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Abstract 
The SIR (Susceptible/Infectious/Recovered) whooping cough model involving non- 

linear ordinary differential equations is studied and extended to incorporate (i) dif- 

fusion (ii) convection and (iii) diffusion-convection in one-space dimension. First- 

and second-order finite-difference methods are developed to obtained the numerical 

solutions of the ordinary differential equations. Though implicit in nature, with the 

resulting improvements in stability, the methods are applied explicitly. The proposed 

methods are economical and reliable in comparison to classical numerical methods. 

When extended to the numerical solutions of the partial differential equations, the 

solutions are found by solving a system of linear algebraic equations at each time 

step, as opposed to solving a non-linear system, which often happens when solving 

non-linear partial differential equations. 
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Chapter 1 

Introduction 

The study of epidemics has a long history with a large variety of models and explana- 

tions for the spread and cause of epidemic outbreaks. The study of disease occurrence 

is called epidemiology. An epidemic is an unusually large, short-term outbreak of a 

disease. A disease is called endemic if it persists in a population. Mathematical mod- 

els of the population dynamics of disease can contribute to a better understanding 

of epidemiological patterns and disease control. Much of the theoretical discussion 

of the dynamics of epidemics of childhood diseases has been modelled mathemati- 

cally using the SIR (Susceptible-Infective-Recovered) model (Anderson & May [3]). 

This model is a simple model of epidemic spread in which disease is transmitted by 

direct contact between hosts who become immune after a single infection, and are 

thus ideally suited to the testing of the mathematical model and numerical methods 

developed for the solution of the model equations. 

Chaotic behaviour can be found in many areas of the chemical, physical and 
biological sciences and in many areas of engineering. Epidemiology is one of the 

areas of the bio-medical sciences in which chaotic behaviour is believed to be possible 
(Schaffer & Kot [26]); it is one of the profusion of examples given in the popular 
book by Gleick [11]. 

The examples given above are of dynamic behaviour, though it must be empha- 

sized that not all dynamic systems in bio-medical system exhibits chaos. In recent 
times the phenomenon of chaos has brought about beneficial collaboration between 

bio-medical researchers and mathematicians. Such collaboration has often resulted 

1 



Chapter 1: Introduction 2 

in the mathematical modelling of a bio-medical system by a non-linear ordinary or 

partial equations or by a system of such equations. Often, the intention in com- 

piling such a model is to reproduce observations before using the model to make 

predictions. 

Careful analysis, therefore, must be carried out to ensure that the mathematical 

model does not predict chaos in the system under investigation, when chaos is not 

a feature of that system. Further care must be taken to ensure that a numerical 

method chosen to solve the model equations does not predict chaos when chaos 

is not a feature of either the bio-medical system or the theoretical solution of the 

associated model equations. Such chaos was described as contrived chaos in the 

article by Twizell et al. [30]. 

In this thesis, the SIR model of whooping cough dynamics is studied. The model 

equation will be a system of ordinary differential equations (ODEs) which is extended 

to three types of system of partial differential equations (PDEs), namely reaction- 
diffusion, reaction-convection and reaction-convection-diffusion types. The aim of 

the thesis is to develop finite-difference schemes for the numerical solution of the 

ordinary and partial differential equations in which chaotic behaviour is not inherent. 

The efficient numerical integration of systems of non-linear differential equations 

over long time intervals necessitates the use of time steps which are the largest 

possible, bearing in mind accuracy and stability. Explicit methods, such as the 

Euler method or Runge-Kutta methods, are extensively used in solving systems of 

ODEs. These methods, however, may lead to chaotic or spurious solutions which 

are not a feature of the differential equation nor of the physical processes being 

modelled, see Ablowitz & Herbst [1] and Corless et al. [6]. Explicit methods are also 

well known to be inexpensive to implement when used to compute the solutions of 

non-linear PDEs but they have poor numerical-stability properties (see, for instance, 

Lambert [15] and Twizell [28]). To avoid contrived chaos, while retaining efficiency 

and stability, the user may need to discard explicit numerical methods and turn 

instead to implicit methods. The numerical schemes to be developed are implicit 

in nature but are applied explicitly; therefore they are convenient, appropriate and 
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easy to implement for the solution of various problems of non-linear PDEs. 

Solving systems of non-linear ODEs and PDEs requires the solution of a non- 

linear algebraic system using, say, the well-known Newton-Raphson method for a 

system. In order to obviate the need to use a relatively expensive, non-linear, alge- 

braic solver such as the Newton-Raphson method for a system, while continuing to 

benefit from the superior stability properties of implicit methods, Twizell et al. [30] 

proposed numerical methods for the solution of differential equations of the forms 

dw/dt =f (w) 

and 

au/at = a2u/axe + g(u) 
in which w= w(t) and u= u(x, t) are real-valued functions, xER is a space 

variable and tE R+ represents time. Twizell et al. [30] approximated the non-linear 

functions f (w) and g(u) by splitting them and evaluating terms in the splitting at 

different time levels. This idea will be employed in subsequent chapters of this thesis 

in ways with permit the solutions of ODEs to be determined explicitly from what 

appear to be implicit numerical methods and the solution of non-linear PDEs to be 

obtain by solving a linear algebraic system at each time step. 

The numerical methods developed in this thesis can be applied by using several 

processors working in parallel. This is an important feature in terms of efficiency 

and speed in computing. Programs are designed and written in the FORTRAN 77 

programming language. The software package Matlab v5.2 is used to plot all figures 

in this thesis. 

In Chapter 2 various preliminary definitions and theorems needed in the devel- 

opment and analyses of the numerical methods in later chapters are given. 
Chapter 3 deals with the SIR whooping cough model. This model consists of 

a system of non-linear ordinary differential equations which is studied qualitatively 

and numerically by using first- and second-order finite-difference schemes. Four 

numerical methods are developed, analysed and tested to solve the SIR whooping 
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cough model. The first method is the well-known first-order explicit Euler method. 

The others are first-order numerical methods and a second-order numerical method. 

The introduction of seasonal variation into the SIR whooping cough model leading 

to periodic and chaotic dynamics is presented by numerical simulations. 

In Chapters 4,5,6, the SIR whooping cough model is extended to the three 

types of one-space dimension partial differential equation models, which are reaction- 

diffusion equations, reaction-convection equations and reaction-diffusion-convection 

equations, respectively. 

Chapter 4 has added a space dimension into the SIR whooping cough model 

and considered the corresponding reaction-diffusion equations. A family of finite- 

difference schemes are analysed and used to solve the reaction-diffusion equations. 

The numerical results will be investigated for different values of the diffusion rate 

using two experiments. 

Chapter 5 introduces a one-dimensional whooping cough model of reaction- 

convection type. Two numerical methods are analysed and tested to approximate 

the equations of the model. The von Neumann method is used to examine stabil- 

ity of the proposed methods and numerical solutions are given for the numbers of 

susceptible and infectious individuals. 

Chapter 6 will study the whooping cough dynamics in the case where reaction, 

diffusion and convection terms are present. A family of methods are analysed for 

the solution of the reaction-convection-diffusion equations. The maximum principle 

analysis is used to prove convergence of the proposed method. The numerical results 

for different values of diffusion and convection rates are obtained and discussed. 

Part of the contents of Chapter 3 have been contained in a technical report by 

Piyawong and Twizell [21]. 



Chapter 2 

Mathematical Preliminaries 

2.1 The Mean Value Theorem and Taylor's The- .- 
orem 

The following theorems are of fundamental importance in deriving methods for error 

estimation that will be needed in later chapters. 

Theorem 2.1 (Mean Value Theorem) If f (x) is a continuous function on [a, b] 

and differentiable on (a, b), then a number c in (a, b) exits with 

f(b) - f(a) = f'(c)(b - a). (2.1.1) 

Theorem 2.2 (Mean Value Theorem in two variables) If f (x, y) is differen- 

tiable, then there exists a point (xo, yo) on the line connecting the points (x1, yi) 

and (x2, y2) such that 

(xo5 YO) (Y2 - yi). (2.1.2 f (x2) y2) -f (xi7 yi) =ý (x0, YO) (X2 - xi) + 
of 

The proofs of these theorems can be found in any standard text (see, for example, 
Sandefur [25]). One of the most important tools of numerical analysis is Taylor's 

theorem and the associated Taylor series and may be founded in Burden & Faires 

[5]. 

Theorem 2.3 (Taylor, one-dimensional) Assume that f has continuous deriva- 

tives of order n+1 in an interval (a, b) containing xo. Then, for every xE [a, b] there 

5 
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exists a number ý between xo and x with 

6 

2.1.3) f (x) = Pn, (x) + R� (x), 

where 

ýn(x) = Axo) + f'(xo) (X 
- xp) +2 f"(xo)(x 

- xp)2 + 
... 

+ 
ý(nný! 

(x 
- x0)' 

_ 
f(k)(x0ý 

(x 
- x0)', 

! 
(2.1.4) r- -k 

k=O 

and 
(n +l) 

Rn(xý _ 
ýn 

+ 1jß 
(x - x0)n+1. (2.1.5 

Here P,, (x) is called the nth Taylor polynomial for f about xo and R,, (x) is called 

the remainder term (or truncation error) associated with P, (x). The size of 

the remainder depends on how close xo is to x, the order of the Taylor polynomial, 

and on the size of f (n+l) on (a, b). The infinite series obtained by taking the limit of 

Pn(x) as n -> oo is called the Taylor series for f about x0. 

Theorem 2.4 (Taylor, two-dimensional) Suppose f (x, y) and all its partial 

derivatives of order less than or equal to n+1 are continuous on D= {(x, y) 

a<x<b, c<y< d}, and let (xo, yo) E D. For every (x, y) E D, there ex- 

ists ý between x and xo and 77 between y and yo with 

f (x, y) = P� (x, y) 

where 

P (x, y) =f (xo, yo) + 
[(x 

- xo) of (xo, yo) + (y -' Yo) of (xo, yo) 

-{ 
2ý 

(x - xo)2 ä0 xf 
(xo, yo) + 2(x - xo) (y - yo) axäy (x0, yo) 

+(y - yo)2 
02f 

2 
(xo, Yo) + ... y 

n 

-f-ný 
k (x - xo)n-, (y - yo) k 

axa 
n Elyk 

(xo, yo) (2.1.7) 
k=O 

) 
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and 

ýx_ i__ Rn(x, y) = (n +1! 
n 

]£ 
1 (x - xo)n+i-k(y - Yo )k 

(yk 
(ý ýIl 

k-o 

(2.1.8) 

The function P, (x, y) is called the nth Taylor polynomial in two variables for 

f about (xo, yo), and R, (x, y) is the remainder term associated with P,, (x, y). 

2.2 Finite-Difference Methods 

The mathematical modelling of many problem in physics, engineering, chemistry, 

biology etc. are formulated in terms of differential equations. Much of the analysis 

of the solution behaviour of a given differential equation is done by constructing 

numerical solutions. The finite-difference method is a numerical method for solving 

differential equations. The idea of the method is to replace the derivative in the 

equation using finite-difference approximations. Applying Taylor's theorem 2.3, the 

function-value u(x) is expressed as series 

u(x + h) = u(x) + hu'(x) + u"(x) + ... 
(2.2. ) 

and 
2 

u(x - h) = u(x) - hu'(x) + 
2i 

u"(x) - ... , 
(2.2.2) 

where h>0 is called an increment in x and taking the first two term of the right- 

hand side of (2.2.1) and (2.2.2) gives 

u(x + h) = u(x) + hu'(x) + 0(h2) (2.2.3) 

and 

u(x - h) = u(x) - hu'(x) + O(h2) (2.2.4) 

where the expression 0(h2) indicates that the error R2(x) has principle part propor- 
tion to h2 as h -+ 0. The first and second derivative replacements of a function u(x), 
then, can be derived as follows (h > 0): 
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First-order backward-difference replacement, uE C2 [x - h, x] 

du 
_ 

u(x) - u(x - h) 
+ 0(h), as h -* 0. (2.2.5) 

dx h 

First-order forward-difference replacement, uE C2 [x, x -}- h] 

du u(x +- u(x) + 0(h), as h ---3 0. (2.2.6) 

Second-order central-difference replacement, uE C3[x - h, x+h 

du 
= dx 

u(x + h) 
2hu(x 

- h) 
+ 0(h2), as h ---> 0. (2.2.7) 

Second-order central-difference replacement, uE C4[x - h, x+ h] 

d2u 
_ 

u(x - h) - 2u(x) + u(x + h) 
dx2 h2 + D(h2), as h -> 0. (2.2.8) 

Depending on which approximations for first and second derivatives are chosen, 

a differential equation can be transformed into an m-step discrete dynamical system 

of the form (Herges [13]) 

xk+m = F(xk+m_1) X k+m-2> ... ' xk), ic = 0,1,2.... (2.2.9) 

with F: R"`. Th --> R' and initial values xo, x1,. .., x,, _1 E Rn. 

When solving numerically an initial-value problem of the form 

d=f 
(t, x), a<t<b, x(a) = xo, (2.2.10 

with x: [a, b] -4R" and f: [a, b] x Rn --> Rn, the approximating discrete dynamical 

system is often only a one-step difference equation of the form 

xk+1 - Xk = hG(t, xk; hl (2.2.11) 

with h>0 the step length of the equidistant grid points ti = a+ih (i = 1,2, ... , N), 

N= (b - a)/h. The solution x(t) of equation (2.2.10) at t= ti (i = 1,2, ... , 
N) 

is approximated by the numerical solution xi E 1Rn (i = 1,2, ... , N) obtained by 

iterating the difference equation (2.2.11), where G: [a, b] x II -a I[ß'1 and x0 E IISn 
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is the initial value. Scheme (2.2.11) is a special case of the general one-step discrete 

dynamical system. 

The local truncation error at a specified grid point measures the amount by which 

the exact solution of the differential equation (2.2.10) fails to satisfy the difference 

equation. Hence, the local truncation error £[x(t%); h] at ti =a -{- ih, i=1,2, 
... ,N 

for scheme (2.2.11) is defined by 

, 
C[x(ti); h] = x(t1) - x(ti-1) - hG(t, x(tZ_i); h), i=1,2, ... ,N 

(2.2.12) 

and gives the accuracy of the numerical method at grid point ti, i=1,2, 
... ,N 

assuming the method was exact the previous step. 

Definition 2.5 (Order of a one-step difference method) Let the solution x(t) 

of equation (2.2.10) be (p+1)-times continuously differentiable, pEN, then the local 

truncation error . 
C[x(ti); h], i=1,2, ... ,N can be expressed in term of a finite Taylor 

series of the form 

P+l dkx(ti-1) 
£[x(tti); h] =Z Ckhk dtk ,2=1,2, ... , N. (2.2.13) 

k=0 

The local truncation errors and with them the associated one-step difference method 

is said to be oforder pifco=ci=... =cp=0andcp+r00. 

Definition 2.6 (Consistency of a one-step difference method) A one-step 
difference method with local truncation error . C[x(t1); h], i=1,2, ... ,N is said to 

consistent with the differential equation it approximates if 

lim max 
Il£[x(ti)' hill 

= 0. (2.2.14) 
h--+o 1<i<N h 

A one-step difference method is consistent precisely when the function G(t, x; h) in 

(2.2.11) approaches f (t, x), the right-hand side of the differential equation (2.2.10), 

as the step size h goes to zero; that is, the local truncation error approaches zero as 

the step size approaches zero. Clearly, a one-step difference method is consistent if 

it is of order p>1 and d(p+i) x/d t( ') is bounded on [a, b]. 
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Definition 2.7 (Convergence of a one-step difference method) A one-step 

difference method is said to be convergent with respect to the differential equation 
it approximates if 

lim max jjxi - x(ti) 11 = 0, (2.2.15) 
h--+O 1<i<N 

where x(ti) is the value of the solution of the differential equation at t4 =a+ ih and 

xi is the approximation obtained from the difference method at the ith step. 

A one-step difference method is convergent precisely when the solution to the differ- 

ence equations approaches the solution to the differential equation as the step size 

go to zero. 

Another type of error, known as round-off error, is introduced to the solution 

obtained when implementing a numerical scheme on a computer. As computers can 

store only a finite number of digits to represent each number, round-off errors can 

occur at each step of the computation. For a practical computation, the cumulative 

growth of the round-off errors must not swamp the true difference equation. If 

the growth of these errors is reasonable or controlled, the computation is stable. 

Thus, a numerical model with consistent equations, convergent solution, and stable 

error propagation yields a computationally stable scheme whose results can closely 

approximate the exact solution to the mathematical model. The following theorem 

(see Burden & Faires [5]) connects the notations of consistency, convergence and 

stability of a one-step difference method and states an error bound of the numerical 

solution. 

Theorem 2.8 Suppose the initial-value problem (2.2.10) is approximated by the 

one-step difference method (2.2.11). Suppose also Ic>0,3 ho >0 such that 
G(t, x; h) is continuous and satisfies a Lipschitz condition with respect to xE TRn with 
Lipschitz constant L on the set D= {(t, x, h)la <t<b, Jjx - xojj < c, 0<h< ho}. 
Then 

(i) the one-step difference method depends continuously on the initial value; 
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(ii) the one-step difference method is convergent if and only if it is consistent; that 

is, if and only if 

G(t, x; 0) =f (t, x), VtE [a, b]; (2.2.16) 

(iii) if a function g: [0, ho] -* R, and for each i=1,2, 
... , 

N, the local truncation 

error , C[x(t2); h] satisfies I J, C[x(ti); h] I)< g(h) for 0<h< ho, then 

11x(t;, ) - xill < 9(h) 
exp(L(ti - a)). (2.2.17 

2.3 First-Order Systems of Ordinary Differential 
Equations 

Consider the initial-value problem for a first-order system of the form 

dx 
= f(t, x), t> to, x(to) = xo E RTh (2.3.1) T, 

where x= [x1, x2, ... , xn]T and f= [fl, f2, 
..., fn]T and f is a sufficiently well- 

behaved function that maps Rx 1R to Rn. Equation (2.3.1) is said to be autonomous 
if f is independent of t, and to be non-autonomous otherwise. 

The analytical solution of (2.3.1) is usually so complicated that it is more efficient 
to solve it numerically for t> to. Before attempting to approximate the solution 

numerically, however, it is assumed that the hypotheses of the following theorem are 

satisfied (Lambert [15]). 

Theorem 2.9 Let f (t, x), where f: II x IR --4 R, be defined and continuous for 

all (t, x) in the region D defined by a<t<b, -oo < x= < oo, i=1,2..... m, where 

a and b are finite, and let there exit a constant L such that 

lf(t, x)-f(t, x*)1 <LIx-x*( (2.3.2) 

holds for every (t, x), (t, x*) ED (L is called the Lipschitz constant). Then for any 

xo E Rn, there exists a unique solution x(t) of (2.3.1), where x(t) is continuous and 
differentiable for all (t, x) E D. 
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The use of either differential or difference equations to represent dynamical be- 

haviour corresponds, respectively, to whether the behaviour is viewed as occurring in 

continuous or discrete time. The following definitions and theorems are the necessary 

tools to study the qualitative analysis of experimental dynamical systems. 

Definition 2.10 A vector x is an equilibrium point or critical point of a dynamic 

system if it has the property that once the system state vector is equal to x it remains 

equal to x for all future time. 

In particular, if a system is described by a set of differential equations (continuous- 

time system) as in (2.3.1), a critical point is a state x satisfying 

f (t, x) =0 

for all t. If the vector function f does not depend explicitly on time, the system is 

said to be time-invariant, in which case the critical point is a point x such that 

f(x) = 0. 

Definition 2.11 (Stable critical point) A critical point x is said to be asymp- 

totically stable if there exists a number ->0 such that V xo E I[8'ß satisfying 

R- xo ll<e, then 

lim x(t) = x. 
t-. oo 

In order to determine the stability of x it is necessary to understand the nature of 

solution near R. Let 

x(t) =x+ y(t). (2.3.3) 

Substituting (2.3.3) into (2.3.1) expanding as a Taylor series about x gives 
dx 

_ 
dy 

=_ 
öf (x) 

dt dt 
f (x) + ax y(t) + higher order terms. (2.3.4) 

Since f (x) = 0, equation (2.3.4) becomes 

dyNof (X) 
dt ax y(t)' (2.3.5) 
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which is a constant coefficient, linear system for y(t). The matrix J= 
Of 

is referred 

to as the Jacobian of f. The long-term behaviour of (2.3.1) is determined by the 

eigenvalues of the Jacobian as in the following theorem (Luenberger [17]). 

Theorem 2.12 A necessary and sufficient condition for a critical point x of (2.3.1) 

to be asymptotically stable is that the eigenvalues of matrix J evaluated at x all 

have negative real part. If at least one eigenvalue has positive real part, the point is 

unstable. 

The difference equation 

xk+i = F(xk), k=0,1,2,... (2.3.6) 

is a one-step discrete dynamical system with F: R71 -4 Rn and the initial value 

xo E Rn. The notation of stable fixed point is similar to those of continuous systems. 

Here, the definition of a fixed point of a one-step discrete dynamical system and the 

criteria to test whether a fixed point of a one-step discrete dynamical system is stable 

or not, will be given (Luenberger [17] and Sandefur [25]). 

Definition 2.13 (Fixed point) If RE R'ß satisfies F(x) =x then `x is called a 

fixed point of the dynamical system (2.3.6). 

Theorem 2.14 Let x be a fixed point of the one-step discrete dynamical system, 

J= be the Jacobian of F at x with eigenvalues A1, Ai, 
... , 

A,, E C, and the 

spectral radius p of J is defined by p(J) = max I Ail. Then a fixed point x is said to 
1<: <n 

be asymptotically stable if p(J) <1 and unstable if p(J) > 1. 

2.4 Numerical' Solutions to Partial Differential 
Equations 

Many problem in the bio-medical sciences requiring numerical solution involve special 

cases of the linear parabolic differential equation 

au 
-a 

(a 
(x, t) 

au 
+ b(� t) 

au 
- c(x, t)u, (2.4.1) 

x ax at ax ix- 
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which holds within some described region R of the (x, t) space. Within this region, 

the functions a, a are strictly positive and c is non-negative (Twizell [29]). 

The most common method of solution of partial differential equations is the finite- 

difference method. The partial derivatives in the equation are replaced by difference 

quotients, converting the differential equation to a difference equation. The difference 

equation and the given data are used to determine the function values at a grid of 

discrete mesh points that cover the original domain of the mathematical model. 

There is no best method for obtaining approximating difference formulae. The only 

requirement is that the formulae, having been obtained, must pass certain tests of 

the adequacy of the difference equations, namely, the consistency, convergence, and 

stability of the numerical model. 

The concept of stability is concerned with boundedness of the solution of the 

finite-difference equations and is examined by finding conditions under which the 

difference between the theoretical and numerical solution of the difference equation 

given at the mesh point (mh, n. i) by 

zn = Un 
- 

rn 
mmm 

remains bounded as n increases, for fixed h and E. The following methods are used 

in this thesis for examining the stability of finite-difference schemes in Chapters 4,5 

and 6 (see, for full detail, Mitchell and Griffiths [19], Douglas [8], Lees [16] and Rose 

[24]). 

The von Nuemann method is the most widely-used method for determining 

the stability (or instability) of a finite difference approximation. Here, a harmonic 

decomposition is made of the error Z at the grid points on a given time level, leading 

to the error function 

E(xý=ýAg e'ßj 

where I /3 I is the frequency of the error, j are arbitrary and i is the complex number 

. 
It is necessary to consider only the single term eia' where ß is any real number. 

For convenience, suppose that the time level being considered corresponds to t=0. 
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To investigate the error propagation as t increases, it is necessary to find a solution 

of the finite-difference equation which reduces to e2ßx when t=0. Let such a solution 

be 

e"te'ßx 

where a= a(/3) is, in general, complex. The original error component c'p' will not 

grow with time if 

1e"tI <1 

for all a. This is von Neumann's criterion for stability, sometimes called the von Neu- 

mann necessary condition for stability. In order to allow for exponentially growing 

solutions of the partial differential equation itself, a more general form is 

leciel <1+ 0(l). 

The following important points should be noted concerning the von Neumann 

method of examining stability, Mitchell and Griffiths [19]. 

(i) The method which is based on Fourier series applies only if the coefficients 

of the linear difference equation are constant. If the difference equation has 

variable coefficients, the method can still be applied locally and it might be 

expected that a method will be stable if the von Neumann condition, derived 

as though the coefficients were constant, is satisfied at every point of the field. 

There is much numerical evidence to support this contention. 

(ii) For two level difference schemes with one dependent variable and any number 

of independent variables, the von Neumann condition is sufficient as well as 

necessary for stability. Otherwise, the condition is necessary only. 

(iii) Boundary conditions are neglected by the von Neumann method which applies 
in theory only to pure initial-value problems with periodic initial data. It 
does, however, provide necessary conditions for stability of constant coefficient 
problems regardless of the type of boundary condition. 
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The von Neumann method is applied to prove the stabilities of numerical methods 

which are developed in Chapters 4 and 5. 

The maximum principle is one of the most useful and best known tools em- 

ployed in the study of partial differential equations. This principle is a generalization 

of the elementary fact of calculus that any function f (x) which satisfies the inequal- 

ity f" >0 on an interval [a, b] achieves its maximum value at one of the endpoints 

of the interval. The solutions of the inequality f" >0 are said to satisfy a maxi- 

mum principle. More generally, functions which satisfy a differential inequality in a 

domain D and, because of it, achieve their maxima on the boundary of D are said 

to possess a maximum principle (Protter and Weinberger [22]). The maximum prin- 

ciple enables information about the solutions of differential equations without any 

explicit knowledge of the solutions themselves. In particular, the maximum principle 

is a useful tool in the approximation of solutions, a subject of great interest to many 

scientists. 

In the following, convergence of solutions of mixed initial/boundary-value prob- 
lems for a certain class of non-linear parabolic equations will be estimated using the 

maximum principle analysis. Similar estimations will be used to analyse the stabil- 

ities of numerical methods developed in Chapters 4 and 6. Consider the non-linear 

parabolic differential equation 

a2u au au 
(2.4.2 

axe = x, t> ul äx 1 äý 
in the strip 0<t<T, 0<x<L, with the initial condition 

-A (x)u(x, 0) = fo(x) (2.4.3 

and the boundary conditions 

al (t) a- (O, t) - ßß (t) u(O, t) = fl (t) (2.4.4) 

ß2(t) u(L, t) = fa(t), (2.4.5) 

assuming that the solution u(x, t) is unique and exists with suitable regularity prop- 
erties in the strip. 



Chapter 2: Mathematical Preliminaries 17 

The non-linear parabolic operator of (2.4.2) is of the form 

L[u] = 
a2u 
axe - 

F(x, t, u, ums, ut), (2.4.6) 

where F(x, t, u, u., ut) denotes a fixed continuous function of its variables for (x, t) in 

a region SZ in the (x, t)-plane and for all u, ux, ut. Assume that the partial derivative 

F,,,, F.,, Fv,, exist, are continuous, and satisfy the inequalities 

0<ao<F��<al <oo, 
; 

(2.4.7) 

1 F�. i <b< oo, (2.4.8) 

0<Co <F�<cl<oo, (2.4.9) 

where ao, a1, b, co and cl are fixed constants. Let 1 be a domain bounded by the 

coordinate lines x=0, t=0 and the lines x=L, t=T; the closure of f will 

be denoted by N. The set composed of the segments 01 (0 <x<L, t= 0), 

äS2, (x = 0,0 <t<T, ) and 812 (x = L, 0<t< T) will be denoted by 90, and 

called the boundary of 1. 

The boundary operators, Ao, Ai, A2, are defined by 

Ao[u] = -/9 u(x, 0) on fflo, 

Ai [u] = al (t) 
au 

(0, t) - ßi(t) u(0, t) on ani, (2.4.10) 

A2[u] = -a2(t) 
ä, 

(L, t) - ß2(t) u(L, t) on Ö22; 

here, ßo, /3i, (32 are continuous positive functions and a1, a2 are continuous non- 

negative functions on SZo, 1i, SZ2. Let fo, fi, f2 be fixed functions defined on S1o, f i, 

SZ2, respectively. 

A mixed initial/boundary-value problem P may be formulated as follows: for 

fixed T, determine a function u(x, t) defined in 1 with certain regularity properties 

satisfying the equation 

L[u]=0 onf 

and the initial and boundary conditions (see (2.4.10)) 

A[u]=f2 on 8SZ;, 
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It is assumed that this problem has at most one solution which exists with suitable 

regularity properties under appropriate regularity conditions on the operators L, A 

and on the initial and boundary data. Specifically, it is assumed that uxxxx, uxxt, utu 

and lower-order mixed partial derivatives exist and are continuous in Q. 

Let 1h be the rectangular lattice covering n given by lines 

mh, m=0,1,..., M, 

t= n2, n=0,1,..., N, 

where h= L/M and .£= TIN. The boundary of the lattice Nh denoted by 81 h is 

the union of three set 

aflh, z = anti n sah, i=0 ,1 ,2. 
The interior of the lattice is the set SZh = SZh - UIlh. Then the mixed initial-boundary 

value problem Ph consists in finding a function uh defined on SZh which satisfies the 

equation 

Lh [uh] =0 on SZh 

and the initial and boundary conditions (see (2.4.10)) 

Ah, d [uh] = fh, d on aSZh, i 7 

where fh, i is a given function on '9 h, i. 
Rose [24] approximated the differential equation (2.4.6) by the family of implicit 

difference equations 

e o. p(x, t) + (1- 0) o2x w(x, t- i) = F[x, t, ýc(x, t), 0 oý, ýc(x, 
+(1 - 9) 0w So(x, i- £)' v (x, t)], (2.4.11) 

where 0<0<1 and p', pes, pt are defined by 

h2 
[cp(x - h, t) - 2cp(x, t) + ýo (x + h> t)], 

výýP(x, t) = 2h 
[ýP(x + h, t) - ýP(x - h, t)]ý 



Chapter 2: Mathematical Preliminaries 

Rose showed that 

IIu - ýIIý = 0(e + h2) 

for any value of the mesh ratio .A= £/h2 provided that 

0<2(1-9)A<ao. 

19 

The following convergence theorem which can be found in Rose [24] and Lee [16] 

will be used in the analyses in Chapter 4 and Chapter 6. 

Theorem 2.15 Let problem P be approximated by problems 'Ph in the sense that 

a*O(h) if a*. 0, 
max mýýax I fi - fh, ý = 0(h2) if a* = 0, 

(2.4.12) 

where a* = max max I ai I (i = 1,2). Then, if h, 2 --ý 0 in such a way that 
i aci; 

A-2< 2ý, (2.4.13) 

the solutions uh of Ph approximates the solution u of problem P uniformly in 52; 

that is, 

iu - uhl = a*O(h) + O(h2) + 0(t). (2.4.14) 



Chapter 3 

Oscillatory Dynamics of Whooping 
Cough 

3.1 Introduction 

Whooping cough is mainly a childhood disease, although it may affect people of all 

ages. This disease is most severe and the incidence of mortality is highest in young 

children, most fatal cases being in infants in their first year of life: The dynamics of 

whooping cough is described by the SIR model and is studied in this chapter. The 

long-term dynamics of the model are analysed to determine a threshold condition in 

which the critical points are stable. Periodicity and other oscillatory behaviours can 

be sustained in the model if the contact rate is allowed to vary seasonally. When 

the model is seasonally forced, a wide range of the complex dynamic behaviour is 

seen, including chaos and co-existing cycles of different periods (London & Yorke 

[18], Dietz [7] and Duncan et al. [10]). 

This chapter is organized as follows. In §3.2, the compartmental model is de- 

scribed. The mathematical model of the transmission of whooping cough and its 

dynamics are given in §3.3 and §3.4, respectively. The SIR model with seasonal 
forcing is discussed in §3.5. A linearized model of the dynamics of epidemics shows 

that the inter-epidemic interval is determined by the product of population (N) and 

susceptibility (ß) and that the system will settle at its steady-state unless triggered 

by external factors. Many mathematical models involving non-linear differential 

equations usually cannot be solved analytically and thus one has to rely on numeri- 

20 
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Figure 3.1: The compartmental diagram for the SIR model of whooping cough. 

cal methods. First- and second-order methods for solving the differential equations 

will be developed and analysed in §3.6 and §3.7. The dynamics of the SIR model 

and SIR with seasonal forcing using the proposed method are tested in numerical 

simulations and will be reported in §3.8. 

3.2 Compartmental Models 

The impact of parasitic infection on the dynamics of host population growth can 

be described using compartmental models (see for example Anderson & May [3]). 

The population in the epidemic model of this study is divided into three classes: 

susceptible, infectious and recovered, with sizes S, I and R, respectively. In this 

deterministic model the rate of transition from susceptible to infectious is assumed 

to be proportional to S and I with rate constant P. The rate of transition from 

infectious to recovered is proportional to I with rate constant v. A latent period 

after becoming infected, but before becoming infectious, is ignored. New susceptibles 

are introduced at a constant rate, y, by birth and all classes experience the same 

constant death rate, p. A diagram of the model is shown in figure 3.1. It is assumed 

that nobody dies of whooping cough: therefore, the infected hosts do not experience 

a higher mortality rate. Recovered individuals do not flow back into the susceptible 
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compartment, as lifelong immunity is supposed. 

3.3 The SIR Whooping Cough Model 

The SIR (susceptible-infective-recovered) whooping cough model is obtained by 

translating the compartmental model proposed above into mathematical terms. It 

consists of three coupled, non-linear ordinary differential equations 

dS 
dt = µN - uS - PSI, (3.3.1) 

(3.3.2) 
dt -(m + v)I + PSI, 

dR 
d t= vI - µR (3.3.3) 

with t>0, subject to the initial conditions 

S(0) = So, 1 (0) ='o, R(0) = Ro, (3.3.4) 

in the domain 

D= {(S, I, R) E R3 S+I+R< N}, 

in which S(t), I (t) and R(t) represent the number of susceptible, infective and recov- 

ered individuals at time t, respectively. The model assumes a population of constant 

size, so that S(t)+I(t)+R(t) = N. The parameters it, v and 0 denote the death rate 
(life expectancy= 1/µ), the rate of recovery from disease (infectious period= 1/v) 

and the transmission coefficient (susceptibility to disease), respectively. All model 

parameters are assumed to be positive. 

Without loss of generality, equations (3.3.1)-(3.3.3) may be written in terms of 
the fraction of the population in each class by defining three new variables 

sIR x=N' y=N z=N.. (3.3.5) 

Incorporation of these changes reduces the differential equations to 
dx 
dt =-µx- Nß x y; x(0) = xo, (3.3.6) 

dy 

dt = No xy- (µ + v) y; y(0) = yo, (3.3.7) 
dz 

dt =vyµz; z(0) = z0. (3.3.8) 
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The population has a constant size, which is normalized to unity: x(t)+y(t)+z(t) = 

1. Note that it is necessary to solve only two equations because z(t) can always be 

found from x(t) and y(t) by using z(t) = 1- x(t) - y(t). It is sufficient, therefore, to 

consider the IVP {(3.3.6), (3.3.7)} in the x-y phase plane. The dynamical behaviour 

of {(3.3.6), (3.3.7} will be studied in the region 

D= {(x, y) 1x>0, y>0, x+y< 1}. (3.3.9) 

3.4 Qualitative Analysis 

3.4.1 Critical points 

The first thing to investigate when analysing a dynamical system is the existence of 

critical points. The steady state of (3.3.6) and (3.3.7) is determined when the time 

derivatives vanish giving the critical points 

x=1, y=0 (3.4.1) 

and 

µ+v µ1- µ+v (3.4.2) xs= No , y9= 
p+v NO 

The first is trivial in the sense that it corresponds to the case of the existence of 

no infectious individuals. The second, non-trivial, critical point is equivalent to 

(x3, y9) _ (_' it 1 (Ro 

µ+v 
(l 

- R0 
) 

which varies significantly with Ro. Here, Ro is the basic reproductive rate of the 

infection, defined, as in Anderson & May [3], to be 

moo= 
N 

µ+' 

since it is the average number of secondary infections that occur when one infective 

is introduced into a completely susceptible host population. 
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3.4.2 Stability analysis 

The pair of equations (3.3.6) and (3.3.7) can be written in the form 

dx 
=f (x) y), (3.4.3) 

dt 
dt x (3.4.4) dy 

= 9(, y)ß 

where 

f(x)y) = µ-µx-Nßxy, 

9(x, y) = NQxy-(µ+v)y" 

The local stabilities of the critical points are determined by the eigenvalues of 

the Jacobian which correspond to each of the two critical points. The Jacobian 

associated with {(3.4.3), (3.4.4)} is the matrix 

-y - N%y -Nßx 
J= (3.4.5) 

N(3y -(It + v) + Nßx 

the determinant of which vanishes when 

1Zo = 
AL+ V=1. 

(3.4.6) 

This unique value of 7Zo will be regarded as a bifurcation parameter of the model 

equations. 

At the trivial critical point x=1 and y=0 and the eigenvalues, ai, X2, of the 

associated Jacobian are 

ý1 = -µ, A2 = -(µ + V) (1 - Ro) (3.4.7) 

from which it follows that the eigenvalues are real and negative whenever Ro < 1. On 

the other hand the eigenvalues are real and of opposite sign if Ro > 1. Therefore, 

the trivial critical point is asymptotically stable whenever Ro <1 and unstable 

whenever 7Zo > 1. 

Similarly, the eigenvalues of the Jacobian at the non-trivial critical point given 
in (3.4.2) are the roots of the characteristic equation P(A) = 0, where 

p(A) = A2 + AA +B (3.4.8) 
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Table 3.1: Stability properties of critical points 

critical points 
trivial non-trivial 

7Zo <1 stable unstable 

Ro >1 unstable stable 

Ro =1 saddle-node bifurcation 

and 

A=µRo, B=µ(µ+v)(Ro-1). 
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It follows from the Routh-Hurwitz criterion (Lambert [15], p. 14) that all eigenvalues 

have negative real part if A>0 and B>0. This holds if Ro >1 and all model 

parameters are assumed to be positive. The non-trivial critical point, therefore, is 

asymptotically stable whenever Ro >1 and unstable for 7Zo < I. 

For Ro = 1, there is only one critical point since the non-trivial critical point 

coincides with the trivial critical point (see equations (3.4.1) and (3.4.2)). This crit- 

ical point is non-hyperbolic (Wiggins [31]) as one of the eigenvalues of the Jacobian 

becomes zero while the other (-µ) is real and negative. This presents the point 

at which a node (stable or unstable depending on the sign of µ) is just changing 

to a saddle point or vice versa. The parameter µ, however, is non-negative and 

this critical point is a stable node, and Ro will be called a saddle-node bifurcation 

(Gray & Scott [12]). Furthermore, both critical points of the system {(3.3.6), (3.3.7)} 

exchange their stability properties as Ro passes through unity (see table 3.1). 

The asymptotic behaviours of solution paths in the x-y phase plane are described 

in the following theorem (Hethcote [14]). 
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Theorem 3.1 If Ro < 1, then the triangle D defined by (3.3.9) is an asymptotic 

stability region for the critical point (1,0). If'Zo > 1, then D- {(x, 0) 10 <x< 1) 

is an asymptotic stability region for the critical point given in (3.4.2). 

3.5 The Seasonal SIR Model 

The dynamics of the SIR model are determined by the model's two steady states (see 

§3.4). In the absence of external perturbation, all variables x, y and z eventually 

reach a constant steady-state. The epidemiological data on whooping cough (Duncan 

et al. [9]), however, often demonstrate periodic or irregular outbreaks of the epidemic 

dynamics which the SIR model fails to capture. Then, more realistic dynamics may 

be achieved by taking into account the seasonal nature of the epidemic. London & 

Yorke [18], for example, showed the importance of considering the contact rate, 3, 

as a periodic (annual) function of time. Sources of seasonal variation in the contact 

rate have been attributed to social behaviour, such as the timing of the school year, 

and seasonal changes in the weather conditions (Bolker & Grenfell [4], Duncan et al. 

[9], [10], London & Yorke [18]). 

In this section, the seasonal SIR model is studied by adding a forcing term ß(t) 

to equations (3.3.6) and (3.3.7) to give the initial-value problem 

dx 
dt A- /`x - N/3(t)xy, x(0) = xo, (3.5.1) 

dy 
_ dt -(p + v)y + N/3(t)xy, y(0) = yo, (3.5.2) 

in which /3(t) is given by (Duncan et al. [9]) 

ß(t) = ßo(1 +8 sin(cvt)), (3.5.3) 

where the parameter 8 is the force of the infection (equivalent to fractional varia- 
tion in susceptibility) and w is the angular frequency of oscillation in susceptibility 
(w=2ir/period of oscillation). It will be assumed that 6 is a real number between 

zero and unity. 
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The critical points of the system {(3.5.1), (3.5.2)} are obtained as in (3.4.1) and 
(3.4.2), respectively, but the infection rate ß is replaced by ßo(1 +6 sin(wt)), giving 

Cl* = (1,0) and c2 = (xs, y9), 

where 

XS Nßo(1 +S sin (wt)) and ys =µ+v (1 - xs). 

(3.5.4) 

It is found that the trivial critical point C1 coincides with the trivial critical point 

of the SIR whooping cough model while the non-trivial critical point C2 is now time 

dependent. Thus, the oscillation-behaviour can be expected whenever the non-trivial 

critical point is attracting. The non-trivial critical point should be asymptotically 

stable if Ro(t) = Nß(t)1(µ + v) > 1. 

When 6>0 is small, equations (3.5.1) and (3.5.2) can be approximated by a 

linearized model by defining 

x=X, + 77, (3.5.5) 

Y= ys + e' (3.5.6) 

where i and 6 represent the variations in x and y from their steady-state values. 
Substituting equations (3.5.5) and (3.5.6) into equations (3.5.1) and (3.5.2) and 

ignoring higher-order terms gives 

dt -(Nßo ys + µ)n - (µ + v)e - (µ + v)y38 sin(wt), (3.5.7) 

d6 
dt 

Nßo ysn + (µ + v)y38 sin(wt). (3.5.8) 

These equations describe a forced second-order linear system where the forcing func- 

tion is the periodic driving term (µ + v)ysS sin(wt): that is, oscillations in suscepti- 
bility, 8, can act as a driver for the system (Olsen & Schafer [201, Rand & Wilson 

[23], Tidd et al. [27]). In the absence of seasonal oscillations, ö=0, eliminating n 
from (3.5.7) and (3.5.8) gives 

µ 
(3.5.9) 

d 
at2 +µ 

Nýv 
dt + µ(Noo -µ- v)ý =o 
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which is a form representing the equation of motion of an unforced, damped linear 

oscillator. For the disease under consideration the human life expectancy, 1/µ, is 

much longer than the infectious period, 1/v, so that under this situation there exist 
damped oscillations around the equilibrium for 1Zo > 1. The oscillation has a period 
(T) defined as 

T= 
2ir 

(3.5.10) 
Vµ(Nßo-IL-v) 

Thus, the inter-epidemic interval (Duncan et al. [10], [9]), T, is determined by Nßo. 

Therefore, the dynamics of the seasonal SIR model are then dependent on the 

amplitude of the variation in susceptibility, S. When S=0, equations (3.3.6) and 
(3.3.7) are considered as a non-linear system that is driven by variations in N/3. 

For small amplitudes of the variation, 8, the response is approximately linear; thus 

the output is sinusoidal for a sinusoidal variation in S at the same frequency but 

with different amplitude and phase. As S is increased, the non-linear effects come to 

dominate and the response becomes non-sinusoidal, as will be shown in §3.8.2. 

3.6 Numerical methods 

The numerical methods are based on the replacement of dx/dt and dy/di in (3.3.6) 

and (3.3.7) by the first-order approximations 

and 

dx(t) 
- 

x(t +. e) - x(t) 
dt -{-O(ff) as 

dy(t) 
_ 

y(t + _) - y(t) 
dt -£+ 0(t) as £ -+ 0, (3.6.2) 

where £>0 is an increment in t (time step), associated with the discretization of 
the interval t>0 at the points to = nt, with t,,, +, - t,, = . Q, n=0,1,2, .... The 
theoretical solutions of the initial-value problem (3.3.6) and (3.3.7) at any typical 

point t= tn, are denoted by x(t,, ), y(tn), while the solution of an approximating 
numerical method will be denoted by X'n and Yn, respectively, at the same point t,,. 
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3.6.1 First-order methods 

Euler's method 

Replacing dx/dt and dy/dt in (3.3.6) and (3.3.7) by (3.6.1) and (3.6.2), respectively, 

and evaluating all terms on the right-hand sides of (3.3.6) and (3.3.7) at time t, 1 

gives 

Method Mi 

Xn+l = Xn+if 11-µXn-NoXnYn}, (3.6.3) 

Yn+1 = Yn + t{-(/b + u)Y'1 + N/3XnYn}, (3.6.4 

n=0,1,2,..., which is the familiar Euler explicit method. 

Alternative first-order methods 

The alternative first-order methods are obtained again by approximating the deriva- 

tives in (3.3.6) and (3.3.7) by (3.6.1) and (3.6.2), respectively, and evaluating the 

variables on the right-hand sides of (3.3.6) and (3.3.7) at time t,, and t, +, as in the 

following two ways 

Method M2 

Xn+l - Xn 

.£ 

yn+1 - yn 

= µ-µX"' -NO X"`+lY` 

= -(/1 + u) Yn+' + No X` Yn. 

(3.6.5) 

(3.6.6) 

After rearranging, these give the explicit formulations 

X n+1 = 
ýµ +xn 

1+ £µ + £NßYn 

Y'+ £ ßX nYn 
1+t/1+ty 

(3.6.7) 

(3.6.8) 

for n= 01 1) 2, .... 
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Method M3 

Xn+l - Xn 
_M_ ttXn+l - NßX nYn, (3.6.9) 

Yn+l - Yn 
= _(µ +v)Yn+I+ NßXn+lYn. (3.6.10) 

Substituting for X'+i from (3.6.9) into (3.6.10 and rearranging, gives the explicit 

formulations 

n-nn 
Xn+1 = 

£/2 +XNY (3.6.11) 
1 +. 4i 

Yn+l - 
(1 + . £µ + £2 jN13)Yn + £NpxnYn(1 - . £N/3Yn) 

(3.6.12) (1+. iµ)(1+tµ+2v) 

for n=0,1,2, .... 

The local truncation errors 

Method Mi The local truncation errors (LTEs) of this method maybe determined 

(see for example, Lambert [15]) from (3.6.3) and (3.6.4) and are given by 

£C [x(t), y(t); £] = x( t+ £) - x(t) - . e{y - yx(t) - Npx(t)y(t)} 

and 

ýyýx(t)ý y(t); ý] = y(t + P{(µ + v) y(t) - Nß x(t) y(t)}. 

Using Taylor expansions of x(t + . £) and y(t + £) about t lead to 

and 

2 

4 [x(t), (t); i] =2 x"(t) + 0(&) as 2 -4 0 (3.6.13) 

£; [x(t), y(t); ý] = 
ýyFJ(t)+O(t3) 

as 2--+ 0, (3.6.14) 

at some point t=t,,, verifying that this familiar numerical method is first-order 

accurate. 

Similarly, the local truncation errors L. [x (i), y(t); E] and £ [x(t ), y (t); £] associ- 

ated with the family of the methods M2 and , 
M3 are seen to be 
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(i) for family M2 

[x (i), y(t); 22 
2 t) 

+ ltx'(t) + Nßx'(t)y(t) + 0(t3) as £ --ý 0, 

(3.6.15) 

L2 [X (t), (t); j] = e2 yý (tý + Ut + v)y'(t) + 0(e3) as e -ý 0, 
(3.6.16) 

(ii) for family M3 

£2 x'2 t) + µx'(t)+ + 0(2, ) as 2 -> 0, (3.6.17) 

ýy[x(t), y(t); ý] _ 22 y"2 t) + (µ + v)y'(t) - Nßx'(t)y(t) + 0(t3) as 0, 

(3.6.18) 

at some time t= tn. Hence, the methods M2 and M3 are first-order accurate. 

3.6.2 Second-order method 

The second-order method is based on a linear combination of first-order numerical 

methods. To achieve second-order accuracy when solving the non-linear ODEs in 

(3.3.6) and (3.3.7), the second-order methods for functions x= x(t) and y= y(t) 

will be developed differently. Three first-order methods were mentioned in §3.6.1, 

and a new first-order method will be introduced; a linear combination of them will 

lead to the second-order numerical method. It will be assumed that x(t) and y(t), 

the solutions of the initial-value problem {(3.3.6), (3.3.7)}, are twice continuously 

differentiable for all t>0. 

Second-order Method for Xn+i 

To obtain second-order accuracy for x= x(t), take equation (3.3.6) in the form 

x'(t) -µ+p x(t) + Nß x(t) y(t) 0. (3.6.19) 
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Differentiating equation (3.6.19) with respect to time, t, gives 

x"(t) +µ x'(t) + N/3 x'(t) y(t) + Nf3 x(t) y'(t) = 0. (3.6.20) 

The first-order methods previously discussed are given below along with the new 

first-order method, 

Mix: xn+1- xn 
= µ-µXn-NoXnYn, (3.6.21) 

M2x : 
X n+1 - 

xn 

=µ- Xn+1 - NOXn+1 Yn, (3.6.22) 

Max : 
xn+l 

- 
xn 

=µ- µXn+l - NßXnYn, (3.6.23) 

M4x : 
Xn+1 

- 
Xn 

= it - µXn+l - N, 3XnY`+i (3.6.24) 

and their associated LTEs 

2 
, C'x[x(t), y(t); t] =2 x"(t) + 0(t') as .E --> 0, (3.6.25) 

£x[x(t), y(t)ý 22 x'2t) +µ x'(t) + Nß x'(t) y(t) + 0(t3) as 2 -> 0, 

(3.6.26) 

ýýýx(t)ý y(t)ý ýý _ 22 xý2t) + x'(t) + 0(. ý3) as --ý 0, (3.6.27) 

£'[x(t), y(t); t] = 12 x'2 t) +y x'(t) + tNß x(t) y'(t) + 0(. e3) as £ -ý 0. 
(3.6.28) 

Using equations (3.6.25)-(3.6.28) leads to the local truncation error of a second- 

order numerical method for x= x(t), denoted by C' [x (t), y(t); . £], as being defined 

by 

Cý = Cý + C2 - Cx -f- Cam. (3.6.29) 

It is easy to see that 

. CS = £2 
(! 

'(t) +µ x'(t) + No x'(t) y(i) -F N(ýx(t)y'(t) 

+0(ý3) as .£ --3 0, (3.6.30) 
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so that, using (3.6.20), 

Cý = 0(13) as £ -+ 0. (3.6.31) 

To construct the associated second-order method for x= x(t), it follows from 

(3.6.29) that equations (3.6.21)-(3.6.24) must be arranged to give 

M 
�x: 

Xn+l 
- 

X" 
- £µ + 2µX n+ £NPX'Y' = 0, 

M2,: X n+1 -Xn- Lµ + t, Xn+i + LNßX"+r Yn = 0, 

M3, x :X nß"1 - Xn - 4t +t jXn+1 + . £N/3X'Yn = 0, 

M4, x : X1 - X" - 2ii + LµXn+1+ LNQXnYn+1 = 0, 

following which the second-order method for x= x(t) is seen to be 

[2 + ßc2 + £Nß'1 Xß''+1 = 2X'1 + 2µ. i - £{µ + NßY''+'}X'. (3.6.32) 

Second-order Method for yn+1 

To determine the second-order method for y= y(t), consider equation (3.3.7) which 

can be written as 

y'(t) + Cu + v) y(t) - N/3 x(t) y(t) = 0. (3.6.33) 

Then, differentiating equation (3.6.33) with respect to t gives 

y"(t) + (µ + v) y'(t) - Nß x(t) y'(t) - NQ x'(t) y(t) = 0. (3.6.34) 

The first-order approximations to equation (3.3.7) with their LTEs can be given by 

Vn+1 _ Vn 

. 
Mly :i-_ -(µ + v) Y'+ NQ Xn Y', (3.6.35) 

2 
y[x(t)ýy(t); J] = yl/(i) + 0(ý3) as £ --ý 0, (3.6.36) 2 

Yn+l _ 1/n 
�ý'12y = -(lt + v) Yn+' + Nß X", Yn, (3.6.37) 
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ýý t 
ýy[x(t)> y(t); tl = Q' y2+ (Y+ v) Y, (t) 

-}-0(. Q3) as 1 --3 0, (3.6.38) 

yn+1 _ yn 
May :£- -(µ + v)Y'+i + N/-Xn+iyn., (3.6.39) 

£y[x(t), y(t); 4= ýe2 
y"t2+ (iL + v) y'(t) - Nßx'(t)y(t) 

+ 0(t3) as 2 -> 0, (3.6.40) 

Y"+1 - Yn M4y :_ -(µ + v)Y'+' + N/3X'Y7+', (3.6.41) 

2t 
ýy[x(t), y(t); il = . e2 y'( + (µ + v)y'(t) - Nex(t) y'(t) 

+O W) as £ -3 0. (3.6.42) 

It follows from equations (3.6.36), (3.6.38), (3.6.40) and (3.6.42) that £C [x(t), y(t); £] 

defined by 

_ £2 
(Yh'(t) 

+ (µ + v) y'(t) - NO x'(t) y(@) - Nßx(t)y'(t) 

+Ö(t3) as .£ -+ 0 (3.6.43) 

and, using (3.6.34), yields 

V= 0(t3) as 2 -+ 0. (3.6.44) 

Thus, the second-order method for y= y(t) may be constructed in the same way 

as described for x= x(t) in the previous section and is easily shown to be 

[2 +t(µ+v) -2N/3X"]Yn+1= 2Y'ß+£{-(µ+v)+NI3XT+'}Yn. (3.6.45) 

To solve the linear algebraic system (3.6.32 and (3.6.45) for 
. 
X"+' and Yn+r, the 

system may be written for simplicity in the forms 

, AX n+i - (2 - 2µ)X n+ £N13X nY7'+1- 2f'µ = 0, (3.6.46) 
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BY"+' - (2 - . 2µ - tv)Y' - £N/3X"+'Yn =0 (3.6.47) 

where 

A= 2+11. +tN(3Y', (3.6.48) 

B=2+£+ iv - LNQX. (3.6.49) 

Solving the equations (3.6.46) and (3.6.47), give 

xn+l - 
(2 - 2µ)BX' + 2µa6 - £(2 - ýµ - . 2v)N/3X'yn (3.6.50) 

C 

n+1 - 
(2 - &)A' + 2µ22NßYn + 1(2 - £µ)NßX'Y' 

3.6.51) 
C 

where A, B are as in (3.6.48) and (3.6.49) and 

C= AB + (£N(3)2XnYn. (3.6.52) 

Therefore, a second-order solution to the first-order IVP system {(3.3.6), (3.3.7)} 

may be computed using (3.6.50) and (3.6.51) with n=0,1,2,.... 

3.7 Analyses of the methods 

Finding the fixed points of the finite-difference methods is equivalent to finding the 

critical points of the initial-value problem {(3.3.6), (3.3.7)}, see for example Luen- 

berger [17]. It can be shown that the fixed points of each finite-difference method, 

as n -f oo, are the same as the critical points of the ODE system. 

All the numerical methods which were mentioned in §3.6 are of the form of the 

two one-point iteration functions given by 

xn+i := gi(Xn, Yn) and Yn+i := g2(Xn, Yn) (3.7.1) 

and all have steady-state solutions (fixed points), which will be denoted by 

ui = (Xi 
, 
Yi) = (1,0) and u2 = (X2, Y2) (3.7.2) 
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where 

X2 *= Nß 
and Y2 =µ+v (1 - X2 ). (3.7.3) 

To analyse the stability of these fixed points, it is necessary to consider the associated 

functions 

X- gi (X, Y) and Y- g2 (X, Y) (3.7.4) 

where, for {(3.6.3), (3.6.4)}, 

91(X, Y) =X+ . £µ -t {µ + NßY}X, (3.7.5) 

92(X, Y) =Y+ £{-(µ + v) + N/X}Y, (3.7.6) 

for {(3.6.5), (3.6.6)}, 

91 (X Y) -1+ 
iµ 

-+F- . 2Ný3Y' 
(3.7.7) 

Y+ £N/3XY 
9a(X, Y) -1 £µ {- £v ' 

(3.7.8) 

for {(3.6.9), (3.6.10)}, 

91(X, Y) _ 
£µ +X -. QN/3XY 

1+ £ft 
(3.7.9) 

92 (X' Y) =Y 
£NßY(X + Lµ - LNßXY) 

(3.7.10) 
1+£[1+£v + (1 + tµ)(1 + tµ + . Lv) 

and for {(3.6.50), (3.6.51)}, 

91(X, Y) _ 
(2 - £µ)13X + 2µB - £Nß(2 - 2µ - 2v)XY 

' 
(3.7.1.1) 

C 

92(X Y) = 
(2 - ýµ - £v)AY + 2µt2NßY + tNß(2 - £µ)XY 

(3.7.12) 
C 

where 

,, 4 = 2+µ¬+MQY, 

B=2+ £(a + v) - £NfX, (3.7.13) 
C= (2 + µi)(2 + £µ + Lv) - (2 +L )tN/X -f- (2 + Lµ + Lv)LN f3Y 
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A sequence generated by the numerical method converges to a fixed point if and 

only if the spectral radius, p(J), at the fixed point of the Jacobian, J, given by 

ägi/äx äg1/ay 
J= (3.7.14) 

age/ax age/ay 
satisfies the condition (see theorem 2.14) 

p(J) < 1. (3.7.15) 

3.7.1 Stability of the fixed points of Method M1 

To analyse the stability of this method, the Jacobian appropriate to equations (3.7.5) 

and (3.7.6) is 

_1- 
£(µ + NI3Y) -tN/3X () J- tNßY 1+t{NßX-(µ+v)} - 3.7.16 

At the trivial critical point, ui = (1,0), the characteristic polynomial of the 

Jacobian J from (3.7.16) is given by 

A2-{2-. eu+t(i+v)(Ro-1)}A+(1-ty){1+i(µ+v)(Ro-1)}=o. 
(3.7.1 7) 

The eigenvalues are 

2-tµ+t(µ+v)(Ro-1)± 72{µ+(11 
-I-v)(7 o-1)}2 A1,2 =2 (3.7.18) 

so that 

Al =1+ t(µ + v)(n0 - 1), A2 = 1- . eµ if Ro >1 (3.7.19) 

and 
Al =1- All + v) (1 - Ro), A2 =1- . £µ if Ro < 1. (3.7.20) 

From (3.7.19) and (3.7.20), it is clear that, for Ro > 1, the spectral radius is strictly 

greater than unity for all £. For Ro < 1, the spectral radius is strictly less than unity 
if 

2 
£<(,, 

+,, )(1 -R 
and £< 2/µ. (3.7.21) 
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Therefore, the trivial fixed point is conditionally stable for Ro <1 and unstable for 

Ro>1. 

At the non-trivial fixed point in (3.7.3, the characteristic polynomial of the 

Jacobian J is given by 

A2 - (2 - t1a? 0)A +1- £µ1Zo +. 2µ(µ + v)(lZo - 1) =0 (3.7.22) 

and the associated eigenvalues are 

A1,2 =1-2 µ(µ7Zo)2 - 4µ(fß + v)(Zo - 1) . 
(3.7.23) 

If Ro < 1, )'1,2 are real and positive since the discriminant is always positive. More- 

over, 

µRo < (µ7o)2 - 4µ(µ + v)(Ro - 1) 

so that one of the roots of equation (3.7.23) is greater than unity. This shows that 

the spectral radius is strictly greater than unity for all values of 2. 

For Ro > 1, the spectral radius will be considered as follows: 

Case i Suppose that (µRo)2 - 4µ(µ + v) (7 o -1) < 0, the eigenvalues are complex 

numbers with 

I A1,2 12 =1- tµRo + £2µ(1l + v)(R. o - 1) 

and the spectral radius is strictly less than unity if 0< 1)1,2 12 <1 so that 

0<44 o-1)< 
1-Qµ 

(3.7.24 

Case ii Suppose that (µ7Z0)2 - 4µ(µ+ v)(7 0 -1) =0 then A1,2 =- 
(2 - £i l) 

and 2 
the spectral radius is strictly less than unity if -1 < . 1r, 2 <1 so that 

0<2µ(7o-1) <4-Aµ. (3.7.25) 
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Case iii Suppose that (µRo)2 - 4µ(µ + v)(Ro - 1) >0 then the two eigenvalues 

are real and are given by 

, \i =1-2 /-LIZo + (µIRo)2 - 4µ(µ + v)(Ro -1 (3.7.26) 

A2 =1-2 µIZo - (µ7Z0)2 - 4µ(µ + v) (Ro - 1) . 
(3.7.27) 

The spectral radius is, therefore, strictly less than unity if 

£µR0 <2 or iµ(Ro - 1) <2- iµ. (3.7.28) 

From cases i-iii, it is found that equations (3.7.24), (3.7.25) and (3.7.28) are the 

conditions under which the numerical method Mi will converge to the non-trivial 

fixed point (3.7.3 whenever Ro > I. 

3.7.2 Stability of the fixed points of Method M2 

The Jacobian, for {(3.7.7), (3.7.8)}, is the matrix 

1 
1+fµ+tNßY 

£NßY 

1 +Lu +Lu 

-2Nß(£ß + X) 
(1 + ýµ + MO Y)2 

(3.7.29) 
1+ tNßX 
1+Lu+iv 

The stability of the trivial fixed point is determined by the eigenvalues of the 

matrix J, given by 

1 
-A 1+Qu 

IJ-All = 
0 

so that 

-. CNß 
1+£i, 

=0 

1+i +Lv 

_1_1+ 
ýN/3 

) 
A2 

(3.7.30) 

(3.7.31) 

Clearly, the spectral radius is strictly less than unity for all .£ if 7x, 0 < 1. Condi- 

tion (3.7.15), therefore, is satisfied and the numerical method {(3.6.7), (3.6.8)) will 
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converge unconditionally from any starting values xo, yo to the trivial fixed point 

x=1, y=0 whenever Ro < 1. 

For the non-trivial fixed point given in (3.4.2), the Jacobian is the matrix 

p+v 
µ+v+idN/ 

µ«(N/9 -µ- v) 
(µ+v)(1-I-. ßµ+ 1v) 

µ+i+ yffo 

1 

The eigenvalues of matrix J, )Ai and A2, are the roots of the equation 

c(')=A2-aA+b=0 

where 

a= 
2(µ + v) + µtNß >0 

y+v+IttN# 

and 

(µ + v) 1+ tµ + Lv + L2µ(ft + v)(IZo - 1)) 
b= >0 (ft+v+µLNß)(1 +4µ-FLv) 

whenever Ro > 1. 

(3.7.32) 

(3.7.33) 

The eigenvalues, ' ai and a2, of matrix J are complex conjugates if a2 - 4b < 0, 

and it is then easy to show that I Ai I<1 (i = 1,2) for all .£ because 

b-1 =-. ßµNß-. 2µ(µ+v)2 <0 for all t> 0. 

The eigenvalues A,, and A2 are real if a2 - 4b > 0. The properties of a quadratic 
function can be employed to show that A1,2 E (-1,1). The function q(A) is evaluated 

at A= -1,0) 1, giving 

a -I b -}-1 > 0,0(0) =b>0 and 0(1) . 
£2ft(µ + v)2(Ro -1) (µ v+ pfNP)(1 +{ y+ ýv) . 

Because ý(-1) > 0(0) > 0, the function 0 has a minimum value at some point 

_ )min between 0 and 1 since 

ý'(ý) = 2) -a=0 if a=2 
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and 

a 
> 0, when Amin =2 

Clearly \min >0 and A . i,, <1 when a-2<0. It is easy to show that 

a-2 - 
2(µ+v)+pf o-2(µ+v)-2.2yNß 

_ 
-2µNß 

y+v+pfNQ 

so that Amin < 1. Overall, q(A) has two real positive zeros which are less than unity 

in modulus, irrespective of the size of . £, when Ro > 1. 

It can be concluded, therefore, that the non-trivial fixed point is unconditionally 

stable (with respect to . £), whenever R>1. 

3.7.3 Stability of the fixed points of Method M3 

The elements of the Jacobian associated with the method, from {(3.7.9), (3.7.10)}, 

are given by 

0gß 1- . QNßY 
äx -1 +4t ' 

agi -tNßX ay -1+, tµ , 

(3.7.34) 
age £NßY(1- . eNßY) 
ax - (1 +. eµ)(1 +ill +. ev), 

8g2 
-1+ 

Nß(2µ +X - 2fN/3XY) 
OY1+i+u (1 +tµ)(i +t +, e�) 

The Jacobian, at the trivial fixed point, Xl = 1, Yi = 0, is the matrix 
1 -iNß 

1 +iµ 1+t 
J=1 

tNß 
(3.7.35) 

+ 
l +Lt+Lv 
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and so 

=1 A_ 
1+ iNß 

, \, 1+iµ' 
A2 

1+£µ+Lv 

are as in (3.7.31). Therefore, the trivial fixed point is unconditionally stable for 

Ro <1 and unstable for Ro > 1. 

The Jacobian evaluated at the non-trivial fixed point given in (3.7.3) is given by 

µ2+v+4µ(µ+v-Nß) -P rý+v 
(1 +Pµ) (µ+v) 1 +ýµ 

J= (3.7.36) 
ýµ(Ný-µ-v)(µ+v+eµ(µ+y-Nß)) 1+2eµ+ev+22µ(2µ+2v-Nß) 

(µ+v)2(1+4µ)(i+Qz+ev) (l+ßµ)(r+eµ+ev) 

The eigenvalues of matrix J, al and a2, are the roots of the equation 

ý2-(2-p-q) . A+1-q=0 (3.7.37) 

so that 

Al = 1- 
2 {(P+)+ 

(P -F q)2 - 4P , 
(3.7.38) 

A2 = 1- 
2 

(P + q) - (P + q)2 - 4p (3.7.39) 

where p= 
£2µ(µ + v) (1Z° - 1) 

>0 for all Ro >1 and q= 
iµlz0 

> 0. (1+tµ)(1+4+Ev) 1-i-.. ßµ 

Case i Suppose that (p + q)2 - 4p <0 then I A1,2 12 -1-q and the spectral radius 
is strictly less than unity whenever 0<1-q<1, that is 

£jz (7zo - 1) < 1. (3.7.40) 

Case ii Suppose that (p + q)2 - 4p =0 then A1,2 -2- 
(p + q) 

and the spectral 2 
radius is strictly less than unity if 

0<p+q<4 

that is 

0 <2µ(Ro-1) < 
4+72µ-{-4. ßv+3.22µ(µ+ v) 

1+Vy+2fv (3.7.41) 
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Case iii If (p + q)2 - 4p >0 then the two eigenvalues are real and are given by 

I {(p+q)+(p+q)2 
- 4p 

. 

It is clear that the spectral radius is strictly less than unity whenever a+b<2 or 

0< . ýµ(Ro - 1) <2+U1 
-I- 2ýµ -{-J2. ev(µ 

+ v) (3.7.42) 

These, therefore, are the conditions under which the numerical method M3 will 

converge to the non-trivial fixed point (3.7.3). 

3.7.4 Stability of the fixed points of the second-order 
method 

The stability of the fixed point is again determined by the Jacobian, J, which for 

{(3.7.11, (3.7.12}, is 

agl/ax agi/aY 
J= 

age/aX ag2/aY 

where 

agl (2 - µ2)(-. QNßX + B) - 2µNß 2- tNß(2 -. 2µ - 2v)Y 
ax -c 

+ 
(2 + µ4)eNßgl (X, Y) 

Um. 
ay 

age £Nß(2 - . ßµ)Y + (2 + µe). ýNßg2 (X, Y) 
äx -c 

age 
ay 

-. Nß(2 - £µ - £v)X - (2 + M2 + v. e)¬Nß9, (X, Y) 
C 

(2 - µi - v2)(ffPY + A) + 21 e2Nß +. Nß(2 -ý IL)X 
C 

(2 -}- jut + vt)2Nßg2(X, Y) 
C 

(3.7.43) 

(3.7.44) 
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and A, 13 and C are as in (3.7.13). 

Substituting the trivial fixed point, Xi = 1, YY = 0, into (3.7.43), the matrix J 

becomes 
2-µ2 
2+ £µ 

J(ui) _ 

0 

which has eigenvalues 

-42Nß 
(2+£lt)(2 -£N/3+£µ+v. ) 

-2+t(-Np+µ+v) 
-2+t(Nß-µ-v) 

(3.7.45) 

A, -2- 
tµ 

and A2 -2- 
t(ic + v)(1 -1 o) (3.7.46) 

2+fy 2+t(µ+v)(1 -Ro) 
Obviously, JAi, 2 < 1, if Ro <1 for every value of £, and the trivial fixed point is 

unconditionally stable for Ro <1 and unstable for all 2 if Ro > 1. 

The elements of matrix J in (3.7.44), at the non-trivial fixed point in (3.7.3), are 

a9,4(µ+v)-2µNß-t2IL (µ+v)(Nß-pt -v) 
OX 4(µ+v)+2. ßµN/3+J2, c(µ-}-v)(Nß- p -v)' 

ägi 
_ -4t(µ + v)2 

aY 4(µ + v) -I- 2tyNß + a2µ(µ + v)(N, Q -µ- v) 

C992 
ax 

4. ßµ(Nß-µ-v) 

4lµ+v)+24LJV p+i`µ(µ+v)(N, i-µ-v), 

092 
- 

4(µ+v)+ViNß+v)(Nß-µ-v) 
äY 4(µ+v)+2 4Nß+a2µ(µ+v)(Nß-µ- v). 

The matrix J has eigenvalues A given by 

where 

with 

O(ff)=A2-Q A+22=o 

Q1 = 2(a - b), 

Q2 = a+b-c, 

(3.7.47) 

4(µ + v) 
a 4(µ + v) + 22µNß + £2µµ + v)2(7Zo - 1) 
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b= 
12µ(µ + v)2(Ro - 1) 

4(y + v) + 2t. Nß + £2µ(t + v)2(Ro - 1) 1 

C 
2fyNß 

= 4(µ + v) + 2. yNp + £2µ(µ + v)2(Ro - 1) 

45 

so that a, b, c are positive if Ro > 1. Necessary and sufficient conditions for stability 

are I Ai < 1, i=1,2. Since the eigenvalues are the roots of a quadratic equation, 

they can be real or complex numbers depending on the sign of the discriminant 

Q11 -4Q2. 

" The inequality Q- 4Q2 <0 here means that the eigenvalues ) and X2 are 

complex numbers. For stability, then, (X1,22 <1 implies 0<a+b-c<1. 

Hence, the time step £ must be chosen, for given values of N, 0, µ and v, to 

satisfy the condition I AuI < 1, i=1,2. 

9 For Qi - 4Q2 > 0, A and A2 are real numbers. Then, the property of a 

quadratic function is considered as follows: 

Now, «(-1) = 4a and cb(1) = 4b are positive for all Ro > 1. Next, d4(A)/da = 
2A - 2(a - b) and d2q(A)/da2 =2>0 so that q(A) has a minimum value at 

= )min =a-b. 

It is found that Amin > -1 and . train <1 when 

a-b+1 = 8(1, t+v)+2. ßµNß>0 and 

a-b-1 = -2¬µNß-2t2µ(µ- zi)2(7o-1) <0 

then -1 < Amin <1 when Ro < 1. Finally the minimum value at A= Amin is 

-V'f 
(iLNO)2 

- 4µ(µ + v)3(%Zp - 1)) 

{4(µ + v) + 2.2µNß + £2µ(µ + v)2(7Zo -1)}a 
<0 

whenever Ro >1 and (µN, 8)2 > 4µ(µ + v)3(1Zo - 1), irrespective of the size of 
the time step £. 
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These, therefore, are the conditions under which the numerical method (3.6.50), 

(3.6.51) will converge to the non-trivial fixed point in (3.7.3). 

In the case when Ro =1 the non-trivial fixed point coincides with the trivial fixed 

point and the elements of the matrix J take the values given in (3.7.16), (3.7.29), 

(3.7.34) and (3.7.44) with X= Xi =1 and Y= Yi = 0. All numerical methods 

will, therefore, converge to the trivial fixed point, using an appropriate time step, 

when Ro = I. 

3.8 Numerical Experiments 

The initial-value problem given by equations {(3.3.6), (3.3.7)} and {(3.5.1), (3.5.2), 

(3.5.3)} are solved numerically by using the developed methods in § 3.6. All exper- 
iments are carried out with the parameter values 

µ=0.04 years-i, 
v= 24.0 years-1, 

(3.8.1) 

which are considered by Duncan et al. [9]; these values of µ and v refer to an 

average life expectancy of 25 years and an infectious period of approximately 15 

days (approximately), respectively. 

In the case of the SIR model in {(3.3.6), (3.3.7)}, the reproductive rate Ro will 
be serve as a bifurcation parameter. The product of population and susceptibility, 

Nß, was chosen to be Nß = 23 (Ro = 0.96) first and then NP = 123 (Ro = 5), 

hence testing values of Ro smaller and larger than unity. Therefore, for the first 

the trivial critical point should be attracting and for the other the system should 

converge to the non-trivial critical point. In the case of the seasonal SIR model given 

in equations (3.5.1)-(3.5.3), the infection rate is time dependent depending upon p, 

5 and w. Following Duncan et al. [10], 8 will be serve as the bifurcation parameter 

and the behaviour of this system will be reported in §3.8.2. 
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3.8.1 Numerical solutions of SIR model 

The numerical experiments are performed for various values of £ to observe the 

behaviour of the numerical methods. All experiments are carried out with the pa- 

rameter (3.8.1) and N%3 = 23 (Ro < 1) and N/3 = 123 (Ro > 1) and the initial data 

given by 

Xo = 0.25, 
Yo 0.0006. 

Method , 
Mr 

(3.8.2) 

Since restricting conditions on .£ for asymptotic stability were found, convergence 

cannot be expected for every step length. For 7Zo > 1, the method was seen to give 

oscillatory convergence to the non-trivial fixed point until .£ reached 0.0515. Steady 

oscillations appeared in the numerical solution: oscillatory, very slow convergence 

occurred for £E (0.04,0.0515), and the method produced overflow for £>0.0515. 

These findings are illustrated in figure 3.2 (a)-(c). Taking Ro <1 the method gave 

monotonic convergence to the trivial fixed point when a time step £<0.125 was 

used but overflow was produced for £>0.125. 
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Figure 3.2: Time series using method M1 with NQ = 123 (1Zo > 1) and (a) Q=0.01, 
(b) Q=0.05, (c) £=0.0515. 
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Method M2 

This method never produced overflow and always converged to fixed points for all 

positive time steps. This was expected since the method was shown to be uncon- 

ditionally convergent in §3.7.2. The method simulates the behaviour of the model 

correctly, converging to the non-trivial fixed point for Ro >1 and to the trivial fixed 

point for Ro < 1. Convergence is seen to be slower for larger time steps (figure 3.3 

(a) -(c)) " 
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Figure 3.3: Time series of susceptible fraction produced by Method M2 with 
Nß = 123; (a) £=0.05, (b) £=0.5 and (c) £=2.0. 
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Method M3 

When Ro < 1, this method gave monotonic convergence to the trivial fixed point for 

all 2>Q. When Ro > 1, the method gave oscillatory convergence to the non-trivial 

fixed point fort < 6. Monotonic convergence took place whenever £E [6,9.66). That 

is, the higher the value of t, the quicker the non-trivial fixed point is reached, see 

figure 3.4. When £E (9.66,16], the method produced periodic limit cycles around 

the non-trivial fixed point and chaos was observed. The method produced overflow 

for £> 16. Figure 3.5 shows the bifurcation diagram for this method as £ increases. 

In this diagram, it is seen that the period-1 originates from a single point, period-2, 

where there are two points and so on. Chaos occurs in the bands where the dots 

seem to be smeared at random. Such dynamic behaviour is usually very interesting 

but it is contrived. 
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Figure 3.4: The time series of infective fractions for various £ (left-hand column) and 
the corresonding phase-plane (righ-hand column), the infective fraction versus the 
susceptible fraction, using method M3 with No = 123 (Ro > 1) and (a) £=0.1, 
(b)ý =0.5, (c)2=1. 
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Second-order Method 

53 

This method is seen to be very restrictive on time step, £; for Ro >1 it produced 

overflow when t>0.394. It gave oscillatory convergence to the non-trivial fixed 

point for £<0.292. For 0.292 <£<0.394, oscillations appeared and some meaning- 

less negative values were observed for the infective proportion before the solutions 

converged to the non-trivial fixed point. When Ro < 1, this method did not produce 

overflow but converged to the correct fixed point for 
.£<1x 106 with monotonic 

convergence for .£<0.12. 
For 0.12 <£< 100, oscillations appeared in the infective 

proportion while for 100 <£<1x 106, oscillatory convergence occured in both the 

fraction of population susceptibles and infectives. When £>1x 106, convergence 

did not take place; instead, this method produces periodic cycles around the fixed 

point. These findings are shown in figure 3.6 (a)-(c). 

Overall, it was observed that using an appropriate time step t, all methods 

converge to their theoretically-predicted fixed points in all cases. 
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3.8.2 Numerical solutions of the seasonal SIR model 

In order to test the behaviour of the developed methods for solving the seasonal SIR 

model when the contract rate p is replacing by /3(t) as defined in (3.5.3), a second- 

order method is first chosen to illustrate some numerical results. The model will be 

considered with Nj3o = 123, w= 37r and Nfio = 270, w= 2ir, while S will serve as 

a bifurcation parameter, as in Duncan et al. [10]. For all parameter values chosen, 

the model is run for 250 years and all figures show the results for the last 20 years. 

The numerical solutions of the seasonal SIR model is shown in Figures 3.7-3.12. 

For Nßo = 123 and 6=0.1, the numerical results of modelling. are shown in 

Figures 3.7 (a)-(c). It is seen that the response is non-sinusoidal (Figures 3.7 (a), (b)). 

The infective fraction falls to zero in the inter-epidemic period (Figure 3.7 (a)), 

which means that the disease was not endemic. A corresponding simulation for the 

susceptible fraction shows a progressive build-up by new births during the inter- 

epidemic period and a dramatic fall during the epidemic, see figure 3.7 (b). The 

phase diagram of the susceptible fraction versus the infective fraction versus NB is 

shown in figure 3.7 (c). Here, NB is the ratio (Nß(t) - N/3o)/Nßo which is obtained 

from (3.5.3). 

Repeating the calculations using the same parameters but with N/3o = 270 and 

w= 21r yields a very different result. Specifically, qualitatively different dynamics 

are obtained for different values of S. As S increases, the solution passes from a 

period-1-year cycle to a 2-year cycle and to chaotic behaviour via a sequence of the 

period-doubling bifurcations, see Figure 3.8 (a)-(f). The period-doubling sequence 

of the seasonal SIR model is shown in Figure 3.8 (c)-(f). The behaviour-solutions 

appear to be almost coincident with Duncan et al. [10] in their Table 1, showing 

that a second-order method gives a reliable representation of the numerical solutions 

associated with {(3.5.1), (3.5.2), (3.5.3)}. The fraction of the population infected does 

not drop to zero, indicating that the disease is epidemic. 

The numerical experiment leading to Figure 3.8 (a) is repeated using Methods 

M1, M2, M3 and a second-order method with different time steps (see Figures 
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3.9-3.12). Figures 3.9 (a)-(c) show time series of infective fraction using method 

M1; these figures correspond to figure 2 (a) in Duncan et al. [10] but the profile of 

the infective fraction is lower. The numerical results using Methods M2 and M3 

are very sensitive to the time step chosen so that different time steps give different 

cycles. It is seen that both methods give a biennial cycle for £<0.003 and the profile 

of the infective fraction increases as the time step decreases, see figures 3.10 (b), (c) 

and 3.11 (b), (c), respectively. Figures 3.12 (a)-(c) are produced by a second-order 

method, the plots agree with Duncan et al. [10]. 
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Figure 3.7: Numerical solution for the seasonal SIR model produced by the second- 
order method, N/3o = 123, S=0.1, w= air and £=0.01: (a) the infective fraction 
versus time, (b) the susceptible fraction versus time, (c) phase diagram of susceptible 
fraction versus infective fraction versus NB. 
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Figure 3.9: The infective fraction versus time using method Mi with N/30 = 270, 
6 =0.08 and (a)£=0.01, (b)£=0.005, (c)£=0.001. 
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Figure 3.10: The infective fraction versus time using method M2 with Nß0 = 270, 
S=0.08 and (a) £=0.005, (b) £=0.001, (c) £=0.0005. 
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Figure 3.11: The infective fraction versus time using method M3 with N/30 = 270, 
S=0.08 and (a) £=0.005, (b) £=0.001, (c) 

.£=0.0005. 
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3.9 Conclusions 

Three first-order schemes and a second-order finite-difference scheme have been de- 

veloped for the numerical integration of the SIR whooping cough model given by the 

non-linear system of equations (3.3.6) and (3.3.7). The stability properties of the 

methods showed good agreement with the qualitative analysis of the ODE system. 

Numerical experiments showed that the first-order methods, M2, M3 and a second- 

order method gave the correct behaviour for larger value of a time step, 2, than Euler 

method (M1). Moreover, the first-order method, M2, shows superior stability prop- 

erties in the sense that the method never produces overflow and convergence takes 

place for all . £. 

The seasonal SIR model implies the modelling of periodic behaviour and even 

chaos. This model is also solved numerically using three first-order and a second- 

order methods. The second-order method showed more accuracy and produced so- 

lutions to the seasonal SIR model which were similar to those reported in Duncan 

et al. [10]. The first-order methods are sensitive to the step length used and using 

a very small time step seems to be necessary to obtain the correct cycles. 



Chapter 4 

The dynamics of one-dimensional 
whooping cough model 

4.1 Introduction 

The SIR whooping cough model which consists of two non-linear ordinary differential 

equations (ODEs) was considered in the previous chapter. It is assumed that the 

population is mixing thoroughly, so that there is no distinction between individuals 

in one place and those in another. When this is not so, the disease may spread faster 

in some part than in others and it is necessary to allow the variables to depend on 

space as well as time. It would thus seem natural to extend the model by including 

diffusional effects, allowing for investigation of the spatial spread of whooping cough 

epidemic. In this chapter a spatially-structured (reaction-diffusion) equation will 

be studied and three numerical methods developed for the numerical solution of the 

spatial spread of whooping cough in one space dimension. The population considered 

here consists of two parts, susceptibles and infectives. Let S(z, t) and I (z, t) denote 

the numbers of infected and susceptible individuals, where z and t denote the position 

in space and the time, respectively. In order to proceed, the epidemic is assumed to 

diffuse through space. As described in chapter 3, the transmission from susceptibles 

to infectives is assumed to be PSI where 1 is the transmissibility coefficient. This 

form means that 3S is the number of susceptibles who catch the disease from each 

infective. Also, it is assumed that all births are into the susceptible class, and that 

births exactly balance deaths so that the total population size, N, is constant. With 

65 



Chapter 4: The dynamics of one-dimensional whooping cough model 66 

these assumptions the whooping cough model with diffusion can be written as 
2 

5t N-µS-PSI+a0z (4.1.1) 

2 
at -(µ + v)I + PSI + aa21 (4.1.2) 

where the parameters y, v and a denote the death rate, the rate of recovery from 

disease and the diffusivity of the population (which is assumed to be a non-negative 

constant and the same for both groups), respectively. Equations (4.1.1) and (4.1.2) 

are subject to the initial conditions 

S(z, 0) = So, I(z, 0) = Io; -L <z<L (4.1.3) 

and the boundary conditions are assumed to be 

äS(±L, t) 0I (±L, t) 
az az 

0; t>0. (4.1.4) 

It will be assumed that the system {(4.1.1 
, 
(4.1.2)} is defined for -L <z<L, 

t>0 and so, for this ranges, the initial/boundary-value problem {(4.1.1)-(4.1.4)} 

is symmetric about the line z=0. Because of the symmetry it is enough to solve 

equations (4.1.1) and (4.1.2) which satisfy the initial conditions 

S(z, 0) = So, I(z, 0) = lo; 0<z<L, (4.1.5) 

and the boundary conditions, 

aS(O, t) _ ai(0, t) 
__ 0; t>0, (4.1.6) az az 

t9 (L, t) 
_ 

aI (L, t) 
_ 0; t>0. (4.1.7) 

az az 

The discussion begins by analysing three numerical methods in §4.2, §4.3 and 

§4.4, respectively. In §4.5 the von Neumann method and maximum principle analysis 

will be used to analyse the stability of the methods and their implementations are 

given in §4.6. It is seen that the three methods are not expensive to implement, as 

the solution vector is obtained explicitly. The dynamics of whooping cough using 

two sets of initial conditions will be described in §4.7. 
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4.2 Discretization and Notations 

A solution of the system of partial differential equations {(4.1.1), (4.1.2)} may be 

computed by finite-difference methods by discretizing the space interval [0, L] into 

M sub-intervals each of width h>0, and the time interval t>0 is discretized in 

steps each of length £>0. The open region 5l = [0, L] x [t > 0] and its boundary 

91 consisting of the lines z=0, z=L and t=0 are thus covered by a rectangular 

mesh, the mesh points having coordinates of the form (zn,,, t,, ) = (mh, nl); n= 

01112.... ;m=0,1,2, ... , 
M. The solutions of {(4.1.1, (4.1.2)} at the typical mesh 

point (z,,,, t,, ) are, of course, S(zm, tn) and I (z,,,,, tn, ) which will be denoted by Sm 

and Im, respectively. The theoretical solution of an approximating finite-difference 

method at the mesh point (zm, t, ) will be denoted by Xm, Y, n, while the values 

actually obtained which may, for example, be subject to round-off errors at this 

mesh point will be denoted by Xm and Y, n, respectively. 

4.3 Numerical Methods 

A family of numerical methods will be developed by approximating the time deriva- 

tive in (4.1.1) and (4.1.2) by the first-order forward difference replacement 

au (z, t) 
_ u(z, t+ t) - u(z, t) + 0(e) as £ -> o, (4.3.1) at £ 

and the space derivatives in (4.1.1) and (4.1.2) by the weighted approximant 

82u(z, t) 
^, h-2 O{u(z - h, t+ t) - 2u(z, t+ Q) + u(z + h, t+ 2)} äz2 

+(1 -0) u(z - h, t) - 2u(z, t) + u(z + h, t) (4.3.2) 

in which u(z, t) = S(z, t) or I (z, t), z=z, (m = 0,1, ... , M), t=t,,, (n = 0,1,2, ... 
) 

and 0,0 <0<1, is a parameter. When 0=0, (4.3.2) is 0(h2) as ]t, 1 --> 0 and is 

0(h2 + 1) as h, £ -* 0 otherwise. 

The non-derivative terms in the right hand sides of (4.1.1) and (4.1.2) may be 

replaced in the following three ways 

(a) - µX - OX Ym and - (µ + v)Yn + ßXXY, m (4.3.3) 
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(b) - tiXm i- ßX, n 1Ym and - (fc + v)Y, n+' + ßX Y, n (4.3.4) 

(c) -µ 
(_ 

_ 
1) 

-ý 
(X'" i ý'm + X"' ý'"''+i) 

and 22 

I yn +y +1) (X +1 Yn +XY +l) 
m in -(µ+v)\ 2 -F ,ß2 

(4.3.5) 

These approximations, together with the replacement for the time and space deriva- 

tives of S and I, give rise to three numerical methods, Method A1(0), Method A2(0) 

and Method A3(8) for the numerical solution of {(4.1.1)-(4.1.4)}. These methods 

are as follows: 

Method A1(O), 0<0<1: 

xn+1 - 
xn 'n {1- 2Ji'n+1 nI1 

mm µN - pXnn - PXnnYn +e m-1 
XM+l 

2 

+(1-0) 
Xn - `Z1XTn". + ý'm+l 

(4.3.6) 

y +l - yn 
__ 

/n /ý nn 
Ym+i - 2Yn+l + Ym+i 

-lµ+v)Y2+NXmym+e h2 

yn ` 2Ym + ý'm+l 
(4.3.7) 

h2 

Method A2(0), 0<0<1: 

Xm lý X'n 
= µN - µXm 1- ßXm 1Ym +0X. -1 -2m'+X . 

n++', 

2h 

ý1 _ ýý `! -1 -2hX2m+ ý' n+l 
' 

(4.3.8) 

Ym+1 - 
Ym 

n Fl Ti n 
Ym±l 

- 
2Y, m+1 + Ym+1 
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-{-(1 - B) 2Ym + Y, n+l (4.3.9) 
h2 ' 

Method A3(B), 0= 1/2: 

Xm 1i XM 
= µN -µ 

(X''i 
2 

mit 
l) 

-p 
(Xm 1ý'"n 

2 
Xyn'1' 

'+ýý 

+0 
Xi-2 

h2'+X 
+i +(1-0) 

Xrn-i-2 
2, 

+Xm+1, (4.3.10) 

ym+lý ym 
-G, + v) 

ýym 
2ym+1) -I- 0 

(X ±ly 
` 

Xyn`+l) 
2 

+BY. 
n-i -2 h2+1 + ý'in+i 

-+(1-0) 
Ym-1 - 2Ym7 + Ym+i. 

(4.3.11) 

It follows that equations (4.3.6)-(4.3.11) can be rewritten, equivalently, as 

Method Ai(0), 0<0<1: 

-pOX +i + (1 + 2pO)Xm 1 
-- pOX+i = p(1 - B)Xm-1 

--{1 - ýµ - ýý3Ym - 2pý1 - Bý}Xm } pýl - OýXm+ý -I- ýµNý (4.3.12) 

-pOYYý"i + (1 -I- 2p6)Ym+1 - pOY, n+l = p(1 - eýYm-1 

+ v)2 +tßX, n - 2p(1 - e)}Ym + p(1 -OY +1, (4.3.13) 

Method A2(0), 0<0<1: 

-pOX, 
i+ (1 + µt + 1/3Ym + 2pO)Xm i- pOX 

, 
+i = p(1 - O)Xm-1 

+{i - 2p(1- e)}xm + p(1- O)x 1+ eµN, (4.3.14) 

-pOY 
t+ (1 + (/L + v). e + 2pO)Y, n+i - pOYn+i = Al - 6)Ym-1 

+{1 +£ßXm - 2p(l - 6)}Y" + p(1 - O)Yn+i, (4.3.15) 
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Method A3(B), 0= 1/2: 

-1 pXm i+ (1 +1 Fei + jJ3Y + P)Xm i-1 pX +1 +1 ýýX" y 
222m22mm 

=2 pXm-1 + {1 -2 2µ - p}Xm + pXX+1 + iliN, (4.3.16) 

- pYm+i + (1 + 
1(fß 

+ v)e -1 I3Xm -}- p)Ym-+-l- 
1 

pYm+i - 
1ýpY 

X1 
22222 

=2pY, ý_i-F{1-2(µ v)ý-p}Y, '; +2pI'7n (4.3.17) 

where p= ai/h2, m=0,1,2, ... ,M and n=0,1,2, ... . 

4.4 Local Truncation Errors 

Consider again the use of (4.3.1) and (4.3.2) in (4.1.1 and (4.1.2). The local trun- 

cation errors associated with (4.3.12), (4.3.14) and (4.3.16) may be obtained from 

(4.3.6), (4.3.8) and (4.3.10) and are given by 

, cs [S(z, t), I(z, t) : h, i] =t1 [S(z, t+ t) - S(z, t)] 
-aOh-2{S(z - h, t+ £) - 2S(z, t+ 2) + S(z + h, t+ £)} 

-(1 - O)ah-2 {S(z - h, t) - 2S(z, t) + S(z -º- h, t)} 

-µN + a{µ + ßI(z, t+ p)}S(z, t+ qt) 

+b{µ + ßI (z, t)}S(z, t+ . £) 
(2 j äSýt, t_ 

µN + µß, (z) -I- /S(z, t)I (z, t) -a öz2 

where 

(a) for family Ai(0), a=1, b=p=q=0, 

(b) for familyA2(0), a=q=1, b=p=0, 

(c) for familyA3(0), a=b=0.5, -p=1, q=0. 

The local truncation errors associated with (4.3.13), (4.3.15) and (4.3.17) may 
be written down from (4.3.7), (4.3.9) and (4.3.11) and are given by 
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£i[S(z, t), I(z, t) : h, £] = £-i{I(z, t+ t) - I(z, t)] 

-aOh-2{I(z-h, t+£)-2I(z, t+£)+I(z+h, t+£)} 

-(1 - O)ah-2{I(z - h, t) - 21(z, t) + I(z + h, t)} 

+c{(µ + v)I (z, t+r. e) - ßS(z, t+ st)I(z, t)} 

+d{(µ + v) - ßS(z, t)}I(z, t -i- . Q) 
2 01(z, 

- t) + (µ + v)I (z, t) - ßS(z, t)I(z, t) - as 
2] 

(4.4.2) 

in which 

(a) for family A, (0), c=1, d=r=s=0, 

(b) for family A2(0), c=r=1, d=s=0, 

(c) for family A3(0), c=d=0.5, r=0, s=1. 

Using Taylor's series, the local truncation errors for the three methods, as 

h, l --), 0, are given by 

(i) for family A, (0): 

1 a4 S3 
£s[S(z, t), I (z« t); h, 2] =-- ah2- 

S+£1aS- 
a0 

as+... 
, 

(4.4.3) 
12 az4 2 9t2 az2at 

4231 

£1 [S(z, t), I (z, t); hl . e] = -12 ah2 0Z4 2 ät2l - a0 äz20 j+... , 
(4.4.4) 

(ii) for family A2(9): 

12 04s 1 a2s as as aas £S [S(z, t), I (z, t); h, i] - -12 ah äz4 +ý2 ate +µät + pi ät - ao az2ac 
+.. ., (4.4.5) 

4 2I 

, cI[S(z, t), I(z, t); h, i] - -1 ah2 
aI+£1a+ 

(µ + v) 
r- 

ao 1931 12 az4 2 at2 T- az2at 
+ .... (4.4.6) 



Chapter 4: The dynamics of one-dimensional whooping cough model 72 

(iii) for family A3(B): 

2 £s [S(z, t), I (z, t); h, t] =-1 12 ah a4s 
az4 

als as as ar a3s +2 [ate +µ at + RI at + ýs ät - 2aB az2at] 
1 ass 1 als 1 als 1 a21 1 a4s 

L6 at3 
+4 5t2 + 

4fiI at2 
+ 

4ýS at2 - 2aeaz2at2I 
t2 

+..., (4.4.7) 

4 

, CI[S(z, t), I (z, t); h,. ý] =- 
-ah ßz4 

1 02I aI aI as a31l 
2L ate ++ v) Cit - 

ßs 
at - ýI at - 2a9 az2atl 

1 aal 1 a2I 1 a2I 1 ä2S 1 a4I l2 
+L6 ät3 +4(µ+v)ate 4ßSat2 4flI ät2 2aBaz2at2Jý 

-f- .... 
(4.4.8) 

Equations (4.4.3), (4.4.4), (4.4.5) and (4.4.6) verify that both families A, (0) and 

A2(8) are O(h2 + . 
£) as h, .£ -> 0. Nevertheless, differentiating (4.1.1) and (4.1.2) 

with respect to t shows that when 0=2 the term in .£ vanishes in (4.4.7) and (4.4.8), 

leaving 

£s [S(z, t), l (z, t); h, t] = -ch 
204S 

12 öz4 
f1 03S 1 ä2S 1 

I52S 
L6 ät3 +4µ ät2 +4 ät2 

1 a21 
_1 

4s + 4PSat2 4aaz2at2Jý2 +... (4.4.9) 

1[S(z't)'I(z't)'h' 
a h2 ä4I 
12 az4 

1 a3I 1 821 1 821 1 a2 S1 041- 
+ 

L6 at3 +4 ýfý + vý 
tit2 4ßS öt2 4 

ßI 
ät2 4a az2at2 

1 
12 + ... 

(4.4.10) 

which are O(h2 + £2) as h, £-*0. It may be concluded that the family A3(0) is a 

second-order method provided 0=2. 
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4.5 Stability Analyses 

The von Neumann or Fourier series method of analysing stability will be used to 

gain some insight into the stability of the families Ai(O) and A2(B). These methods 

seek the condition(s) under which small errors of the forms 

7i" _ xn - Y'n _ eynteismh 4.5.1) 
x, m 'mm 

and 
y, 

m 
Yrn - Ym = C'ý'nee: ¢mh' (4.5.2) 

where ^y, 0,6 and 0 are real, i= and Xm, Y, n are perturbed numerical solutions, 

necessary conditions for the errors not to grow as n -+ oo are (see Smith [10]) 

je'lej<1+MMt and jeO'I<1+Myt (4.5.3) 

where M.,; and M. are non-negative constants independent of h, £. The conditions 

in (4.5.3) make no allowance for growing solutions if X=0 and M. = 0. 

Method Ai(O) 

Substituting Z. into (4.3.12) leads to the (local) stability equation 

{1 -F 4pO sine 
s2 

}ýx =1- 4p(1 - 9) sine 
2s- 

µQ - QßY, n, (4.5.4) 

where G= erye and Y7 is treated as a (local) constant. The von Neumann necessary 

condition for stability is ýý,; I<1, that is, the stability restrictions are 

0<0<1/2, p< 
2-t(µ+ßYm) 

4(1 -20) 
0=1/2, £(µ+ßYm)<2) 

1/2<0<1, p>t(µ-I-ßY, n)-2 
4(20-1) 

Substituting Zy into (4.3.13) gives the (local) stability equation 

{1 + 4pO sine 
Oh 

}ýy -1- 4p(l - 8) sine 
2h 

- (µ + v), Q + ß. QX , 

(4.5.5) 

(4.5.6) 
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where ýy = e'k' and Xm is treated as a (local) constant. The von Neumann necessary 

condition for stability is Jýy I<1, that is, the stability restrictions are 

2-f(µ+v-ßXm) 
0<B<1/2, Pý 4(1-20) 

9= 1/2, /3tXZ > (It v)i -2 

1/2<0<1, p> -2+(µ+v-, ßX, ' 
, 
)i 

4(20-1) 

and p> -(y +y-fix"Ot 
4 

and p> -('u+v-PX')i' 
4 

and p> -(y+v-OX. V. 
4 

(4.5.7) 

Method A2(O) : Substituting ZZ into (4.3.14) leads to the stability equation 

{1 + ty + tßY, + 4pO sine 
S 

}ýý =1- 4p(1 - 0) sine 
2 

(4.5.8) 

from which it may be deduced that, for stability, 

2+. p+2ßY 0<8<1/2, p< 4(l - 20) 
0= 1/2, #iY, n > -2 - p. 2, (4.5.9) 

1/2 <0<1, p> -(2+id +. eßY,, ) 

4(20-1) 

Substituting Zy into (4.3.15) gives to the stability equation 

{1 + (µ + v)2 + 4PO sine 
2h 

}ýy =1- 4p(1 - 0) sine 
2h 

+ £ßX 
,, 

(4.5.10) 

with the consequent stability restrictions 

2+(µ+y)ý+e/3X -(µ+ 
_+ ___ 0<B< 1/2, p 4(1-20) and p>4 

0= 1/2, ßfXm < -2 - (µ + v)1 and p> -(µ + y)t -' tßXm 
-4 

-(2+(µ+v)i+tPXm) and p> -(µ+_ +___ 1/2<B<1,4(28-1) 
4 

(4.5.11) 

For the second-order method, A3(9 =2), the von Neumann method fails to give 

a criterion for stability since it is not possible to find 0ý and ýy ehe explicitly 
(see for example Al-Showaikh [2]). Therefore, the maximum principle may be used 
instead to discuss the stability of the second-order method. 
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In order to investigate the convergence of the method A3(O = 2) equations (4.1.1) 

and (4.1.2) may be written as 

a2S 2 

2a az äz = at -µN+2(µ+QI)S+2(µ+ßI)S 

as_ 
at µN + Gl (z, t, S, I) + G2 (z) t, S, 

-T) 1 
(4.5.12) 

2 021) 01 1 
2a 

( 

ßz2 +ßz2 = ýt +1 [(µ + v) - , ýSII +2 L{µ + v) - ßS]I 

_ 
ýt 

+G3(z, t) S, I)+G4(z, t, S, I), (4.5.13) 

with initial and boundary conditions 

S(z, o)=so, r(z, o)=Io; 0 <z<L 

as(z, t) 
- 

DI (z, t) 

, Oz Oz = 0; atz=0andz=L, t>0 

(4.5.14) 

(4.5.1 5) 

Assume that a solution of {(4.5.12), (4.5.13), (4.5.14), (4.5.15)} exists in the closed a4S 4 D2 S ý2 
az , az , ad 

2 
region [Q: 0<-z<-L, 0<t<T] such that and exist and are 

bounded in Q. Moreover, assume that functions G1, G2i Gs and G4 are boundedly 

differentiable with respect to S and I. 

The difference equation to be studied as an approximation to (4.5.12) is (0 = 1/2) 

aV 
(X + Xmý QtXm 

- 1iN + (M + ßYm+l )X 

}2 (µ + ßY, ) X, 
�+', n>0, (4.5.76 

where . 

02Xn 
Xm_1 -2X. + Xm 1 (4.5.17) zm h2 

QtX 
Xmn+1 - Xmn 

n_. 
m (4.5.18) 

It is easy to see that 

8Sm1 

_ 
Sm1-Sm 1 a2Sm1 

at £+ 2ý at2 
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2 Sn+i + Sn _1 
82s +1+1 82Sm 

+1 h2 
8 srn+i 

V 2 z(m n) 2 0z2 2 äz2 24 äz4 

76 

Ö4Sn' + rrý 
Öz4 

(4.5.20) 

G, (zm, tn+1, sm, Im 1/ - Gi (zm, 
7 
tn+17 Sm) Im) + ll�±i - Im 

DI 

= 2Cµ + iýIm)Sm + (In+l - Im)ýSl 

G2 (z7a7 tn-f-] 
i "Sm 

l) Im) = C2 (zm7 tn-f-l) Sm) 1m) + (Sm 1- 
, 
S, n) 

as2 

=2 (µ + ßIm) Sm + (Sm- Ste)as2 (4.5.22) 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the mean value theorem. 

Substituting (4.5.19), (4.5.20), (4.5.21), (4.5.22) into (4.5.12) gives 

2aVz(Sm +S=VS- µN +2+ /jIm 0871 +2 (µ + ßJn)sý±l 

1i 828n 1- 
In 1- In 

U1 +1 ah2 
a4S. 1+ a4 

, 
Sm 

+ 
24 az4 

-a-Z4 

2 ate (m m) al 

_(5n±1 _ sm) aG2 

as 
(4.5.23) 

The assumptions on S and I above require the boundedness of all the derivatives 

appearing inside the bracket along with (S�, +1 - S) and (1,11, +' - I, ") in the region 

0<z<L, 0<t<T. Hence, in this region, 

2«O2 (Sm +Sm) =V Sm-µN+2(lt +ßl, 1)S; +2(µ-+-ýrnL)sri 

+g (4.5.24) 

with 

9_ O(h2 +t')" (4.5.25) 
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Let 

Zim = S", - X" (4.5.26) 

Z2m - Im - Ym, (4.5.27) 

then, subtracting (4.5.16) from (4.5.24) yields 

2aVz(z '+Zim)=VtZl +2(µ+(ýIm1)Sn2(N, +ßY, n+1)X, nn 

+2 (IL + pI, nýi)S�±l -2 (µ + ßYý)Xm 1+g (4.5.28) 

with Zi, +1, Zi,,,, vanishing on the boundary. As 

n n+l =(n n+1) (n ýn Gl(zm1 tnFl1 Sm) 
m)- 

GllzmýtnllýXmýYm +`ým-ýim) 
ÖS 

+(Im 1- Ym+l) - 
Il' 

(4.5.29) 

G2tn 1m 
l)Im) 

- 
G2(zm5tn-I-1ýXm 1iYm) + l'sm 

ýý 1ý 

(ý, 52 

-F (Im - Ym) (9:. 5.30) 

thus, 

1 
2( n+l nn1 0Gi 

Zn 
1 DG2 

n+l 1 8G 
n, i-1 

2a Ox l7lm Zmý = Ot Zlm +2 DS 7lm +2 äS Zum +2 (ýI 
G2m 

+1 
5G2 'n 

2N 
7' n 2m +9m" 4.5.31 

Assume that Z2�,, Z2, +' are bounded. Then equation (4.5.31) may be written in 

the form 

2aV2 (Ziml +Zimý VtZimý- 2Mls(Ziml Zlm)+ M11(G2m+Zu') 

+n gm (4.5.32) 

where 

MIS = max 
{ äG1 OG2 

as I as 
Mii = max { ar ' ar 

It is known that gm is bounded and Zim and Z1m1 vanish on the boundary. 

Hence, by Theorem 2.15, Xm and Xm 1 converge uniformly to Sm and S nß'1 
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The difference equation to be studied as an approximation to (4.5.13) is (0 = 1/2) 

2 a0z (Ym+l -+' ý', ý) =v Y7; +2 
'[(,, 

+, ) - #X 71 1l Yrn 

-I- 2 [(µ + v) - QX,, ]Y, n+l, n>0 (4.5.33) 

where V and Vt are defined as in (4.5.17). 

It is seen that 
91 n+l 

1 n+l 
- 

In 1 821n+1 

at 
mQm+ 

2f 8t2 
(4.5.34) 

ta 
n+r In 

1 a2lm 11 a21m 12 a4I +l a4J 
2 ý(In + Im) -2 0z2 +2 öz2 + 

24h 5z4 + ýzq 
(4.5.3 5) 

G3(zm3 tn+1, Smn n+ n1i Im) 
- 

G3(zm) tn-E-1 
i 

Smn 
, 

Im) ýSm±l 
- , 

Smý 

19s, 

3 

=2 [(lL + v) - /ýS]Im -}- (Sm 1- Sm) (4.5.36) 
al5 

14 = G4lzmj tnll>'S�n, ýml + 
ll 

+l 
- 

jm)7Zr4 Gq(zmýtn+1, m S 

1= 

2Lßµ v) 
p'Sm + (4.5.37) 

where the barred derivatives are evaluated at intermediate argument values as called 
for by the mean value theorem. 

Substituting (4.5.34), (4.5.35), (4.5.36), (4.5.37) into (4.5.13) gives 

2a0z+1 I', =VI+- pSm I]rm + pS�ti]rm'1 

+1 ah2 a4I +1 j4 nI1 a2ýý±1 ýSn+ý _ S, DC3 24 az4 + az4 +2 ate n in 

as 

-(Im 1- In) 
8G4 
ar (4.5.38) 

The assumptions on S and I above require the boundedness of all the derivatives 

appearing inside the bracket along with (S+i -S and 71m yný 
( 

ýn 
1M) in the region 
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0<z<L, 0<t<T. Hence, in this region, 
1a 

p2 (I +l Imo) = pt I2 [(lt v) -pSm1 ]J 2 L(lt + v) PS' 

n ý gm 

with 

gm = O(h2 + f). 

Subtracting (4.5.33 from (4.5.39) and using (4.5.26), gives 

79 

(4.5.39) 

(4.5.40) 

a Vz (Z2ni + 72mý = Vt 7'2m +2 L(µ + v) - 
ßSm 1ýIm 

-2 
LýN vý -m 

lIYn 

gam, 4.5.41) +2L(µ + v) - ßS ]I, 1-2 [(11 + v) - ßý' n]ý'mý"1 + 

with Z2,;;; 1, Z2,,, vanishing on the boundary. As 

G3(zm) tn+1, 'Sm 
l' Imý 

- 
G3lzm1 tn+1, 

m 
1> Ym) + ('Sm 1- Xmn+l) 

(Imn n) 8G3 
(4.5.42) 

m) 

ý9G4 
G4(zmi tn{1j 8n Jfl 

rn+1) = G4 (Zm, tn+1, X nj Yýn+1) + (S. n 
-'rýrn 

F(j ±l _ ym 5 
4, (4.5.43) 

thus equation (4.5.41) becomes 

2nI1nn1 UCT3 
n }1 

1 8G4 1 UCa3 n 
2a ýz (Z2m + Z2 

m) = Ot Zn +2 ÖS 7lm 
2 äS Gxm +2 

c) 1 
Gem 

+1 
8G4 

Z2m 1 -}- 9 2 aI (4.5.44) 

aG3 9G4 
Let Mis = max 

{ 
aS ' aS and Mgr = max { 

51 , aI 
}. Then equation 

(4.5.45) can be written in the form 

2aVz(Z2m1+Z2m) 
VtZ2m+2M2S(Ziml+Zlm) +2M21(Z2m`f'G2rn1ý 

ý gm (4.5.4 5) 

Assume that Zim, Zimt are bounded. Since Z�L and Z1+' vanish on the boundary, 

it follows, by Theorem 2.15, that Y, ' , and Ym+1 converge to In and I; +r uniformly. 
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4.6 Implementation 

Because of symmetry, it is enough to treat only the region z>0. This provides 

considerable saving in storage and CPU time. This imposes the conditions 

asäo, t) 
=0 and alao, t) 

- 0; 1>0 (4.6.1) 

on the new boundary z=0. The derivative OS/8z in (4.1.4) may be approximated 

by the second-order, central-difference replacement 

as (z, S(z + h, t) - S(z - h, t) + 0(h2) (4.6.2) az 2h 

with a similar replacement being made to DI/öz. The implementation of the bound- 

ary conditions (4.1.4), yields, on z=0 and z=L, 

X1 - X-1, Y1 - Y' and Xnl+, _ ýrM-1' YM+, _ ný-, (n = 0,1,2,... ) (4.6.3) 

to second order thus introducing the exterior grid points (-h, nL') and 
(zM+1) tn) 

= ((M + 1) h, ný). 
Let X+1 = [Xn+i ýýn+i Xn+i]T and Yn+1 = [yrnL+l where o1>..., M0 f ý..., Al 

T denotes transpose. The modification to the formulae of the three families of 

numerical methods, and their implications, are as follows. 

Method A1(B) : 

Taking 7n = 0, M in (4.3.12) and (4.3.13) and using (4.6.3) gives 

7n = 0, 

(1 + 2p0)Xo+' - 2pOXlt+i = {1 - ýµ - . ßßl ö- 2p(1 - 0)} 
ýYö 

0)Xi + LuN, (4.6.4) 

(1 + 2pO)A0"' - 2p0I in+1 = {1 - (µ + v)? + £ßXý - 21(1 - 0)}J ýn 

+2p(1 - 0)I i1, (4.6.5) 
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and m=M, 

-2p©XM ,+ (1 + 2pO)XM '= -2p(1 - 6)ß'M-1 

+{1 -. y- fOYM - 2p(1 - O)}XM +ßµN, (4.6.6) 

-2pOYM+1 + (1 + 2pO)YM+l = 2p(1 - B)YM_1 

+{1- (µ + v)ý + £ßXný - 2p(1- 0)}YAK. (4.6.7) 

The solution vectors Xn+' and Yn+1 may be obtained using the following parallel 

algorithm: 

Processor 1: Solve E1Xn+' = F1X'4 +q for Xn+l, (4.6.8) 

Processor 2: Solve E, 1Yn+1 = G1Yn for Yn+1, (4.6.9) 

where El is a constant, tridiagonal matrix of order M+1. given by 

1+2pO -2p0 0 """ 0 

-p0 I+ 2p0 -p0 

El =0 (4.6.1.0) 

0 -p0 1+ 2p0 -p0 

0 """ 0 -2p0 1+2p0 

and q= [ßµN, 
... , 

ýµN]T is a constant vector of order M+1. The square matrices 
Fl and G1 are also of order M+1 and are given by 

f0 2p(1 - 0) 00 

Fi = 

p(l - o) f, p(1- 0) 

ýo 

p(1 -0) fr1_1 ])(1 -0) 

0 ... 0 2p(1 - 0) JAJ 

(4.6.11) 
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where fin =1- tµ - f/3Y't - 2p(1 - 0), i=0,1,2, ... , M, 

go 2p(1 - 0) 0 ... 0 

p(1 - 8) gl p(1 - 0) 

G, =001 (4.6.12) 

p(1 - 0) gM-, Al - 0) 

0 """ 0 2p(l - 0) gr, 

where gi =1- (µ + v)f + ßßX' - 2p(1 - 0), i=0,1,2, 
... , M. 

Method A2(0) : 
Taking m=0, Min (4.3.14) and (4.3.15) and using (4.6.3) gives 

m=0, 

(1 +ME +£/3Yo +2p0)Xö+' -2p0X1+1 = {1 -2p(1 - 0)1Xö 

+2p(1 - 0)X; + tuN, (4.6.13) 

(1+(µ+v)? +2p0)Yo+i -2pOYi+1 = {1+£ßXX -2p(1 -0))10l 

+2p(1 - 0)1i 
, 

and nz = M, 

-2pOX, 
ti + (1 + µ? + £ß ;7+ 2pO)X,, +i = 2p(1 - D)X ;, 

-, 

-}-{1 - 2p(1 - D)}XII +,, µN (4.6.7.5) 

-2pOYM+1 + (1 + (µ + v)t + 2p0)ß M+i = 2p(1 - D)I M-ý 

+{1 +£'ßX; ß, -- 21(I - 0)}Y, 71;. (4.6.16) 

In this method the solution vectors X'I+' and yn+1 may be obtained using the 

parallel algorithm: 

Processor 1: Solve O1Xn+1 = PYX` +q for Xn+1, (4.6.17) 

Processor 2 Solve Q1Yf+r = R1yn for yn+1, (4.6.18) 
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where Pl and Q1 are constant, tridiagonal matrices of order M+1 given by 

a 2p(1 - 9) 0 """ 0 

p(1 - 9) a p(1 - 0) 

Pl = 0 (4.6.19) 

0 p(1 - 0) a p(1 - 0) 

0 ... 0 2p(1 - 0) a 

and 
q -2p0 0 """ 0 

-PO q -p0 

Q1 _ 0 (4.6.20) 

0 -p0 q -p0 

0 ... 0 -2pO q 

with a=1- 2p(l - 0) and q=1+ (p +v )f 2pO, respectively. The matrix 01 is a 

tridiagonal matrix of order -Al +1 given by 

bo -2p0 0 ... 0 

-p0 bl -p0 

01 = 0 (4.6.21) 

0 -p0 v,,, _, -PO 
0 ... 0 -2pO b�1 

where bi =1+ pý + £ß'? ' + 2p0, i=0,1, 
... , 

M. The matrix 
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ro 2p(1 - 0) 00 

p(1 - 0) rl p(1 - 0) 

Rl= 1 p 
0 p(1 - 0) rM-l p(1 - 0) 

p0 2p(1 - 0) Vn, 

I 

84 

(4.6.22) 

with ri =1+ £ßXX - 2p(1 - 0), i=0,1,2, 
... , 

M, is also a tridiagonal matrix of 

order M+1. 

Method A3(0 = 1/2) : 

Taking in = 0, M in (4.3.16) and (4.3.17) and using (4.6.3) gives, 

m=0 

(1 + 
2µt 

+ 
2ffPYö 

+ p)Xä+' - pXi +i + 
2. ý1VOXö Yö+' 

2Eµ 
- p}Xö + pXr + £µN, (4.6.23) 

(1 +2 (µ + v)ý - 
2. pXo + p)Yö +l - pYi +1 

2 

_ {1 - ß(µ+l"y-p}lös+py-, (4.6.24) 

and, for in = M, 

-pxni + (1 + µt + 011Z, 22 + 

= PX, T, 
_, 

+ {1 - 
21 

- p}X;;, + ßµN (4.6.25) 

-pYM-i + (1 +2 (µ + vY -1 ý'ý3ýýaf + P) j nn+1 - ýý'P1 ný 
Al n +1 

22 
1 

= pY, 1_1 + {1 -2 (µ + v). C - A) 
Al (4.6.26) 

As described above, the linear algebraic systems given by {(4.6.8), (4.6.9)} and 
{(4.6.17), (4.6.18)} which represent the first-order methods A, (0) and 112(0), respec- 
tively, can be solved using parallel computation (using a computer with two proces- 

sor). In parallel computation, the vectors X"+' and yn+i can be obtained simul- 
taneously and thus the time taken to solve the PDEs will be reduced significantly. 
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For the algebraic systems {(4.3.16), (4.3.17), (4.6.23), (4.6.25), (4.6.24), (4.6.26)} which 

represents the second-order method A3(6) with B=2, the implementation is differ- 

ent because of the appearance of the elements of Y'+i in {(4.3.16), (4.6.23), (4.6.25)} 

and the elements of X'+1 in {(4.3.17), (4.6.24), (4.6.26)}; the vectors Xn+' and Yn+1 

will be obtained simultaneously by solving a linear algebraic system of order 2M +2 

at each time step. 

Let Un+1 = [(Xn+l)T, (Yn+l)T]T and Un = [(Xn)T, (yn)T]7', where T denotes 

transpose, then it is seen that the system {(4.3.16), (4.3.17), (4.6.23), (4.6.25), (4.6.24), 

(4.6.26)} may be written in matrix-vector form as 

WnUn+1 =M Un -{- b 

in which 

An Bn E0 
Vrn = ... ... ... and M=... ... ... 

Ch Dn 0F 

The vector b is a columm-vector of order 2M +2 and is given by 

TTT b=q [q1 
2] 

(4.6.27) 

where qi = [41LN, 
... ,. 

ßµN] is a constant vector of order A4 +1 and q2 is a, zero 

vector of order M -º-1. The matrices Wn and M are both of order 2111 +2 and their 

sub-matrices of order Al +1 are given by 

Aö -p) 0 ... 0 

An = 

1ni _2p Al -2p 

00 
1 An 1 

-2p nß_1 _z1 

0 ... 0 -T) Aý 

I, (4.6.28) 

where A? + 2+2 µi 2ßIin + p, i=0,1,2,... 
, 
All, 
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Do -p 0 """ 0 

-2p D; -2p 

Dn =00 (4.6.29) 

Dn _1 - 2p M-1 2p 

0 ... 0 -p DM 

where R 12 (µ f v) - Yfl ý'n + p, i=0,1,2, 
... , 

M, 

Ep0 """ 0 

pE äp 

E0, (4.6.30) 

0 2p E 2p 

0 """ 0pE 

where E= 1+2µ e- p, 

Fp0 

2P 
F 21) 

F= 0 

2p " 

0 ... 0 

> (4.6.31) 0 

r 2P 

1ý F 

where F=1- 2(µ + v)ß - p, 

Bn = diag{ 
12ßX,? 

), i=0,1,2, 
... , 

Al (4.6.32) 

and 

C' C= diag{- 2QpYn}, i=0,1,2'... 
J . 

A4. (4.6.33) 
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Further research reveals that it is possible to compute Xn+1 and Yn+1 in parallel 

on an architecture with two processor; that is made possible because B71 and Cn are 

diagonal matrices so that it is easy to find the inverse matrices of B' and C', so 

equation (4.6.27) may be split to give 

AnXn+' +B nyn+l =E Xn + q1, (4.6.34) 

C Xn+1 +D nyn+l =F Yn (4.6.35) 

which can be solved simultaneously for Xn+' and Y1+1 using the following parallel 

algorithm: 

Processor 1: Solve 

(D'(B')-'A n_ Cn)Xn+l = Dn(Bn)-'EX'S - FY'+ D" (B1)-l q7 

for Xn+' (4.6.36) 

Processor 2: Solve 

(An(on)-'D' - Bn)Yn+1 = -E Xn + An(C', )-'FYn - q, 

for Y2+i (4.6.37) 

Equations (4.6.36) and (4.6.37) again can be solved using parallel computation, each 

processor solving a linear algebraic system of order N+1 at each time step. 

4.7 Numerical experiments 

To test the behaviour of the three methods, the solution of (4.1.. 1. )-(4.1.. 4) was conl- 

puted for susceptible and infectious individuals, respectively. Throughout the nu]11er- 
ical experiments, the set of parameters given in (2.8.1) for µ and v with N= 25 x 10' 

and the infection rate, P, chosen to be ß=5x 10-5. In the following numerical 

experiments, Experiments A and B, two sets of initial conditions are distributed over 
the interval 0<z<1 given the functions S(z, 0) and 1(z, 0). 
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Experiment A 

In this experiment, the space step was given the value h=0.025 so that M= 39. 

Hat-shaped initial distributions are used for S and I and are given by 

81250i 

S(zti, 0) = 

81250(M+1-i) 

I(zi, 0) = 

187.5i 

187.5(N+1-i) 

0<i<M2 
1 

M+1 

2 

0<i<M2 
1 

M+l 
<i <M+1" 

2 

In this case, the maximum value of each class of individuals is concentrated at the 

middle of the interval 0<z<1 and the numbers decrease linearly to zero at the 

boundaries z=0 and z=1, see Figures 4.1. 

For this experiment, numerical simulations were carried out to see the behaviour 

of the three suggested methods, A, (0), A2(0) with 0=0,2,1 and A3(0) with 0= 23 

for the different values of the diffusion rate, a. The stability intervals of the numerical 

methods are obtained for a=0.001,0.01,0.04 and are summarized in Table 4.1. In 

the case of method Ai (0) with 0=0, negative values of susceptible individuals, S, 

and infectious individuals, I, occurred for £>0.0334 with a=0.001 while contrived 

oscillations were exhibited in the numerical solution as £ was increased beyond the 

value 0.0245 with a=0.01 and the value 0.0065 with a=0.04. The method 

produced overflow for .£>0.0467 with a=0.001, for £>0.0257 with a=0.01 and 

for £>0.0077 with a=0.04. Using 0=2 and 0=1 negative values of susceptible 

and infectious individuals began as £ was increased above the values in the stability 

interval (see Table 4.1) with overflow occurring as £ was increased further. 

Using Method A2(0) with 0=0 negative values did not arise in the numerical 

solution. It is seen that the method gave the qualitatively correct behaviour for 

£<0.3250 with a=0.001, for £<0.0319 with a=0.01 and for 
.£<0.0076 with 

a=0.04 after which oscillations and overflow occurred as .£ was increased further. 

Using 0=2 with a=0.001 the method never produced overflow and always converge 
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Interval of Stability 

a0 Method A1(O) Method A2(6) Method A3(B) 

0.001 
0 
1 
1 

(U, U. U3i4) 
(0,0.0334) 
(0,0.0280) 

(U, U. 3245) 
(0,00) 
(0,00) 

(0,0.0358) 

0 (0,0.0245) (0,0.0319) 
0.01 1 (0,0.0326) (0,7.5) (0,0.0387) 

1 (0,0.0317) (0,00) 

0 (0,0.0065) (0,0.0076) 
0.04 2 (0,0.0339) (0,2.8) (0,0.0420) 

1 (0,0.0445) (0, cc) 

Table 4.1: Stability intervals of the methods 

to the correct steady-state for all .£>0. For a=0.01 and a=0.04 the method did 

not produce overflow but negative values of infectious occurred before approaching 

to the correct behaviour as"I was increased beyond the value 7.5 with a=0.01 and 

the value 2.8 with a=0.04. Using 0=1 with a=0.001, a=0.01 and a=0.04, 
the qualitatively correct behaviour was observed for an arbitrarily large time step £. 

Using Method A3(&) with 0=2 contrived oscillations did not arise in the nu- 

merical solution but negative values of susceptible and infectious individuals were 

observed as £ was increased above the value 0.0358 with a=0.001, the value 0.0387 

with a=0.01 and the value 0.0420 with a=0.04 with overflow occurring for 

= 0.0579 (a = 0.001), for £=0.0895 (a = 0.01) and for £>0.2507 (a = 0.04), 

respectively. 

The method A3(B) (0 = 2) was chosen to compute further numerical results. The 

space and time steps were given the value h=0.025, £=0.001 and the diffusive 

rate was given the values a=0.005,0.01,0.03,0.04,0.06,0.09. The numerical 

results are depicted in Figures 4.2-4.7. These show that the dynamic behaviour of 

whooping cough changes as a is increased. It is found that the number of susceptibles 

are less than the number of infectious individuals near the middle of the interval for 

a=0.005, a=0.01 and a=0.03 (Figures 4.2-4.4). As a is increased, the number of 

susceptibles becomes larger than the number of infectious individuals and the number 
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of infectious individuals spreads on the z-axis, see Figures 4.5-4.7. Figure 4.8 (a) 

and (b) give the three-dimensional plots of susceptible and infectious individuals for 

0<z<1. 

x 106 
2r- 

1.5 
N 
N 

a a) U 
CO 

N 

0.5 

N 
Q) 
i 
16 2000 

0ý 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

4000 

a) 
4- c 

1000 
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Figure 4.1: Experiment A, initial distributions of susceptibles and inlectives. 
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Figure 4.2: Experiment A, dynamics of whooping cough using A3(0 =2 at time 
t=0.15, a=0.005,1 = 0.001 and h=0.025; susceptibles (-) and infectives 
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Figure 4.3: Experiment A, dynamics of whooping cough using A3(0 = 2) at time 
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Figure 4.4: Experiment A, dynamics of whooping cough using A3(0 = 2) at time 
t=0.15, a=0.03,1 = 0.001 and h=0.025; susceptibles (-) and infectives 
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Figure 4.5: Experiment A, dynamics of whooping cough using A3(O = ?) at time 
t=0.15, a=0.04, £=0.001 and h=0.025; susceptibles (-) and infectives 
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Figure 4.6: Experiment A, dynamics of whooping cough using A3(0 = 2) at time 
t=0.15, a=0.06,2 = 0.001 and h=0.025; susceptibles (-) and infectives 
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Experiment B 

In this experiment, the space step was given the value h=0.05 so that M= 19, the 

initial conditions are of the form 

S(zi, 0) = 

I(z;, 0) = 

1390480 

1590480 

1690480 

108000 

23000 

0 

M+1 
'2 2 

, 
M-3 M-1 M+3 M+5 

1 Z_ 2222 

p<i<M2 
5& 

M+1 
'2 2 

M+5 
<i<M+1 

2 

M-1 M+3 
2'2 

0<i<M2 
1& M2 3<i<M+l. 

where the infectious individuals are concentrated in the middle of the interval 

0<z<1 and the susceptible individuals are distributed along the whole interval 

such that the number of susceptible individuals in the middle of the interval is less 

than the other parts of the interval, see Figure 4.9. 

The numerical results are shown in Figures 4.10-4.14, where the profiles of sus- 

ceptible and infectious individuals are given at time t=0.10 using method A3(O) 

(0 = 2) with h=0.05 and .£=0.001 
for a=0.01,0.04,0.06,0.08,0.1.0. These 

show that the number of susceptible individuals is less than the number of infectious 

individuals near the middle of the interval and the number of infectious individu- 

als becomes more spread-out as a increases. The three-dimensional distributions of 

susceptible individuals and infectious individuals produced by methods Al (O = 1), 

A2(B = 1) and A3(0 = 1/2) are shown in Figures 4.15-4.20. 

From experiments A and B, it can be seen that the dynamics of whooping cough 

depends on the initial distribution and the diffusion rate. 
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Figure 4.9: Experiment B, initial distributions of susceptibles and infectives. 
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Figure 4.11: Experiment B, dynamics of whooping cough using A3(0 =2 at time 
t=0.1, a=0.04) 1=0.001 and h=0.05; susceptibles (-) and infectives (. - ). 
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Figure 4.13: Experiment B, dynamics of whooping cough using A3(© = 2ý at time 
t=0.1, a=0.08) 1=0.001 and h=0.05; susceptibles (-) and infectives (" - . ). 
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4.8 Conclusion 

Three numerical methods have been use to solve a non-linear system of PDEs 

{(4.1.1)-(4.1.4)}. The first method Aj(O) is derived by evaluating the reaction terms 

at the time level t= tm, whereas the method A2(B) can be derived by evaluating 

the reaction terms at the time level t=t,, and t=t, L+i. Finally, the second-order 

method A3(9 = 1/2) is derived by using linear combinations of the reaction terns at 

the time level t=t, and t=t,,, +i. Numerical experiments showed that the methods 

A2(9) and A3(9) allow the use of a larger time step in comparison to the method 

A1(0). The numerical solutions were obtained by solving a linear algebraic system 

at each time step. The families of numerical methods may be implemented on a par- 

allel architecture using two processors. The study also indicates that the dynamic 

behaviour of whooping cough depends on the initial distributions and the diffusion 

rate. 



Chapter 5 

One-dimensional Whooping Cough 
Dynamics of Convection Type 

5.1 Introduction 

In this chapter, a one-dimensional model of whooping cough of hyperbolic type will 

be considered to explain the spatial spread of epidemics in the absence of diffusional 

effects as described in Chapter 4. It is assumed that the spread of whooping cough 

with migratory effects, i. e. convection, might be in wave form. Let S(z, t) and I (z, t) 

denote the numbers of susceptible and infectious individuals and z and t denote the 

position in space and the time, respectively. The convective velocity, denoted by p, 

is assumed to be equal for both groups. The convective whooping cough equations 

are then 

as as 
ät +p az 
al al 
at +p az 

= µN - pS - ßSI, 

= -(µ + v)I + PSI7 

(5.1,. 1) 

(5.1.2) 

with initial conditions given by 

S(z, 0) =f (z), I(z, 0) = g(z); -L <z<L. (5.1.3) 

Assume that equations (5.1.1) and (5.1.2) are defined for -L <z<L and the 

functions f (z) and g(z) are continuous on -L <z<L. It will be also assumed 

that, for this range, the system {(5.1.1-(5.1.3} is symmetric about the line z=0. 

103 
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This imposes 

az 
(0, t) =0 and 

z 
(0, t) = 0; t>0 (5.1.4) 

as the boundary conditions and the initial conditions are given by 

S(z, 0) =f (z) and I (z, 0) = g(z); 0<z<L. (5.1.5) 

The parameters it, v and /3 are positive and are defined as in previous chapters. 

The convection rate p is assumed to be a positive constant. A family of numerical 

methods based on finite-difference approximations are derived in § 5.2 to solve the 

system {(5.1.1), (5.1.2)} for 0<z<L, t>0 subject to '(5.1.4 and (5.1.5. The 

local truncation errors and the stability restrictions of these numerical methods are 

analysed in § 5.3. The results of some numerical experiments are discussed in § 5.4. 

5.2 Numerical Methods 

A solution of the system of partial differential equations {(5.1.1 
, 
(5.1.2)} may be 

computed by finite-difference techniques, by dividing the space interval [0, L] into 

M sub-intervals each of width h so that Mh = L. The z-coordinates of the M 

points of this discretization are z,,,, = mh (m = 0,1,2, ... , 
M); clearly, z0 is the 

coordinate of every point on the t-axis. The time interval t>0 is discretized in 

steps each of length £>0. The solutions of {(5.1.1)-(5.1.3)} at the typical muesli 

point (z,,,,, tn) are, of course, S(zm, t,, ) and I (z?,, in) which will be denoted by 5;;, 

and Im, while the solutions of the approximating finite-difference method at the grid 

point (z,,,,, tn) = (m h, n2); n=0,1,2, ... ;m=0,1,2, ... , 
M, will be denoted by 

XX, and Ym, respectively. The values actually obtained, which may be subject to 

round-off errors, will be denoted by Xm and Y. -. 

A family of numerical methods will be developed by approximating the time 

derivatives in (5.1.1) and (5.1.2) by the first-order forward-difference replacement 

au (z, t) u(z, t+ . e) - u(z, t) + 0(t) as at t 
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and the space derivatives in (5.1.1) and (5.1.2) by the weighted approximant 

au NN 
B{u(z, t+I)-u(z-h, t+t)}+(1-e){u(z, t)-u(z-h, t)} (5.2.2) az h 

in which u(z, t) represents X (z, t) or Y(z, t) and 0<0<1 is a parameter. The 

terms on the right-hand sides of (5.1.1) and (5.1.2) may be replaced in the following 

ways 

(i) - (µ + and {ßX - (µ + v))Ym, (5.2.3) 

(ýý) - (µ + /3Ym)X, ri 1 and ßXmYm - (p + v)Ym+'. - (5.2.4) 

These approximations, together with the replacement for the derivatives of S and 1 

result in the numerical methods, Mj(O) and M2(8), for the numerical solution of 

{(5.1.1), (5.1.2)}: 

Method Mi(O), 0<0<1 

-prOXm 
i+ (1 + prO)Xm i= pr(1 - 9)Xm-1 

-ý{1-pr(1-8)-ý(µ-} ßYnl)}ý'ný-I-2ýýN, (5.2.5) 

-prOY. + (1 + prO)Y,, +' = pr(l - BýYr 
-1 

-}-{1 - pr(1 -0) - £(/1 +v-ß? s'ný) Yit 

Method M2(8), 0<0<1 

-prOXm 
i+ {i + pro + £(µ + pyn)}Xm 1= pr(1 - 0)x;,, 

ß-Y 

-} {1 - pr(l - 0))X +£pN, 

-pr6Ym±i + {1 + prO + £(µ + v)}Ym+i = pr(1 - ©)Ym-i 

(5.2.6) 

(5.2.7) 

+{1- pr(1 - 0) +£ßX71 Yýý> (5 `? s) 

where r= £/h. The families of methods . 
Mi(O) and M2(0) are explicit for 0=0 and 

implicit for 0<0<1. The methods {(5.2.5), (5.2.6)} and {(5.2.7 
, 
(5.2.8)) may be 
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applied with m=1,2, ... , 
M; for m=0 they require some modification. Because 

of symmetry, only the region z>0 will be considered. This imposes the conditions 

az 
(0, t) =0 and 

az 
(0, t) = 0; t>01 

so that, to second order, 

X1 =X'1 and Yin=Yi (n = 0,1,2, ... 
). (5.2.9) 

Thus, methods M1(O) and M2(B) can be rearranged and modified to give the fol- 

lowing families of methods: 

Method M1(O) 

Taking m=0, 

(1 + prO)XX+i - prOXi +i = {1 - pr(1 - 0) - £(µ + ßYö )}X 

+pr(1 - 0)Xr + £µN, (5.2.10) 

for m=1,2, ... , M, 

-pr9Xm 
i+ (1 + prO)X". 1= pr(1 - 0)Xm_1 

+f l- pr(1 - 
0) 

- 
£\µ +ß' »X»i + t1-1N, 

and form=0, 

(1 + prO)Y0 +1 
- prOY1 +i = {1 - pr(1 - 0) - £(µ +v- (3Xö)}Yol` 

+pr(1 - 8)Yi 
, (5.2. i2) 

for m=1,2,..., M, 

-prOY, n±i + (1 + pr9)Ym+l = pr(1 - ©)Ym-1 

}{1- pr(1 - 0) -£(µ-ß-v-ßX: )}Y, . (5.2.13) 



Chapter 5: One-dimensional Whooping Cough Dynamics of Convection Type 107 

Method M2(B) 

Taking m=0, 

{1 + pro -f-. ß(µ +, ßlö )}Xö+l - pr6Xi+i = {1 - pr(1 - 0)}Xö 

+ pr(1 - O)Xr + ß'µN, (5.2.14 

form=1,2,..., M, 

-prOXm i+ {1-}- prO -{-i(µ + #Y ))Xm 1= pr(l - O)Xm-, 

-f-{1 - pr(1 - 0)}X», + £jN, (5.2.15) 

and for m=0, 

{1 + prO + £(µ + v)}Yo +' - prOYY +' = {1 - pr(1 - 0) + 2ß: Y0 }Yo 

+pr(1 - B)Y, , 

form=1,2,..., M, 

-pr9Y, n±i + {1 + prO + £(µ + v)}Yfl+1 = pr(1 - O)Y�'t 
_i 

(5.2.16) 

+{I - pr(r - 0) + 

5.3 Analyses of the methods 
5.3.1 Local Truncation Errors 

The local truncation error associated with (5.2.5) is given by 

£s[S(z, t), I(z, t) : h, . e] = 
S(z, i+ i) - S(z, i) + Po 

S(z, t+ ý) - S(z - h,, i -i- s) 
i h. 

-ß-p(1- 9) S(z, t) -S (z - h, t) 
- µN + {i + ßr(--, t)) S(", t) h 

-[ýx(zt) , +nax(z, 
t) 

-µN+iS(z, t)+ýs(ý, ý)ý(z, t) (5.3i) 
Expanding S(z - h, t), S(z, t+ i), S(z - It, t+ l') as Taylor series about (z, t) gives 

11 
a2S a2S 1 a, -"5 I 03S £s[S(z, t), I (z, t)' h,. }_ 

2äz'ß + PO azat i2-ph -- pOeh. 

1035 1 03S 
6 cýJ3 

+2 ý'0 
c)zat1 

t2 + (5.3.2) 
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which is O(h + 1) as h, £ -+ 0. 

The local truncation error associated with (5.2.6) is given by 

l (z, t) : h, t] -I 
(z, t+ 2) -I (z, t) 

+ PO 
I (z, i+ t) -I (z - h, i -}- 2) 

+p(1- B) 
I(z, t) - h(z - h, t) 

+ {(µ + v) - /3S(z, t)}I(z, t) 

- 
[318t' t) + pälaz, + (l + v)I(z) t) - QS(M, t)I(z, t)]. (5.3.3) 

Expanding I (z - h, t), I (z, t +t), I (z - h, t+ e) as Taylor series about (z, t) leads 

to 

1 (91.1 1921 1 a2J 1 a3x 
'C I [S (z, t), I (z't); h, t] 

__ 2 ate + pOazat - 2phiz2. - - p0. ýhciz2at 

C931 13 

ä+ 2peaZat2 . e2 + ..., (5.3.4) 

0. which is O(h+. Q) as h, 2--+ 

Similarly, the local truncation errors associated with (5.2.7) and (5.2.8) are given 

by 

, Cs [S (z, t), I (z, t), h, t] 1 ass 
_ az2 + (y + ß) C9 sc+ 

n° 
828 
-ýOt t- 

aph alas 

1 a3s 1,93S 1 a2, s 1 03s 
-2 pOt h 

az2at +6 at3 + (ýý + ßJ) 
acs ý- ýý0 a-, at= 

l. 

+... 1 (5.3.5) 

021 
£j [S(z, t), J(z, t); h, . e] lall 

=2 cite 
+ ca + u) 

01 
ýt ^l_ 1)0 

0O 
Dt 

t-, 1ý 
p1r, 

021 
-- 

) 

0--2 

1 air 1 031 1d ýý 

- poýhD 2ýt +G ät3 ýOl + ") 0`} . )1ýOJzc11 ýý 

{ ..., (5.3.6) 

which are O(h + £) as It, .£ --> 0. These reveal that the families of methods M1(0) 

and M2(0) are first-order in time as well as in space for 0<0< 7_. 
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5.3.2 Stability Analyses 

The von Neumann or Fourier series method of analysing stability will be used to 

analyse the stability properties of the methods. This method of analysing stability 

is based on considering small errors Zm of the forms 

ZX, 
M 

= eryneeibmh and 
Zy 

ni = e1 
eeiyýin2h; 

-ý, 2j', 6, qER, (5.3.7) 

with i=. The von Neumann necessary condition for the error not to grow as 

1Z-tools 

0ý1 <1+ Mx ý and (&' ý 1< 1+ 14M,, ?, (5.3.8 

where MX and All, are non-negative constants independent of h, . 
C. 

Method Mi 

Substituting Z� into (5.2.5) and dividing by 7hhl leaves 

1- pß'(1 - 0) - e(1-1 +ß ') + Pr(1. - 0)e-i611 

1+ pro - proe-; ah 5.3. E 

where = e'y' and Y", 2,, is treated as a constant. ]. 'his gives the stability condition 

2 
(1 

- A)2 + 14p2,1,2 (I 
- 

0)2 
- 4ýý, (]. 

- 
0)(1. 

- A)) sia7ý 
Ste 

I 
xI (0r ) 

sin's ar . 3.11) = 1-}- (9p27 202 + 4p7-0) it 

where A= 
. 
£(µ + ß;, n, ). If 4p27'2(1 - 0)2 - 4pr(1 - 0)(1 - A) >0 then 

I 
XI 

2< (1 - A)2 + 4p2i, 2(] - 0)2 - 4pr"(1 - 0)(1 - A) 
-1+ 4p2r202 + 4p7,0 

-I-A 
2pr(] 0) 1 

= I+2pro 

so that 

1W <1-A- 
2p? -(l - 0) 

It follows that 16x( <1 leads to the stability restrictions 

2-A 0<0< 1/2, 'r< and v> 2n(1 - 20) p(I - 0) ýliicl ýl < 1, 
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0= 1/2, r>2 (1 - A) and A< 1, (5.3.7.3) 
-p 

1/2 <0<1, r> 2p20 
21) 

and r> 
nýl 

ý) 
and A<]., 

0=1, r> 
A-2 

and A> 1. 
2p(20 - 1) 

Substituting, next, Z. into (5.2.6) gives 

2= 
(1 +B- C)2 + {4p2r2(1 - 0)2 - 4pr(1 - 0) (1 +B- C)} si n2 `ý'; ` 

I yl 1+ (4p2r202 + 4p? -O) sin 2 dh 
2 

where ýy = ePe) B= £/BXm, C= £(µ + v) and X is treated as a constant. 

Similarly, if 4p2r2(1 - 0)2 - 4pr(l - 0)(1 +B- C) >0 then 

<1+B-C- 
2pr(l - 0) ýýý 

1+ 2pß, 0 
(r ý3 1r ý) 

The consequent stability restrictions are 

B-C 2+B-C 1+B-C 
dC<7 -{ J3, 0<D< 1/2,2n 

-- 2p(1 - 20) and r> 
p(1 - 0) aal 

0=1/2, r> 
p(1+B-C) 

and C<1+13, (5.; 3. ](x) 

1/2<0<1, r> 
CB 2 

and r> 
1+13C 

and C` ]-{-I3 2p(20 -1 
o =II > 

2n(20 - 1) and C> 11- B. 

Method M2 

Substituting Za; into (5.2.7) leads to 

1+ {4p2?. 2(1 - 0)2 - 4pr(7. - 0)) sind A 
ýýýý2 = (, 5.3.17) (1 + A)2 + {4p27.20`2 + 4prO(] + A)) sin" r, ýL 

where A= £(/, t + ßY�, ) and Y is treated as a constant. ]1''! p"i (1 

4pr(l - 0) >0 then 

I 
1 -2p'r(l -0)I (5.3.18) I A- A+ 2pr0 I. 

The following stability restrictions are obtained 

0<0<1/2 A+2 
v< 2p(l 20) and i, > 

1 
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0 =1/2, 

1/2<0<1, 

0 =1, 

2 
r>-, 

p 
i r> 

p(1 - 0)' 

r<x. 

(5.3.:! 9) 

Substituting, next, Z. into (5.2.8 gives 

(1+B)2 + {4p2r2(l - 0)2 - 4-p? -(l - 0)(1. + B)) sine ``'` 
Jýy12 2 (5.3.20) 

(1 + C)2 + {4p27,202 2+ 4p7,0(1 + C) sin d2ý 

where ýy = eO', B= £ßX,,, C= £(µ + v) and X is treated as a constant. if 

4p2r2(1 - 0)2 - 4pr(1 - 0)(1 + B) > 0, 

16Y1 
(1 + B) - 2pr(l - 0) 

(5.3.21) 
(1+C)+2prO 

and the consequent stability restrictions are 

B-C 2+B+C 7 -}-B 0<0<1/2,2p <v<2p(1-20) and v> 
fß(1-O), 

0=1/2, r> 
B-C 

and r> ` +23 (5.3.22) 
_ lp p 

1/2<0<1' r> 
B-C 

and r> 
1+13 

_ 2p p(1 _ 0), 

- 0=1, >_ 
B -C 

5.4 Numerical experiments 

In order to examine the behaviour of the families ofcomputational m etlhods M1 ;,,, c1 

M2, the solution of the system {with 

S(z, 0) = 3]. 25000(1.0 - z), 1(z, 0) = 750(7.. 0 - z, ); 0z: 1, (5. -J , 1) 

was computed for the numbers of susceptible and infective individuals. The space 

interval 0<z<1 was divided into 40 subintervals each of width Ih, = 0.025, so 

that Al = 40. The set of parameters given in (2.8.1) for µ Gilad v were used with 
N= 25 x 106 and the infection rate, /3, chosen to be /. ý =5x 10"6. 

Numerical experiments were carried out using Methods »l and 1v1.2 witli the con 

vection rate p=0.5. Method M1 gave the correct numerical solutions fort < 0.0096 
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with 0=2 and for £<0.0102 with 0=1. Some negative values of susceptibles were 

seen for 0.0096 <£<0.00198 with 0=2 and for 0.0102 <£<0.0198 with 0=1 

and overflow were produced as .£ 
increased further. In the case of method M2(0) 

with 9=2,1, the correct numerical solutions are observed for all .£>0. 
The solutions were computed using Methods Ml and M2 with, first of all, 

p=0.5. The time step is chosen to be 0.001 and the parameter 0 was given the 

values 1/2 and 1. These are exhibited in Figures 5.1-5.7 and different angle views of 

Figures 5.1 and 5.3 are shown in Figures 5.2 and 5.4, respectively. It was seen that 

the number of susceptibles decreases whereas the number of infectives increase near 

z=0 as time increases. Tables 5.1 and 5.2 display an example of the closeness of 

the results for infectives using Methods M1 and M2 with 0=2 and 0=]., at time 

t=0.1. Using 0=1, the number of infectious individuals is seen to decay more 

than when 0=2 is used, as z increases. The solution obtained using Method M., 

converges to the steady-state solution a little faster than the solution obtained using 

Method A41. The numerical experiments were then repeated using Method M2 with 

0=1 for p=1 and p=1.5, respectively, for testing the effect of p. lt was seen 

that the shapes of the surfaces are unaffected by change in p. As p inncreases, the 

number of susceptibles at p given point in space becomes smaller while the number 

of infectives at the given point is higher, see figures 5.8 (a), (b). 
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Table 5.1: The numbers of infectious individuals at time t=0.1 using Method M1 

with p=0.5,2=0.001,0= 2 and0=1 

Space, z 0=2 0=1 

0.0 1420776 1420824 
0.1 1435798 1433374 
0.2 1403630 1401060 
0.3 1131709 1133351 
0.4 586624 592227 
0.5 178783 181742 
0.6 38873 - 39576 
0.7 7121 7238 
0.8 1144 1159 
0.9 152 154 
1.0 12 12 

Table 5.2: The numbers of infectious individuals at time t=0.1 using Method M2 
with p=0.5, £=0.001, ©=2 and0=1 

Space, z 0=2 0=1 

0.0 1538493 1538554 
0.1 1539110 1536651 
0.2 1444385 1442571 
0.3 1087553 1090311 
0.4 526072 531437 
0.5 156573 159084 
0.6 34534 35124 
0.7 6507 6607 
0.8 1079 1093 
0.9 148 149 
1.0 12 12 
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Figure 5.1: Three-dimensional distribution of susceptihlcs using Method 
,M1 with 

0=2, p=0.5, f=0.001 and h=0.025. 
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Figure 5.3: Three-dimensional distribution of infectives using Met liu, d lit i with 0 
2 p=0.5,1=0.001 and h=0.025. 
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Chapter 6 

Diffusion-Convection Whooping 
Cough Model 

6.1 Introduction 

The initial/boundary-value problem for whooping cough dynamics of diffusion- 

convection type is studied in this chapter. The system is the class of non-linear 

parabolic equations given by 

as as als 
Ft +Päz = , ý. ý-µs-Qs. r+aaz2' (6.1.1 

al ar 
at +pz = PSI- (µ+v)r+a aa2J (6.1.2) 

in which S= S(z, t) and I=I (z, t) are the numbers of susceptible and infectious 

individuals, respectively, at time t and distance z from the origin; a>0 and p>0 

are, respectively, the diffusion and convection rates. The parameters µ, v, 0 and N 

are as before. 

The initial conditions are of the form 

S(z, 0) =f (z) and I(z, 0) = g(z); 0<z<L (6.1.3) 

and the boundary conditions are 
os 

(0, t) = 
ai At) = 0; t> ol az iz- 

(6.1.4) 
as 01 

120 
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The object of this chapter is to study the solution of the system {(6.1.1)-(6.1.4)}, 

which is a composite of Chapters 4 and 5. A second-order finite-difference method is 

used to compute the solution of this problem and its local truncation errors are given 

in §6.2. The implementation of the method, analysis of stability and the results of 

some numerical experiments are reported in §6.3, §6.4 and §6.5, respectively. 

6.2 Numerical Methods 

The interval 0<z<L is divided into M sub-intervals each of width h so that 

Mh =L and the time variable t is discretized in steps of length 1. The open region 

SZ = [0 <z<L, t> 0]; the closure of Sl will be denoted by SZ and its boundary 

00 consisting of the segments af2o (0 <z<L, t= 0), 91tl (z = 0, t> 0) and 

5SZ2 (z = L, t> 0) have thus been covered by a rectangular mesh having coordinates 

of the form (zm, t,, ) where zm = mh (m = 0,1,2, ... ,M-1, 
M) and t,, = n. e 

(n = 0,1,2,... ). The solutions of {(6.1.1), (6.1.2)} at the typical point (z,,, tn) are, 

of course, S(zm, t,, ), and I(zm, tn); these may be denoted by Sm and Im, respectively. 

The theoretical solution of numerical approximations to {(6.1.1), (6.1.2)} at the same 

mesh point will be denoted by Xm and Y,,, while the values actually obtained by 

computation, which may be subject to round-off errors, will be denoted by Xn and 
Yn 

m' 

To integrate the differential equation numerically using the finite-difference 

method, the time and space derivatives in are approximated as 
follows 

aw ý(z, t+ £) 
- p(z, t) 

at "., '2 
i9w 

N 
tco(z+h, t+2)-Yo(z-h, t+_) 

ä-z 2h 

+(1-0) ýp(z + h, t) - cp(z - h, t) 
(6.2.2) 2h 

ö2cp 
B 

1cp(z - h, t+ 2) - 2cp(z, t+ 2) + ýp(z + h, t+ t) 
8z2 ý h2 
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+(1 -0) 
W(z - h, t) - 2cp(z, t) + p(z + h, t) (6.2.3) 

in which 0<0<1 and co = cp(z, t) will be represented X=X (z, t) and Y= Y(z, t). 

A family of numerical methods can be derived by taking a linear combination of 
the non-linear terms at times tn, and t,, +i, giving 

ýýXm 
1- Xm} + 

2%LX 
+i -X ±i} + 2h (1 - B){Xmi1 - 

X,,, 
-, 

} 
= lGlv 

-µ{aiXX 1+ (1 - al)Xm} - bi ßX1 Ym - ci ß XmYm+1 - (1 - bi - cl)ßXXYm 

+h8 {Xm i- 2Xm 1+ Xm+i 1+2 (1 - B) {Xm_ý - 2Xm + Xm+, 1 (6.2.4) 

and 

1 {Ym+r - Ym }+pB {Ym+l - Ym±i }+p (1- B){Ym+l- Ym_1 } 2h 2h 

= a2 ßX 'Ym + b2 ßX: Ym+1 + (1 - a2-b2) ßXXY, n 

-(µ+ v){c2Ym+r + (1 - c2)Ym} + 
0{Y, 

n±i - 2Y,,, +' +Ym+i} 

+- 2 
(1 - 8){Y, ý_1 - 2Y, ß + Y, '+1 }. (6.2.5) 

Equations (6.2.4) and (6.2.5) then may be rearranged to yield 

-{ 
2 

prO + apOIX,, i+ [i + 2apO +a I+b1, ß2Y, n]X, n1+{2 prO - ap0}Xn+i 

+cißtX ny +l = 
{(1 

- 0)(2 pr + ap)}X, '. 
-1 

+[1 - 2(1 - B)ap - (1 - ai)µt - (1 - bl - cl)ß1Ym]X, 
, 

+t (1- 0) (ap -2 pr)}Xm+r + ßN2 (6.2.6) 

and 

-{ 2 prO + apO}Y,, +1 + [1 + 2apO + c2(µ + v)2 - b2XXm]Ym+1 

-I-{ 2 prO - ap9}Y +i - a2ßýY, X,, ±1 ={ (1 - 0)( 
2 pr + ap)}Ym 

-I 
[l-2(1-O)ap-(1-c2)(/. 

ß+v). 2+(1-a2-b2)ßUrýn, 1Ym, 

+1(1 - B)(ap -2 pr)}Ym+l (6.2.7) 

where r= £/h and p= £/h2. 

Aid 
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The local truncation error associated with (6.2.6) at the point (z, t) _ (z,,,, 
) tn) 

follows from (6.2.4) and is given by 

, cs[S(z, t), I(z, t) : h, 1] _t1 {S(z, t+ i) - S(z, t)} 
+(2h)-1 p6{S(z+h) t+2) -S(z-h, t+£)} 

+(2h)-1 p (1 - B){S(z + h, t) - S(z - h, t)} - µN 

+µ{aiS(z, t+ . 2) + (1 - ai)S(z, t)} + bi 0 S(z, t+ £)I (z, t) 

+cl (3 S(z, t)I (z, t+ . £) + (1 - b1- ci)ßS(z, t)I (z, t) 

-h-2 a 6{S(z - h, t+ . £) - 2S(z, t+ . 
£) + S(z + h, t+ . £)} 

-h-2 a (1 - B){S(z - h, t) - 2S(z, t) + S(z + h, t)} (6.2.8) 

Expanding S(z, t+ . £), S(z + h, t +i), S(z f h, t) and I (z, t+ £) as Taylor series 

about (z, t) leads to 

1 
CS [S(z, t), J (z, t) : h, l] = h2{P 

6 äz3 12 äz4 +6 peh2t Maa4S t 
j1 82S 82S a 3S as aI 
l2 ät2 + 8(Päzäi - aäz2ät) + (aiµ + biýI) 

at + cl ßS 
öt 

} 

+ý2ý1 
ä3S 

+ 
10ý 03S 

-a 
a4S ]+ (laiµ +1 bi/ýI)a2S 

6 5t3 2p azä2t 8z2at2 22 ate 
2 

+2c'RScýt22I +..., (6.2.9) 

as h, 1--+ 0. 

The local truncation error associated with (6.2.7) at the point (z, t) _ (z,,,,, t, ) 

may be written down from (6.2.5) and is given by 

£j[S(z, t), I(z, t) : h, l] =2-1{I(z, t+. £) - I(z, t)} 

+(2h)-1 p0{I(z+h, t+t)-I(z-h, t+t)} 

+(2h)-1 p (1 - 0){I(z + h, t) - I(z - h, t)} - a2 /S(z, t+ 2)I(z, t) 
-b2 ßS(z, t)I(z, t+ 2) - (1 - a2 - b2)ßS(z, t)I (z, t) 

+(µ + v) {C21 (Z, t+ £) + (1 - c2)I (z, t)} 

-h-2a9{I(z-h, t+t)-2I(z, t+. e)+I(z+h, t+t)} 
-h-2 a (1 - 0) {I (z - h, t) - 2I (z, t) +l (z + h, t)} (6.2.10) 
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After expanding I(z, t+t), I(z±h, t+t), I(z±h, t) and S(z, t+i) using Taylor's 

expansion, about the point (z, t), equation (6.2.10) becomes 

£j[S(z, t), I(z, t) : h, 1] _ h2{ s äz 
- i2 äz }+1 poh2ýa Sat 

041 

1821 521 8I DI as al +ýý 2 5t2 + B(P 
azat -a äz2ät) + c2(µ + v) at - a2ßl at - b2ß8 

at 
all 

1 1931 
1 53J 041 1 52J 1 als 

+ý2 
6 ät3 

+2e 
`P aza2t -a az2at2 

+ 
2C2(µ 

+ v) ät2 2 
a2PI at2 

12 
2b2ßsät2}+..., 

(6.2.11) 

as h, £ -* 0. The above analyses of the local truncation errors show that the finite- 

difference scheme {(6.2.6), (6.2.7)} is always second-order accurate in space, and it 

can be second-order accurate in time if the combination (ad, bi, ci) = (2,2,2 ), i=1,2, 

is used with 0=2. 

Then, a second-order method for solving the system (6.1.1)-(6.1.4) will be given 

by 

-(1pr {-1ap) Xm i+[1+ap+1µ2+1ýQY�]Xm +(1pr-1ap)X 
42242 

-I-2ß2XmYm+1 = 
(4 pr + 2apXm-1 + [1 

- ap - 
2µe]X 

n 

-I- 
(2 ap -4 pr) Xm+1 + µN. ß, (6.2.12 

-(l pr + ap) Y, n±i -I- 
[1 

-{- cp -I- 
1 

(µ + v) - ,ß tXm]Ym+i + pr - 
tap) 

-2ßtYr Xm _ 
ý4pr + 2ap)Ym + ý1 

- ap - 21 
(µ + v)t]Y 

-I-(Iap- 4pr)Y +i" (6.2.13) 

The method {(6.2.12), (6.2.13)} maybe applied for m=1,2,3, ..., M -1. In the 

case m=0 and m=M, they require some modification. Applying the boundary 

conditions (6.1.4), would yield to second order, 

Xi = X_i, XM+1 = XM_i and Yl = Y_1, YM+i = YM_1 

at time levels t,, and t,, +1, thus introducing the exterior grid points (z_1, t,, +i), 
(z-i, tn, ), (zn+1, tn+1), (z,,, +i, t, ). Then, for m=0 

A 
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[l + ap 
2 

µý +2 (32Yö Xö +i - apXi +i + ß2Xo y0 +i 

= apXj + [1 
- cep - 

2µi] 
Xo + µN. ß, (6.2.14 

[1 + ap +2 (µ + v)2 - 
-/3 

XX] Yö +1 - apYi +1 - 
2piYä 

X+1 

_ 
[1 

-ap- 
2(µ+v)ý]Yö 

+app1 . 
(6.2.15) 

The equations for m=1,2,3, ... ,M-1 are unaffected. For m=M 

-apX, ±1 + [1 + ap +2 µ2 + 2I3 YM] XM 1+2, ß£XMYM+1 

= apXM_1 + [1 
- ap -1µ. ßl XM + µN4 (6.2.16) 

-apYM±; + [1 + ap +2 (p + v)t -2 ßtXM] Y'-2 ßtYMXM i 

= apYM_1 + [l 
- ap -2 (µ + v)t] YM. (6.2.17) 

6.3 Implementation 

An algorithm for the implementation of the second-order method will be adapted 

from that described in Chapter 4. Because of the appearance of the terms containing 

Xm i and Y, n+' in (6.2.12) and (6.2.13), respectively, the solution vectors Xn+1, yn+1 

will be obtained simultaneously by solving a linear algebraic system of order 2(M+1) 

at each time step. Let yn+l _ ((Xn+l)T, (yn+1)T]T and Xn = [(Xn)T, (yn)T}T, 

then equations (6.2.14)-(6.2.17) may be written in matrix-vector form as 

wnxn+l = Mnxn + 13 (6.3.1) 

in which 

en 

Wn ... ... ... (6.3.2) 
ý? n -Hn 

-A 
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Jn o 
Mn= (6.3.3) 

0 1Cn 

where 0 is the zero matrix of order (M -I-1), and the vector B is the column-vector 

of order 2(M + 1) given by 

T 

13 = ! MN, ..., £µN, 0, ... ,0, 
(6.3.4) 

(M+i) times 

where T denotes transpose. 

The matrices W' and Mn are of order 2M +2 and their sub-matrices of order 
M+1 are given by 

eo -ap 00 

-4pr -lap el Apr - lap 

En= 0 0 

-4pr - lap eM-i 4pr - lap 
0"""0 -ap em 

where ei= 1+ ap + 2µf +2 ptYn, i=0,1,2, 
... , 

M, 

ho -ap 

_4 pr - Zap hl 

/fin= Q 

0 ... 

0 ... 0 

pr - lap 

0 

-pr lap hM_l lpr- 2xp 
0 -ap h�1 

where hi=1-} ap-}-2(µ+VY-2Nxi, i=0,1,2,..., M, 

j ap 0 ... 0 
4Pr + Zap ý -4 Pr + lap 

�n =00 

4pr + Zap j -4pr + Zap 
0 """ 0 ap ý 

s 

7 

(6.3.5) 

(6.3.6) 

(6.3.7) 
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µ, where j=1- ap -1 

k 

4Pr+Zap 

Kn= 0 

0 

ap 00 

k -4pr+ Zap 
0 

4pr } Zap 
k -4 pr -}- Zap 

"0 ap k 

where k=1 -ap- 
2(µ+v), and 

. 
F' = diag{ 

2/3iX; }i=0,1,2, 
... 1 

M, 

ýn=diag{-2ßn'7} i=0,1,2,..., M 

are diagonal matrices of order M+1. 

6.4 Stability Analysis 

127 

(6.3.8) 

(6.3.9) 

(6.3.1 0) 

Throughout this section, the maximum principle analysis will be used to prove con- 

vergence of the numerical method developed in §6.2. 

Equation (6.1.1) is written in the form 

a ä2S ä2S 
_ 

aS p 
(19S äS 

_11- --- )2 äz + äz ät +2 äz + äz AN +2 (µ + ßI)S +2 (µ -}- ýI)S7 

_ 
äS+p*, äS+äS 

_yN. +Fi(z, t, 8,1) - ý- 
) 

T2 az äz 
+F2(z, t, S) I)7 (6.4.1) 

where Fi and F2 are assumed to be boundedly-differentiable with respect to S and 

I. 

The solutions S(z, t) and I (z, t) are approximated by the functions 
.X 

(z, t) and 
Y(z, t), respectively, defined on St, which agree with S(z, t) and I (z, t) on aQi, 

i=0,1,2, and satisfy the following difference equation 

V (Xn '+ XX) = Vt X. +2V (Xn '+ Xn,,, ) - µN +2 (Fý + QY, n)X ý 

+2 (u + ßYm+')X, 
,n>0, (6.4.2) 

A 
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where 

pz X_ (X 
-1 - 

2Xm +X +1)'h2 

VZ X= (xn,, +I +X,, 
-1)/h, 

(6.4.3) 

Ot Xm = (Xm 
1- Xrn)/t. 

It is easy to see that 

2 
V2 Sn+l +S12 

ö2äSm 
+1 

ö2 Sm 
+ 

h2 a4S�±i 
+ 

4Sm 
n 
'ý - z2 2 äz2 24 äz4 äz4 

n+l n1 
äSm l1 OSm h2 ä38m ý 83Sm 

2 ýz (`" 
n+ 

Smý -2 öz +2 äz + 
12 8z3 + 8z3 

vt Sn 
öSm 1_ lý2 }1 

7nr 
m az 2 ate 

n+l nnn +l 
- 

aFi (6.4.4) 
F'i(zmýtn+lj Sm 

iIm) -F1(zm, tn+1)SmiIm)+(Smn `Sm) as 

- 2lý+pIm)"5m-} 
(Sm 1- S) 

ý''2ýzmýtnFlýSmýl 1)- F2(zm7 tnil7 Sm) Im) + (Im+l - Im) 

=2 (µ + ßI )Sm + (I +l- . rm) 
where the barred derivatives are evaluated at intermediate argument values as called 

for by the mean value theorem. Substituting (6.4.4 

2 Ox ('Sm 1+ 
'Sm = Vt , 5'm -i- 2Qz 

(Sm1 -i- Sm ) 

2 

+2 (µ + ýIm I)Sm + 24 
ph2 

53s'n-i 1 03S 

M rn 
) 

12 8z3 
+ 

Öz3 

into (6.4.1) yields 

- µN +2 (µ + ßIn, )Sm 1 
04sn+1 64 £ a2sn+1 

az4 + äz4 +2 ate 

. (Smn+l _ sm) 
as 

- (Im - Im) 
'D T2I 

(6.4.5) 

The assumptions on S and I above require the boundedness of all the derivatives 

appearing inside the brackets along with (Sm 1- Ste) and (I. +1 - 1.11) in the region 

A 
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Q. Hence, in this region, 

2 V2 (Sm + 'S'm) = Ot ,S -I- 
2 Oz (Sm -i- , 

Sm) N+P --f" 01,. )'Sm 

+2+ oým l)Sm gm (6.4.6) 

with 

Jm = O(h2 + t) 

Let 

(6.4.7) 

Zim=S -Xm and ZZm=Imo, -Ym. (6.4.8) 

Subtracting (6.4.2) from (6.4.6), and using (6.4.8, gives 

Vz (Ziml + Zn,,, ) = Ot Zim +2 vx(Zlmi + Zlm) +2+ QI 
. 
)Smi 

-2(µ + ßYm)Xn l+ 2(14 
+ol +1)Srmn 

-2(µ+ßYm+ý)Xnn i-gn. (6.4.9) 

As 

n- n Fl (Z, tn#1, 
m 

Sn+ In n+ lý 
n) 

Fl(zýtn+l, Xin l, Ym) + ýS 
(Sm 1- Xm 1) 

+aI1(Im-YnI (6.4.10) 

F2(z, to-i-i, 
`Sm, 

im 1) 
_ . 

F2(zi tn+ll Xm, Ym+1) + --; ;m- Xm) 

(6.4.11) 

equation (6.4.9) can be rewritten in the form 

2 Vz (Ziml + Zim) = Ot Zim +2 Vx lZlýn `I' Zlm) 
-}- 

Z VFi Zimt +1 
VP1 

L2m 

2 äS 2 äI 
1 5F2 

n1 
5F2 

+2 öS 
Zum +2 öI 

7'2mß + 9M " (6.4.12) 

This may be written as 

2 Oz(Zim + Zig, ) C Vt Zig. -f 
2 VZ (Zlýyl 

'I ZlM) + MisZn 

+M112 + 9m,, (6.4.13) 

lid 
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where 

Mis = max aF 5F2 
aS ' as 

and 

__ 
Ziel + Zn im Zln 

I2 

and M11=max 
-0 -F, -0 -F2 

aI' al 

zn-I-1 + Zn 

and Z2m = 
2m 2m 

2 

130 

(6.4.14) 

(6.4.15) 

Now, Zi�L and Zimt vanish on 9 (i = 0,1,2). Assume that Z2�. is bounded. It 

is known that gm is bounded. Hence, by Theorem 2.15, Xm i and Xm converge to 

S, +1 and Sn, uniformly. 

Similarly, equation (6.1.2) may be written in the form 

a 52J 821 
_ 

al p 191 al 11 
äz + äz ät +2 

az + az + ((µ + v) - , ýS)I + ((µ + v) - RS)I 

- 
al 

-I- 
p al 

+'91 + Gl (z, t, S, I) + G2 (z, t, S) 
-1)) at 2 az az 

(6.4.16) 

where Gi and G2 are assumed to be b oundedly- differentiable with respect to S and 

I. 

The solutions S(z, t) and I (z, t) are approximated by the functions X (z, t) and 

Y(z, t), respectively, defined on S2; they agree with S(z, t) and I (z, t) on ani, 

i=0,1,2 and satisfy the difference equation 

2vz(Y+l -{-YY)=VtYm {-2Oz(Ym+l-}Ym) 2((fU-F v)_ßX ýYm+l 

n>0 (6.4.17) 

where Oz, V and Vt are defined as in (6.4.3). 
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It is easy to show that 

1 52J+1 +1 a2 lm + 
h2 a4lm + a___ 102 Iý, +i + In 2zm m) -2 8z2 2 az2 24 äz4 az4 ' 

1 n+1 n=1 
8I ý"1 1 aim h2 a31 +1 a3I 

, 2 
ýx Im + Im 

2 äz +2 äz + 
22 äz3 + äz3 

17In_älmlJ 
äalml 

t "` äz 2 ät2 

Gl(zm, tn+i SmýI 1) = G1(zmýtnFlýSýnýIm) -}- (I�±ý - Im) i (6.4.18) 

-2 ýµ -i- v- ßSn )I n+ (1 r- Im) aarl 

G2(zm7ln+1i"S7n ýýIm/ 
- 

G2(ztn)tn-E-lISZIIm)+(S, m 1 
-, 

Sm) 
as2 

2(f, -ý-U-%j, Sn)j -{- (sm1 -Sm) as, 
2 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the mean value theorem. Substituting (6.4.18) into (6.4.16) gives 

2 Vz(Im + Im) = Ot Im +2V z(I 
+1 + Imo) +2 ((fý + v) - ßsm)Im 1 

1 ah2 a4Jn+i 8J 
+ ((µ+v) -pSm l)Im+" 

24 5z2 + 9Z2 

n+l 
+ 

a2l"ý 
- 

ph2 a3Im 
+ 

a3lm 
- In+i - In 

äG1 
2 ät2 12 äz3 äz3 

(m 
m) 491 

- (sm 1- sm) 
S2 . (6.4.19) 

The assumptions on S and I above require the boundedness of all the derivatives 

appearing inside the brackets along with (S. n '- Sm) and (Im i- Pm in the region 
N. Hence, in this region, 

o2(1,,, l -I- Im) = Ot Im +2 Vz (n. +' + Im) +2 ((Nh + v) - asm 1)I; n 
+2 ((µ + v) - ßS )Irr±1 -I- ym (6.4.20) 

with 

gm=0(h2ýý), (6.4.21) 
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Subtracting (6.4.20) from (6.4.17) and using the definitions of the truncation 

errors in (6.4.8) gives 

2V 
(Z2m1 + Z2m) 

_ 
Vt 7'2m +2V 

z' 2mß + Z2m) +2 ((fc + v) - %3, Sm)I +i 

-2((p+v) -NXm, 
)Ym+l 

c2((tt +V) -ßS 
1). jm 

g!. (6.4.22) -2 ý(lý + vý - Xrýn+l)Ym + 

As 

n n+l _nn1 
aGi (nn Gr(Z, tn+I, Sm, Im )- Gi(Zýtn+1)XmjYm )+ 
ÖS (S, n -Xm) 

{ (Im - Y,;; +i ), (6.4.23) 

00 
G2(Zýtn+13 Sm l,. jm) 

- 
G2(z)tn-l-l'Xm l>Ym) + 

as 
2 ('Syn 1- Xyn ') 

+aä 
2 (Iim - ý'm)i (6.4.24) 

it follows that equation (6.4.22) may be written as 

2V2 (Z2ZI + Z2m) = Ot Z2n 
ý,, +2 Vz (Z2Z1 + Z2ý») +2ä Zig,, 

2 51 
1Z2"'ß 

+1 
äG2 

Zý+1 +1 
äG2 

Zn + gm, (6.4.25) 
2 8S im 2 al 2'ý 

with Z2m and Z2, ni vanishing on OQj. 

Let 

0Gl äG, -5 -G2 
M2s = max as , 

G2 

as 
ý and M21= max al ' äl 

Then, equation (6.4.25 can be written as 

2Oz(Z2 i-+ -Z2m) OtZ2m+2OzýZ2m'+Z2m)+M2s2im 

2IZ2m + 9m, (6.4.26) 

with Z,,, 
L and Z2�ß are defined as in (6.4.15). 

Assume that Z1�ß is bounded. Since Z2�ß and Z2m' vanish on 01 
, 
it follows from 

Theorem 2.15 that Y, n and Y, m+l converge uniformly to Im and Im r. 
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6.5 Numerical Results 

Following Chapter 4, experiment A was carried out and method {(6.2.12), (6.2.13} 

was used to solve the initial/boundary-value problem (6.1.1)-(6.1.4) thus monitoring 

the numbers of susceptible and infectious individuals, respectively. The parameters 

N, a, v and ß are as in the previous chapters. The numerical experiments were 

carried out to see the behaviour of the numerical solutions for various values of the 

diffusion and convection rates. 

Case a<p 

The diffusion and convection rates were chosen to be a=0.01, p=0.5 and a=0.1, 

p=1.0. The method {(6.2.12), (6.2.13)} produced positive solutions for 
.£<0.0436 

with a=0.01, p=0.5 and for .£<0.0488 with a=0.1, p=1.0 leading to negative 

results, and to overflow as 2 was increased further. The numerical results are depicted 

in Figures 6.1-6.4. These show that the behaviour of the whooping cough dynamics 

changed: that is, the symmetry about the line x=0.5 was completely changed as t 

increased. 

I 
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Figure 6.1: Three dimensional profile of susceptibles at t=1.0; a=0.01, p=0.5, 
h=0.025 ande=0.01. 
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Figure 6.2: Three dimensional profile of infectives at t 0.01, p=0.5, 
h=0.025 and e=0.01. 
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Figure 6.3: Three dimensional profile of susceptibles at t=1.0; a=0.1, p=1.0, 
h=0.025 and. =0.01. 
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Figure 6.4: Three dimensional profile of infectives at t=1.0; a=0.1, p=] . 0, 
h=0.025 and 2=0.01. 
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Case a=p 

In this case the numerical results are shown in Figures 6.5-6.8, where the wave 

forms of susceptibles and infectives are given at time t=2 using the method 

{(6.2.12), (6.2.13)} for a=p=0.05 and a=p=0.1. The method 

{(6.2.12), (6.2.13)} is seen to give reasonable results for £<0.0432 with a=p=0.05 

and for .2<0.0461 with a=p=0.1 after which overflow occurred as .£ was increased 

further. Figures 6.5-6.8 show that the number of infectives increases while the num- 

ber of suseptibles decreases. These are seen clearly at t 0.5 (approximately) after 

which the number of susceptibles increased because of birth and the number of in- 

fectives decreased because of death. This behaviour continuous until the dynamics 

of the model reach a steady state as t gets large. 
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Figure 6.5: Three dimensional profile of susceptibles at t=2.0; a=p=0.05, 
h=0.025 and 2=0.02. 
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Figure 6.6: Three dimensional profile of infectives at t=2.0; a=p=0.05, h=0.025 
and £=0.02. 
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Figure 6.7: Three dimensional profile of susceptibles at t=2.0; a=p=0.1, 
h=0.025 and £=0.02. 
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Case a>p 

The method {(6.2.12), (6.2.13)} produced overflow for 
.£>0.0717 with a=1.0, 

p=0.01 and for t>0.0719 with a=1.0, p=0.5. The numerical solutions obtained 

with .£=0.02 at t=2 are shown that the numbers of susceptible and infectious 

individuals converge in a damped oscillatory manner to the steady state, see Figures 

6.9-6.12. 
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Figure 6.9: Three dimensional profile of susceptibles; a=1.0, p=0.01, is = 0.025 
and £=0.02. 
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Figure 6.11: Three dimensional profile of susceptibles; a=2.0, p=1.00, h=0.025 

and£=0.02. 
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6.6 Summary 

Finite-difference schemes have been used to obtain the numerical solutions of the 

diffusion-convection whooping cough model, (6.1.1)-(6.1.4), which models the spread 

of whooping cough epidemics. Second-order finite-difference approximations were 
developed to solve the model equations. The maximum principle analysis was used 

to analyse convergence. 

The study indicates that the whooping cough dynamics is dependent on the dif- 

fusion and convection rates. It is seen from the results obtained that when the 

convection and diffusion rates are equal or the diffusion rate is larger than the con- 

vection rate, the model behaved as expected and when the convection rate was less 

than the diffusion rate the dynamics of the model change unexpectedly. 
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Conclusions 

In this thesis, mathematical modelling of the transmission dynamics of whooping 

cough has centred on the SIR compartmental model. The differential equations 

involved in this model usually cannot be solved analytically and thus numerical 

methods have been developed for their solution. 

First- and second-order methods have been developed for the numerical solution 

of the model ODEs and PDEs. The second-order methods were developed by taking 

a linear combination of first-order methods. The proposed methods are characterized 

to be implicit. In each case, however, it is observed that the solution may be obtained 

explicitly. The SIR whooping cough model involving non-linear ODEs was studied 

and analysed in detail first of all. Stability analysis showed that there are two 

critical (equilibrium) points: one is trivial (no disease) and the other is non-trivial. 

A threshold condition determines which of these two critical points is stable. If the 

value of the basic reproductive number (Ro as described in Chapter 3) is greater than 

unity, the system settles down in the epidemic state. In this case, the equilibrium 

is approached via damped oscillations. Throughout the numerical simulations of 

the ODEs with Ro <1 and 7Z0 > 1, it was found that using a sufficiently small 

value of the time step, 2, with the first of the first-order methods (Euler method), 

the solutions obtained converged to the correct fixed point. For Ro > 1, the { uler 

method produced the solution moving to a stable limit cycle rather than to the stable 

non-trivial fixed point when the time step exceeds a certain value. As with most 
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problems solved using it, the Euler method required a severe restriction on the size 

of the time step. 

To avoid chaotic or spurious solutions, while still permitting the use of a large 

time-step, alternative methods of first and second order have been proposed for the 

numerical solution of the SIR whooping cough model. It was seen that the proposed 

methods have superior stability properties to the Euler method to which they are 

compared. One of the alternative first-order methods, Method M2, showed superior 

convergence in the sense that the solution obtained converged to the fixed point for all 

> 0. An alternative method, Method 
. 
M3, of the same order converged to the fixed 

point faster than other proposed methods. This method induced chaotic behaviour 

in the numerical solutions for Ro >1 whenever the parameter of time discretization 

exceeded a certain value. The second-order method showed more accuracy but this 

method is very restrictive on stepsize for Ro >1 and converged to the trivial fixed 

point (Ro < 1) for large values of the stepsize. The proposed methods, however, 

converge to the correct fixed point for a sufficiently small time step. 

The SIR whooping cough model has been extended to three systems of partial 

differential equations, namely reaction-diffusion, reaction-convection and reaction- 

convection-diffusion types as described in Chapters 4,5 and 6, respectively. The 

development of numerical methods for solving the system of ordinary differential 

equations was adapted for the numerical solutions of those systems. In a series of 

numerical experiments, the spread of whooping cough in one dimension was discussed 

for Ro > 1. The study indicated that the whooping cough dynamics was dependent 

on the diffusion rate, the convection rate and the initial distributions. It is also 

seen that the numerical methods developed are economical and reliable in that the 

solutions are obtained by solving a single linear algebraic system at each time step 

as opposed to solving a non-linear system which is the case most of the time when 

solving non-linear PDEs. The chaos present in the proposed numerical methods was 

investigated and was avoided by choosing appropriate time steps. 

A 



Chapter 7: Conclusions 145 

As a conclusion, the model investigated in this thesis, called the SIR model (see 

Chapter 3), is seen to simulate the dynamics of whooping cough adequately in that 

it captures the essence of microparasitic interaction that builds the foundation of 

the disease. More sophisticated models are readily formulated but will usually still 

have the simple SIR model in their core. Hence it makes sense to understand the 

dynamics of this model before turning to more complicated and, hopefully, more 

realistic approaches. Furthermore, the qualitative properties of the SIR model can 

be derived analytically, the numerical methods can be tested easily on how good 

they approximated the true behaviour of the system. It may, therefore, be envisaged 

that the methods developed which perform well on the simple model. will do so on a 

more sophisticated approach. Future work is to study the model for whooping cough 

transmission and vaccination and the model incorporating age structure. 
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