353 research outputs found

    Efficient relaxation scheme for the SIR and related compartmental models

    Full text link
    In this paper, we introduce a novel numerical approach for approximating the SIR model in epidemiology. Our method enhances the existing linearization procedure by incorporating a suitable relaxation term to tackle the transcendental equation of nonlinear type. Developed within the continuous framework, our relaxation method is explicit and easy to implement, relying on a sequence of linear differential equations. This approach yields accurate approximations in both discrete and analytical forms. Through rigorous analysis, we prove that, with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-preserving and globally strongly convergent towards the true solution. These theoretical findings have not received sufficient attention in various existing SIR solvers. We also extend the applicability of our relaxation method to handle some variations of the traditional SIR model. Finally, we present numerical examples using simulated data to demonstrate the effectiveness of our proposed method.Comment: 17 pages, 21 figures, 2 table

    A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems.

    Get PDF
    Biochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems represent non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass and energy. Both properties must be reflected in results of an integration scheme applied to biochemical models. This paper first presents a mathematical framework for biochemical problems, which includes an exact definition of biochemical conservation: elements and energy, rather than state variable units, are conserved. We then analyze various fixed-step integration schemes, including traditional Euler-based schemes and the recently published modified Patankar schemes, and conclude that none of these deliver unconditional positivity and biochemical conservation in combination with higher-order accuracy. Finally, we present two new fixed-step integration schemes, one first-order and one second-order accurate, which do guarantee positivity and (biochemical) conservatio

    Numerical Solution and Analysis for Acute and Chronic Hepatitis B

    Get PDF
    In this article, we present the transmission dynamic of the acute and chronic hepatitis B epidemic problem to control the spread of hepatitis B in a community. In order to do this, first we present sensitivity analysis of the basic reproduction number R0. We develop a unconditionally convergent nonstandard finite difference scheme by applying Mickens approach φ(h) = h + O(h^2) instead of h to control the spread of this infection, treatment and vaccination to minimize the number of acute infected, chronically infected with hepatitis B individuals and maximize the number of susceptible and recovered individuals. The stability analysis of the scheme has been developed by theorems which shows the both stable locally and globally. Comparison is also made with standard nonstandard finite difference scheme. Finally numerical simulations are also established to investigate the influence of the system parameter on the spread of the disease

    A generalized nonstandard finite difference method for a class of autonomous dynamical systems and its applications

    Full text link
    In this work, a class of continuous-time autonomous dynamical systems describing many important phenomena and processes arising in real-world applications is considered. We apply the nonstandard finite difference (NSFD) methodology proposed by Mickens to design a generalized NSFD method for the dynamical system models under consideration. This method is constructed based on a novel non-local approximation for the right-side functions of the dynamical systems. It is proved by rigorous mathematical analyses that the NSFD method is dynamically consistent with respect to positivity, asymptotic stability and three classes of conservation laws, including direct conservation, generalized conservation and sub-conservation laws. Furthermore, the NSFD method is easy to be implemented and can be applied to solve a broad range of mathematical models arising in real-life. Finally, a set of numerical experiments is performed to illustrate the theoretical findings and to show advantages of the proposed NSFD method.Comment: 29 pages, 5 figure

    On improving the iterative convergence properties of an implicit approximate-factorization finite difference algorithm

    Get PDF
    The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed

    Models of Delay Differential Equations

    Get PDF
    This book gathers a number of selected contributions aimed at providing a balanced picture of the main research lines in the realm of delay differential equations and their applications to mathematical modelling. The contributions have been carefully selected so that they cover interesting theoretical and practical analysis performed in the deterministic and the stochastic settings. The reader will find a complete overview of recent advances in ordinary and partial delay differential equations with applications in other multidisciplinary areas such as Finance, Epidemiology or Engineerin

    Fitted numerical methods for delay differential equations arising in biology

    Get PDF
    Philosophiae Doctor - PhDFitted Numerical Methods for Delay Di erential Equations Arising in Biology E.B.M. Bashier PhD thesis, Department of Mathematics and Applied Mathematics,Faculty of Natural Sciences, University of the Western Cape. This thesis deals with the design and analysis of tted numerical methods for some delay di erential models that arise in biology. Very often such di erential equations are very complex in nature and hence the well-known standard numerical methods seldom produce reliable numerical solutions to these problems. Ine ciencies of these methods are mostly accumulated due to their dependence on crude step sizes and unrealistic stability conditions.This usually happens because standard numerical methods are initially designed to solve a class of general problems without considering the structure of any individual problems. In this thesis, issues like these are resolved for a set of delay di erential equations. Though the developed approaches are very simplistic in nature, they could solve very complex problems as is shown in di erent chapters.The underlying idea behind the construction of most of the numerical methods in this thesis is to incorporate some of the qualitative features of the solution of the problems into the discrete models. Resulting methods are termed as tted numerical methods. These methods have high stability properties, acceptable (better in many cases) orders of convergence, less computational complexities and they provide reliable solutions with less CPU times as compared to most of the other conventional solvers. The results obtained by these methods are comparable to those found in the literature. The other salient feature of the proposed tted methods is that they are unconditionally stable for most of the problems under consideration.We have compared the performances of our tted numerical methods with well-known software packages, for example, the classical fourth-order Runge-Kutta method, standard nite di erence methods, dde23 (a MATLAB routine) and found that our methods perform much better. Finally, wherever appropriate, we have indicated possible extensions of our approaches to cater for other classes of problems. May 2009
    • …
    corecore