrist motion features: After fusing

wrist motion features with individual stress cycle features, Logistic regression (LR)

can classify with 0.75 precision, 0.89 recall, and 0.82 F1-score. The Random Forest

(RF) model can classify the two classes with precision, recall and F1 score of 0.78,

0.92, 0.85, respectively. This shows that adding computationally inexpensive and

less power-hungry motion sensors, which are already part of wrist devices, can

significantly improve the accuracy of detecting stressful interpersonal interaction.

3. Performance using whole stress event features: When we augment whole stress

event features with the individual stress cycle features, the precision improves to

0.83, recall improves to 0.97, and F1-score becomes 0.89 using Random Forest

Model as shown in Figure 6.4b. After fusing wrist motion features with whole stress

event and individual stress cycle features, the precision, recall and F1-score

becomes 0.82, 0.95, and 0.89, respectively using Random Forest Model. Adding

whole event features gives the best performance among all the evaluation setup.

However, to achieve this performance, we need to observe the whole duration of the

stressful event. Therefore, this will produce fewer false alarms but at a cost of

longer waiting times for interventions.
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6.8 Comparison with Baseline Models

To compare the performance of our model, we construct a baseline model. We

consider a natural model that compare percentage of stress event duration that is detected

to be spent in conversation by user from another data source motivated by the work

presented in [35]. To detect the timing of interpersonal interaction, we use an audio based

model available from LENA [27] and a respiration based model from [18]. We search for

the right value for overlap for each of these two models that results in optimal

performance (see Figures 6.5b and 6.5c).

We observe an F1-score of 0.51 for the audio based model with around 32%

overlap with the stress event and an F1 score of 0.60 for the respiration based model with

58% overlap with the stress event. Lower F1-scores for these two baseline models can be

explained by the fact that models detecting conversations are not perfect (F1-score of 0.7).

Secondly, people usually multitask and therefore, even when a user may be in conversation

during a stress event, (s)he might be stressed for other reasons. For example, a driver may

be in conversation with a co-passenger during driving but stressor can be traffic events.

In addition to 15-30% performance improvement over baseline models, our model

also has the advantage of detecting stressor from the stress time series itself, without

needing concurrent detection of potential stressors (e.g., conversation from audio, work

status from computer logs).

6.9 Implications for Delivery of Just-In-Time Stress Intervention

A just-in-time intervention needs information on most opportune moments for

delivering the intervention. In this section, we investigate the trade-off between the

accuracy of detecting the stressor and how quickly since the start of the stress event the

stressor can be detected.

The model performance is expected to improve when features are computed over

longer intervals, but it also comes at the cost of delayed detection. We also observe that

when we use features spanning multiple cycles (i.e., two cycles, three cycles), the number
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Fig. 6.6: (a) Possible timing/points of delivering intervention depending on features
computed from one stress cycle or span of multiple stress cycles. d1, d2, d3 and dn are
representing the temporal distances from the beginning of a stress event. (b) Trade-off
between sources of stress detection accuracy and timing of stress intervention delivery
based on features computed from one stress cycle or features from multiple cycles.

of instances for classification reduces and the model may tend to overfit. The total number

of instances while taking features from one cycle, two cycles, and three cycles are 346,

258, and 183, respectively. After computing features from three cycles, the dataset

becomes too small to test any further combination of featureset. This issue does not arise

when using whole event features as the unit of analysis is still each cycle within the stress

event. If dmi is the time difference between beginning of the stress event and end of the ith

cycle, Cm
i . We can estimate the expected value of dmn as

dmn = n ∗ CD + (n− 1) ∗ SCD; where CD and SCD are the expected value of

cycle duration and successive cycle duration, respectively.

For example if CD ∼ N(µCD, σCD) and SCD ∼ N(µSCD, σSCD) then,

dmn = n ∗ µCD + (n− 1) ∗ µSD

The F1-score using only stress cycle features for one cycle, two cycle, three cycle

and whole event based featureset is 0.74, 0.78, 0.84, and 0.89, respectively. Fusing the

wrist motion features with stress cycle features increases the F1-score to 0.83, 0.86, 0.88,

and 0.89 for one cycle, two cycle, three cycle, and whole event based feature set,

respectively. Figure 6.6 shows these results.

Stress intervention designers can consider the trade-offs between the timing of

intervention and accuracy of detecting stressful conversations on one or multiple stress
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cycles. For example, if a quicker intervention is called for, then they can consider

intervening after one cycle which will allow them to intervene within 3.9 minutes on

average duration from the stress rising point with an F1-score of 0.83 when the stress cycle

features are used with wrist motion features (Figure 6.6). To achieve higher accuracy, one

can use the model that fuses two cycles together. In that case, F1 score improves to 0.86,

but the timing of the delivery will be further delayed (on average, 9.3 minutes from the

first stress rising point shown in Figure 6.6a). We note that the best accuracy is achieve

when using whole event features, but this will further delay the detection of stressor, as the

average duration of a stress event is 19 minutes. These analysis can help find the sweet

spot between timing and the stressor detection accuracy for intervention designers.

6.10 Conclusions

Just-in-time (JIT) interventions delivered on personal mobile devices to manage

stress have the potential to improve individuals’ mental well-being. Novel stress

interventions are being developed and recent work on detecting stress and availability

using passively collected data can reveal the most opportune moments for delivering such

interventions. However, given that stress can be due to very different sources and the

intervention suitable for one may be ineffective or even counterproductive for another

necessitates knowing the likely source of stress prior to delivering a JIT intervention. This

work opens the door for automatically identifying the stressful social interactions by

showing that it is feasible to detect from the stress time series data.
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Chapter 7

Conclusion

This dissertation introduced the concept of stress cycles within stress event and

presented an algorithm to identify them in a stress likelihood timeseries and characterize

points of interest in them. It further showed that features derived from stress cycles have

sufficient patterns to distinguish stressful conversations from other stressors (with

improved accuracy when combined by features derived from hand gestures). This work

opens the doors to future research that can collect larger datasets consisting of a large

number of other daily stressors and develop models to identify each of them. Such models

can be used to determine various sources of stress for each stress event detected by

wearable sensors. This information can not only inform the timing of intervention

delivery, but also the right content, the adaptation mechanisms for personalizing it to the

individual and the user’s context, and selecting the right modality for delivery (e.g.,

smartphone or smartwatch). But, there are several limitations in this work that can inspire

future research.

First, this work used stress event detection from chest-worn ECG and respiration

sensors. These sensors provide a firmer attachment than pulse plethysmography or

electrodermal sensing from conveniently worn wrist devices. Wearing electrodes or a

chest belt in field for long term to monitor stress is burdensome and sometimes interferes

with daily activities. Therefore, it is a challenge to deploy such systems in the field.

However, smart-watches are becoming increasingly popular and recent research work

shows feasibility of detecting stress from wrist worn sensors. Future work can assess how

well the presented model can be adapted to work with potentially noisier stress time series

obtained from wrist-worn sensor data.

Second, this study used data from 38 participants, but the data was collected only

for one full day (due to privacy concerns with audio capture in the natural environment).
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Future work can investigate the generalizability of the presented model on data collected

in longer-term studies and those involving a more general population.

Third, the limited size of dataset (in terms of number and diversity of detected

stress events) in this work was insufficient to develop and test a three class classifier to

distinguish interaction, work and commute. In future, a larger dataset can enable

identification of other stressors as well as support construction of data-driven features in a

deep learning model.

Fourth, in addition to stressful conversations, work, and commute, there are

numerous other sources of stress such as financial difficulties, health issues, news about

friends, family, colleagues, region, country, and the world, among others. Future work can

investigate the possibilities of detecting these and other stressors, by potentially exploring

novel methods to combine the data collected from other sources with the stress dynamics

data.

Fifth, the labeling of stress events was done based on participants interview. As we

asked the participants to recall what was causing the stress after showing the detected

stress events using the visualization, it may introduce some bias. To better assess recall

and detect false positives in stress event detection, a future study can present the

surrounding contexts and time segments (both when stress is detected and not detected)

without disclosing whether stress event was detected at those times. Another way to

reduce bias is to first ask the participants recall major periods of stress and then show

them the visualizations to verify the stress events.

Sixth, in this study, participants were asked to recall the main source of stress for

the detected stress events. Several situations in real-life involve multitasking where a

stress event may be due to confluence of multiple concurrent factors. Future work can

investigate methods for detection of multiple concurrent sources and their prevalence in

inducing the current stress event.
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