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Abstract

Stress is the root cause of many diseases. Being able to monitor when and why a person

is stressed could inform personal stress management as well as interventions when
necessary. In this thesis, I present StressAware, an application on the Amulet wearable
platform to measure the stress levels of individuals continuously and in real time. The
app implements a stress detection model, continuously streams heart rate data from a
commercial heart-rate monitor such as a Zephyr and Polar H7, classifies the stress level
of an individual, logs the stress level and then displays it as a graph on the screen. I

developed a stress detection model using a Linear Support Vector Machine. I trained my
classifiers using data from 3 sources: PhysioNet, a public database with various
physiological data, a field study, where subjects went about their normal daily activities
and a lab study in a controlled environment, where subjects were exposed to various
stressors. I used 73 data segments of stress data obtained from PhysioNet, 120 data
segments from the field study, and 14 data segments from the lab study. I extracted 14

heart rate and heart rate variability features. With 10-fold cross validation for Radial
Basis Function (RBF) SVM, I obtained an accuracy of 94.5% for the PhysioNet dataset
and 100% for the field study dataset. And for the lab study, I obtained an accuracy of
64.20% with leave-one-out cross-validation. Testing the StressAware app revealed a
projected battery life of up to 12 days before needing to recharge. Also, the usability
feedback from subjects showed that the Amulet and Zephyr have a potential to be used
by people for monitoring their stress levels. The results are promising, indicating that
the app may be used for stress detection, and eventually for the development of

stress-related intervention that could improve the health of individuals.



1 Introduction

The American Medical Association has noted that stress is the underlying cause of more
than 60 percent of all human illness and disease (The Huffington Post, 2016). Stress can
trigger onset or recurrence of addictive behaviors like unhealthy eating, smoking, or
drug use. There is a need to measure stress, unobtrusively and continuously and in the

field, because stress is so often tied to these challenging behaviors.

Knowing when, where, and why a person is under stress can help health professionals
develop mechanisms to intervene “in the moment,” in a way appropriate to the person
and the condition, to help that person deal with the stress and avoid the unhealthy
behavior or seek out healthy stress-reducing activities. Real-time stress measurement
will also enable research at the Center for Technology and Behavioral Health, and other
Dartmouth centers, where innovative new interventions are being developed to help
people improve their health-related behaviors - primarily, people challenged with
addiction or mental illness. Additionally, having more information about stress can help

individuals manage their own stress levels.

In this work, I built an application for the Amulet, a low-power wrist-worn device that
continuously monitors the stress level of individuals in real time using data from a
commercial heart-rate chest strap such as the Zephyr. I developed a machine-learning
model to detect stress using a Linear Support Vector Machine (SVM). I used data from
PhysioNet, a public database with various physiological data, and two sets of studies
approved by Dartmouth’s Institutional Review Board - an in-lab study and a field study.
For the lab study, I collected heart-rate data from subjects as they performed various
stress-inducing activities. For the field study, volunteers wore the Amulet (running my
StressAware app) and a Zephyr heart monitor for 8 hours. The app collected heart-rate
data from subjects as well as their corresponding perceived stress levels as they went
about their regular activities during waking hours. I then built an app for the Amulet

platform that implements the developed stress-detection model, continuously streams
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heart-rate data from the Zephyr, classifies the stress level of an individual, logs the

stress level, and then displays it as a graph on the screen.

In the remainder of this thesis, I describe the Amulet platform on which StressAware
runs. I then provide a detailed description of the science of stress and the other work
that has been done in stress research. I then give an overview of the StressAware app.
Next, I describe the process of developing the StressAware machine-learning model. I
then give a detailed description of the different components of the StressAware app.
Next, I describe the energy efficiency results and usability feedback from the user study.
I then describe various limitations of this work and propose ways for improvement. I
finally tie together the results from the various parts of this thesis into my stated goal to
develop an app the Amulet platform that continuously monitors the stress levels of

individuals to aid personal stress management and intervention when necessary.

2 Background

In this section, I describe the necessary background to understand the work described in
this thesis. First, I describe the Amulet platform on which the StressAware app runs
and why it is suitable for running the app. I then describe the science of stress and its

relation to stress measurement.

2.1 Amulet Wearable Device Platform

The Amulet platform is a hardware and software platform for developing energy- and
resource-efficient applications on multi-application wearable devices. It includes an
ultralow-power hardware architecture and a companion software framework, including
a highly efficient event-driven programming model, low-power operating system, and
developer tools for analyzing and profiling ultra-low-power applications at compile

time.



The Amulet hardware is a two-processor  system. Specifically, it has two
micro-controllers: the MSP430 running applications, and the nRF51822 (aka Mo)
managing communication over Bluetooth. The MSP430 microcontroller has 2 KB of
SRAM and 128 KB of integrated FRAM. The nRF51822 is used as a modem for

communicating with peripheral BLE devices such as a heart-rate monitor.

The main board has two buttons, three capacitive touch sensors, a battery, a haptic
buzzer, two LEDs embedded in the case, a secondary storage board that holds a
microSD card reader, and a display screen. It has several sensors: microphone, light

sensor, temperature sensors, accelerometer, and gyroscope.

The Amulet platform enables developers to write energy- and memory-efficient sensing
applications that achieve long battery life on a secure, open-source, multi-application
wearable device. The Amulet platform is hence useful for creating and running mHealth
apps that need to continuously run for long hours to monitor the physiological and

behavioral health of users.

2.2 Science of Stress

Stress is a physiological response to mental, emotional, or physical challenges we
encounter (Sun et al., 2010). When a person is stressed, the hypothalamus signals to two
systems in the body, namely, the Hypothalamic Pituitary-Adrenal (HPA) system and
Sympathomedullary Pathway (SAM) system (McLeod, 2010).

The HPA is responsible for long-term stress response. The HPA deals with the adrenal
cortex, which releases cortisol, a stress hormone whose function is to increase the
amount of glucose available to a person in preparation for the stressful situation.
Cortisol is present in saliva, urine and blood and measuring cortisol levels could be used

as an indicator of a person’s stress level (Ertin et al., 2011).



The SAM is responsible for short-term stress response. It deals with the autonomic
nervous system (ANS), which is responsible for regulating the body’s involuntary
functions such as heart rate, respiratory rate, digestion etc. The autonomic nervous
system has two parts: sympathetic nervous system (SNS) and parasympathetic nervous
system (SNS). The SNS controls the “fight or flight” response and prepares the body for
emergency or stressful situations. It increases heart rate and increases blood flow to the
brain, heart and muscles. The PNS is active during rest and reduces heart rate. When a
person is under stress, the SNS increases heart rate, sweating, respiratory rate etc. This

response is reversed by the PNS when the stressful situation ends (Sun et al., 2010).

Having described that there is a cardiac response to stress, we can therefore infer
whether a person is stressed by looking at their cardiac activity, which can be captured

electrically with an electrocardiogram (ECG) (Figure 1).
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Figure 1: An Electrocardiogram

The heart rate (HR) is the number of R peaks in a minute. The RR interval (RRI) is the
time interval between two R peaks. Heart rate variability (HRV), which is the variability
in RR intervals, provides information about the relative activation between the SNS and

PNS (Ertin et al., 2011). HRV may be used to distinguish the stress level of individuals.



3 Related Work

Several research projects aimed to collect continuous measures of stress both in and
outside the laboratory setting. This research has shown that several physiological signals

can be used, alone or in combination, to indicate a person’s stress level.

A study conducted by Healey and Picard involved collecting and analyzing physiological
data during real-world driving tasks to determine a driver's relative stress level (Healey
et al.,, 2005). They recorded ECG, electromyogram (EMG), skin conductance, and
respiration continuously while drivers followed a set route through open roads in the
greater Boston area. They were able to distinguish between three stress levels — low
stress, medium stress and high stress — using 5-minute intervals of data during rest,
highway and city driving. They used linear discriminant analysis with 112 data segments
and 22 features and had an accuracy of over 97% with leave-one-out cross-validation
across different drivers and driving days. Healey and Picard’s study shows that
physiological signals can be used to determine stress levels. Specifically, they found that
skin conductance and heart-rate metrics individually were closely correlated with

drivers’ stress and hence can be used to predict mental stress levels with high accuracy.

Another study, conducted by Ertin et al., used a custom suite of wireless sensors called
Autosense to infer the stress of subjects (2011). AutoSense combines six sensors into a
wearable chest band: two-lead Electrocardiogram for measurement of electrical activity
of the heart; respiratory inductive plethysmograph (RIP) for measurement of relative
lung volume and breathing rate at the rib cage; galvanic skin response (GSR) between
the two ECG electrodes; skin temperature thermistor under the arm; ambient
temperature sensor; and three-axis accelerometer to assess motion artifacts in the data
and provide inferences about the subjects’ physical activities (Ertin et al., 2011). They

obtained data from participants via a lab study and a field study.



For the lab study, participants wore the Autosense sensor suite and underwent a
rigorous stress protocol that consisted of public speaking, mental arithmetic, and a cold
pressor test. The field study entailed participants wearing AutoSense during waking
hours in their natural environment for two days. The data obtained from this sensor
suite was then sent to an Android mobile phone, where 30 features were extracted to
infer whether the person was stressed, speaking, had changed their posture, and the
intensity of activity. The participants provided self reports of stress in both studies. They
ran their study with 20+ subjects and obtained an accuracy of 90% on in-lab data and a

median correlation of 0.72 with self-reported rating of stress.

4 Solution: StressAware

Given the need to continuously measure and monitor the stress levels of individuals, I
developed the StressAware app for the Amulet wearable device. StressAware monitors a
person’s stress level on a scale of low, medium, and high, using data from a heart-rate
monitor such as the Zephyr HxM, logs that information, and then displays the stress
level over the past hours as a bar graph on the Amulet screen. The app uses an
implementation of a machine-learning model that is trained offline. The information
about stress levels can in the future be used by the user for management of their stress

levels as well as prompt intervention when necessary.

5 Stress Detection Model - Machine Learning Offline

SVM is a classifier that performs classification by constructing a high-dimensional
hyper-plane (Burges, 1998). SVM is recently popular for mining physiological data
because of its ability to handle high dimensional data using minimal training features
(Banaee, 2013). I focus on using SVM because it uses a subset of the training set -

support vectors - for its prediction function as compared to other models like k-nearest
neighbor (KNN), which will need to store all the data points in memory for prediction. It

is hence memory efficient and ideal for low-memory platform like the Amulet. I trained

two SVM models, one a Linear SVM and the other a Radial Basis Function (RBF) SVM,



using the scikit-learn library (Pedregosa et al, 2011) to distinguish between low,

medium, and high stress levels.

5.1 Data Extraction I: Physionet

I obtained the data used for training the machine-learning model from the MIT-BIH
Multi-parameter Database in PhysioNet, a public database with various physiological
data (PhysioNet, 2010). I used a PhysioNet dataset contributed by its creator, Jennifer
Healey. The dataset was collected during a stress study that involved collecting and
analyzing physiological data during real-world driving tasks to determine a driver's
relative stress. It contains a collection of multiparameter recordings from healthy
volunteers, taken while drivers followed a set route through open roads in the greater

Boston area.

The data was collected from 17 participating drivers and consists of eight types of raw
data — timestamp, ECG, EMG, foot galvanic skin response (GSR), hand GSR,

instantaneous heart rate, marker, and respiration (Figure 2).
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Figure 2: An example of driver bio-signal dataset obtained from PhysioNet (2010)

website.

Healey et al. segmented the dataset into three stress levels based on the corresponding
part of the drive the data was collected. Data from initial rest and final rest were
annotated as low stress. Data from the drive through highways were annotated as

moderate stress. Data from the drive through cities were annotated as high stress.

The dataset on PhysioNet did not clearly indicate which data points of the dataset
corresponded to each of the three stress levels. As a result, I relied on the durations for

each of the 7 segments of the drive dataset given in (Akbas, 2011) to assign the data
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points to various stress levels. Akbas (2011) found 10 of the 17 drives to have the clear
segmentation, so I used the one of the 10 drivers’ datasets specified by Akbas (Table 1).

Specifically, I randomly chose and used Drive16 dataset.

Table 1: Time intervals of the 7 driving segments

Rec Driving Period (min) Total
Name Rec
Initial | City 1 HW1 City2 | HW2 City3 | Final )
Time
Rest Rest
(min)

Driveos | 15.13 1600 7.74 6.06 7.56 14.96 15.78 83.23

Driveo6 | 15.05 14.49 7.32 6.53 7.64 12.29 15.05 78.37

Driveo7 | 15.04 16.23 10.96 9.83 7.64 10.15 15.03 84.88

Driveo8 | 15.00 12.31 7.23 9.51 7.64 13.43 15.07 80.19

Driveo9 | 15.66 19.21 8.47 5.20 7.06 13.21 NA 68.82

Driveio | 15.04 15.30 8.66 5.27 7.04 12.06 14.79 78.16

Drive11 15.02 15.81 7.43 7.15 6.96 11.72 14.99 79.08

Drivei2 | 15.01 13.41 7.56 6.50 8.06 11.68 15.01 77.23

Drive1s 15.00 12.54 7.24 5.99 6.82 12.12 15.00 74.71

Drive16 | 15.01 16.12 7.14 5.12 6.81 13.91 NA 64.11

I used the PhysioNet software to extract the HR and RRI from the ECG data. I extracted
the 7 segments using the durations specified in Table 1. I then grouped the data into the

3 stress levels. Next, I split the data into 60-second time windows, which Hovsepian has
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shown is good for stress data analysis (Hovsepian, 2015). I had a train dataset

containing 73 data points.

5.2 Data Extraction II: Field Study

I ran a field study from which I collected data from a total of 10 subjects. The
participants wore the Amulet and Zephyr for one day, lasting between 8 and 12 hours.
The Zephyr transmitted HR and RRI data to the Amulet throughout the day. The

Amulet also recorded acceleration data.

The app on the Amulet logged 5 minutes or 1 minute of data every 10 mins. The app
then prompted the subjects to answer 2 questions via the EMA component of the
Amulet app. The app asked subjects to rate their stress levels and their activity levels
between low, medium and high at the moment. There were 4 EMAs per hour and at
least 32 EMAs per day. After I collected the data, I used data from 4 subjects to obtain a

train dataset containing 120 data points.

5.3 Data Extraction II: Lab Study

I collected data from a total of 2 subjects in the lab study. The participants were
subjected to mild stressors for about 80 mins that previous experiments have shown to
induce stress (Linden, 1991; Poh et al., 2010; Sun et al., 2010; Plarre et al., 2011). Each
subject in the protocol was exposed to 6 rest periods and 5 stressors: one public
speaking stressor, two mental arithmetic stressors, one startling with a clap sound, and

one cold pressor stressor. Table 2 shows the duration for each of the stressors and rest

period.

Table 2: Duration of Stressors and Rest Periods
Session Duration (mins)
Rest 1 10
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Public Speech 4
Rest I1 5
Mental Arithmetic I (while seated) 4
Rest I11I 5
Mental Arithmetic II (while standing) 4
Rest IV 5
Startling with Clap Sound 4
RestV 5
Cold Pressor 4
Rest VI 10

For the public speaking exercise, the participants were asked to spend the next 4
minutes preparing for an oral presentation of William Faulkner’s 1950 Nobel Prize
acceptance speech that was provided. They were then asked to read the speech out loud

to completion.

For the mental arithmetic exercise, participants were asked to solve a series of mental
arithmetic problems. When the problem is correctly solved or three incorrect answers

given, the correct answer is given and the next question asked.
For the startling with a clap sound, the participants were asked to sit quietly with their

eyes closed. They were then startled with a clap sound at some random time 4 times

within a 4 min period.
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For the cold pressor, the participants were asked to submerge their dominant hand in a

bucket of chilled ice water for as long as they could tolerate.

During the lab study, each subject wore a Zephyr chest strap, a commercial device that

measures HR and RRI. The Zephyr transmitted HR and RRI data to the Amulet

throughout the duration of the study. The subjects were periodically asked to rate their

stress level between low, medium and high for that session, which I later used for the

stress annotation. I had a train dataset containing 14 data points from the lab study.

5.4 Feature Extraction

I extracted various HR and HRV features that previous studies have shown to be

relevant for stress detection. The features are as follows (Table 3):

e HR features: mean_hr, std_hr, median_hr, percentile_20_hr, percentile_80_hr

(Munla et al, 2015; Hovsepian et al. 2015)

e HRV features (Time based): mean_rri, std_rri, rMSSD, NN5o0, pNN5o0,

median_rri, max_rri, min_rri, percentile_80_rri (Munla et al, 2015; Sun et al,

2010; Plarre et al, 2013)

Table 3: Features Extracted from 60-second time windows of training dataset

Features Description

mean_hr Mean of heart rate

std_hr Standard deviation of heart rate
median_hr Median of heart rate

percentile_80_hr

8oth percentile of heart rate

percentile_20_hr

20th percentile of heart rate

14




mean_ rri Mean of RRI

std_ rri Standard deviation of RRI

rMSSD Root mean square of the difference between successive
RRI

NN50 Number of successive differences in RRI that are greater
than 50 ms milliseconds

pNN50 Percentage of total RRI that successively differ by more

than 50ms milliseconds

median_ rri Median of RRI

max_ rri Maximum of RRI
min_ rri Minimum of RRI
percentile_80_rri 8oth percentile of RRI

5.5 Training/Classification

I trained two SVM models: Linear and RBF SVM. The models classified the data into 3

stress levels - low, medium and high. I ran various experiments to test the two

classifiers.

5.6 Testing and Results I: Physionet Dataset

I experimented with different sets of the HR and HRYV features. I also experimented

with normalizing the data set. I ran these experiments using 10-fold cross validation and

evaluated the resulting accuracy.
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To evaluate the effect of normalization, I ran 10-fold cross validation with all the 14
features normalized, and then without the features normalized. I normalized the
features by making them zero mean and unit variance since various models like SVM
assume the data is normalized. These models produce less accurate results without
normalization of the features (Pedregosa et al, 2011). When the feature vector is
normalized, the accuracy of Linear SVM improves from 53.42% to 63.01%. However,
RBF SVM’s accuracy rather decreases from 90.41% to 72.6% (Table 4). Overall, RBF did
much better than Linear SVM. This result shows that normalizing the feature vector is

only necessary for Linear SVM and should be avoided for RBF SVM.

Table 4: Accuracy for Normalized and Non Normalized Features

Normalized Not Normalized
Linear SVM RBF SVM Linear SVM RBF SVM
63.01% 72.6% 53.42% 90.41%

To evaluate the importance of subsets of the feature set, I ran 10-fold cross validation
with 4 sets of features: all features, only HR features, only RRI features, and features
that represent an aggregate of several HR and RRI values. The RRI feature set and HR
feature set had the least accuracy of 71.23% and 76.71% respectively for RBF SVM (Table
5). The “all features” set did better with 90.41% for RBF. The features that represent an
aggregate did best with 94.52% for RBF. Again, RBF did much better than Linear SVM
overall. The result shows that it is best to use features that aggregate several HR and
RRI values rather than features that are directly chosen from the HR and RRI values

such as maximum, minimum, median and percentiles.

Table 5: Prediction Accuracy of Different Feature Sets

16



percentile_20_hr,
percentile_80_ hr, std_hr,
min_rri, max_rri,
median_ rri,
percentile_80_ rri,

mean_ rri, std_rri, rMSSD,

NN50, pNN50

Features Feature Set Linear SVM RBF SVM
Description (Normalized)

HR features mean_hr,median_hr, 64.38% 76.71%
percentile_20_hr,
percentile_80_hr, std_hr

RRI features min_rri, 61.64% 71.23%
max_rri,median_rri,percen
tile_80_rri, mean_ rri,
std_rri,rMSSD,NN50,
pNN50

Features that mean_hr, std_hr, 63.01% 94.52%

aggregate several | mean_rri, std_rri,rMSSD,

HR and RRI NN50, pNN50

values

All Features mean_hr, median_hr, 63.01% 90.41%

The best performing model from these two experiments was RBF, which had an

accuracy of 94.52% with the following features: mean_hr, std_hr, mean_ rri, std_rri,

rMSSD, NN50, pNN50.
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5.7 Testing and Results II: Field Study
I ran 10-fold cross-validation on the data from the field study using Linear SVM and
RBF SVM. I also tested the accuracy of the two models with and without acceleration

data.

To test the effect of including accelerometer data, I computed an additional feature:
mean of acceleration. I included this feature in the following feature set - mean_hr,
std_hr, mean_rri, std_rri,rMSSD, NN50, and pNN50 - which had produced the highest
accuracy in previous experiments. I used data from 4 subjects (120 data points) and
then ran 10-fold cross-validation. RBF had an accuracy of 89.17% without acceleration,
which increased to 100% when acceleration is included (Table 6). Since acceleration
captures a person’s activity level, it is useful in distinguishing between an increase in
heart rate stemming from increased activity and that stemming from stress. Including

acceleration helps in accurately classifying the stress level of a person.

Table 6: Accuracy of Field Study with Mean Acceleration Feature Included

Acceleration Present Linear SVM RBF SVM
No 54.17% 89.17%
Yes 52.5% 100%

5.8 Testing and Results III: Lab Study

I ran leave-one-out cross-validation on the data from the lab study using Linear SVM
and RBF SVM. I was unable to run 10-fold cross validation because I had 14 data points.
Linear SVM had an accuracy of 50% and RBF had an accuracy of 64.29%. RBF once
again performed better than Linear SVM. Because of the limited amount of data, I could

not infer much from the results.
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6 StressAware - App on Amulet

The StressAware app consist of five components: Ecological Momentary Assessment

(EMA), Data Collector, Stress Detector, Stress Level Graph, and Data Logger.

6.1 EMA

The Ecological Momentary Assessment (EMA) component of the app is responsible for
intermittently asking the user about her/his stress level (Figure 3). The EMA results are
used as ground truth of a person’s stress level. This component of the app is only used

for data collection during the user study.

Low
HMedium
High

Figure 3: EMA with 2 questions about stress and activity levels

6.2 Data Collector
The data collector is responsible for getting 5 minutes or 1 minute worth of HR and RRI
data from a heart rate monitor (Figure 4). It also collects acceleration data from the

Amulet. The data is used by the stress detection model and also logged by the data
logger.

19



Lress Aware 100"

®72

Ran

0

Figure 4: Screenshot of HR and RRI data being collected by the Amulet

6.3 Stress Detector

The stress detector determines the stress level of the user. I compute the feature vector
from the 60-second HR and RRI data obtained by the data collector. Then, I scale the
feature vector using the scaling factors from the trained model. The stress classifier then

uses the feature vector for the prediction.

The stress classifier is an implementation of the prediction equation of a Linear SVM.
The equation is:

y=wx+b

where y is vector that holds the result of the evaluation for the 3 stress classes, x is the
computed feature vector, w is the coefficient matrix and b is the intercept vector. The
values for w and b are obtained from the linear model that was trained offline. Since
this is a multilabel classification, I implemented the “one-vs-the-rest” approach for
multi-label classification since the scikit learn Linear SVM function used this approach.
In this approach, three classifiers are trained for each of the classes and the result of
solving the equation is a vector containing a value for each of the three classes. The class

with the maximum value is the predicted class.

20



6.4 Stress Level Graph
The stress level graph displays the stress level of the user over the past 2 hours as a bar
graph (Figure 5). This information could provide better insight to users about their

stress pattern on a particular day.

In Sleep Mode

Figure 5: Graph of the last 7 stress levels of the user

6.5 Data Logger
The data logger logs the HR, RRI and acceleration data to a file on the SD card. It also
logs the stress level as indicated by the user. I use the logged data to develop the stress

detection model. This mode is also only used during the user study.

=7 Usability Feedback

After the field study, I created a survey to evaluate the usability of the Amulet in
monitoring the stress level of individuals in the wild. All 10 participants in the study

filled the survey. There were 3 males and 7 females.
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Sixty percent (60%) of subjects mentioned that they were motivated to participate in the
study out of interest in stress monitoring. This result shows a general interest of people

in stress monitoring.

Half (50%) of the participants mentioned that the Amulet was comfortable to wear.
Some people mentioned that the Amulet is a bit bulky. Some were irritated by the

frequent EMAs making the wearing experience uncomfortable.

Eighty percent (80%) of participants mentioned it was easy to answer the questions on
the Amulet. They mentioned that the questions were simple and clear, and the Amulet
was easy to navigate in answering the questions. Some thought the 3 options made it
easier to answer, whereas others thought there should be more than 3 options to rate
stress level. This result demonstrates the potential of using wrist-worn devices such as

the Amulet for EMAs in comparison to mobile phone-based EMAs.

Twenty percent (20%) mentioned that the stress graph was useful. Some people thought
it was not useful because they were not stressed on that day. Others did not pay
attention to the graph. One suggestion was to make graph show for much longer time

periods.

Sixty percent (60%) of participants mentioned that the Zephyr was comfortable to wear.
All but one of the females found it comfortable whereas all the males found it
uncomfortable. This result was not surprising since males are not used to wearing straps

around their torso.

Overall, participants thought the study was a good experience. People enjoyed being
able to see their heart rate and stress level, and as they made the connection to the
activity they were involved with at the moment. The only concerns were about the

bulkiness of the Amulet, the frequent EMAs and the frequent disconnection of the
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Amulet from the Zephyr. There were suggestions that the devices should automatically
measure stress rather than ask, showing a real interest of people in stress measurement
and monitoring. In fact, 70% of participants mentioned that they will wear the Amulet
and Zephyr if it automatically measured and monitored their stress level for several
hours and days. The responses from the survey show that the Amulet and Zephyr have a

potential to be used by people for monitoring their stress levels.

8 Energy Efficiency of StressAware

I tested the energy efficiency of the StressAware app. I ran StressAware for 8 hours as it
computed stress levels every 5 minute. I logged the battery voltage level over the 8 hour
period. The graph of the log shows battery percentage as the y-axis and time (seconds)
as the x-axis. The battery level dropped linearly from 100% to 98% over the 8-hour
period indicating a 2% loss in battery life (Figure 6).
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Figure 6: Graph of Battery Percentage over 8 hours running StressAware

However, after 8 hours, the battery level indicated a 92% battery level. This means that
StressAware consumes 8% of battery life per 8 hours: 1% per hour. StressAware is

expected to run for about 8 hours a day during which period a person is awake. This
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result means that the app is projected to run for about 2 weeks (12 days) before needing

to be recharged. StressAware is in effect energy efficient.

9 Limitations and Future Work

There were a number of limitations of my experiments that affected my results. Within
those limitations lie the opportunity for work in the future. There are two main areas for
improvement over this work in the future: improvement of accuracy of the stress

detection model and including analytics for understanding causes of stress.

I used only time-based features and no frequency-based features for training the
classifiers. Some frequency-based features are total energy in low frequency (LF) of RRI,
total energy in high frequency (HF) of RRI, LF/HF, and (LF + MF)/HF. Deriving these
features entail performing Fast Fourier Transforms (FFT), which are computationally
intensive so I decided to only focus on time-based features for this thesis. However,
frequency-based features also capture the nuances in the response to stress by the
sympathetic and parasympathetic nervous system. Hence, computing these features

could produce more accurate models.

Also, the Amulet platform’s API responsible for providing the StressAware app with
RRI values reports only one RRI value per second. However, the Bluetooth protocol
used by the Zephyr mentions that the number of RRIs sent by the Zephyr could be more
than one value. In effect, in cases where multiple values are sent by the Zephyr, my app
get’s only one of those values. The absence of other consecutive RRIs could affect the
accuracy of features like NN50, pNN50 and rMSSD that use differences of consecutive
RRIs in computing their values. In the future, the creators of the Amulet platform can

add the functionality to RRI API to provide all RRI values received via Bluetooth.

The Zephyr is a commercial heart-rate monitor and does not report medical-grade HR

and RRI values. In effect, the values used for computing the features would not be as
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accurate as those obtained from using a medical grade device that produces HR and
RRIs. In the future, using a device that produces more accurate HR and RRIs could
result in a more accurate stress detection model. Also, obtaining data like breathing rate
from a better grade of Zephyr such as the Zephyr Bioharness could be used to improve

the accuracy of the stress detection model.

Additionally, I implemented a Linear SVM model in the StressAware app rather than an
RBF SVM model even though RBF SVM had the highest accuracy. RBF SVM is more
computationally intensive and requires more memory to store all the support vectors,
which could be as large as the number of data points in the training dataset. Linear SVM
on the other hand is not computationally intensive and only requires storing the
coefficient matrix, which has size [no of classes, no of features]. In the future, various
techniques could be used to address the memory and computational intensity of the
RBF decision function such as exploring various approximations of the decision

function and also reading the support vectors from the SD card at run time.

Also, after developing the stress detection model from running 10-fold cross-validation,
I did not test the detection model with new data from subjects in the wild. In the future,

I will run the stress detection model while obtaining ground truth using EMA from
subjects. Using a confusion matrix could provide a better insight into the data points

that are being misclassified. This information can be used to improve the model.

Finally, I did not focus on collecting data that could be used to infer the causes of a
person’s stress. In the future, I could keep track of data such as location, noise level,
sleep duration, etc., which could be used to diagnose the cause of stress. I also did not
store stress data for days. Keeping track of this information and making it readily

accessible to the user could help users understand their stress patterns.
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10 Conclusion

In this work, I presented StressAware, an application on the Amulet wearable platform
to measure the stress levels of individuals continuously and in real time. The app
implements a stress detection model, continuously streams heart rate data from a
commercial heart-rate monitor such as a Zephyr and Polar H7, classifies the stress level

of an individual, logs the stress level, and then displays it as a graph on the screen.

The machine-learning results show an accuracy of 94.5% for the PhysioNet dataset,
100% for the field study dataset, and 64.29% for the lab study with RBF SVM. Testing
the StressAware app revealed a projected battery life of up to 12 days before needing to
recharge. Also, the usability feedback from subjects revealed an interest in stress
monitoring and showed that the Amulet and Zephyr have a potential to be used by

people for monitoring their stress levels.

The machine-learning results, energy efficiency results, and usability results are
promising, and show that StressAware has the potential to be used for stress
measurement and monitoring. The usage of the app could eventually inform the
development of stress-related intervention and personal stress management that could

improve the health of individuals.
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