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an exact definition of biochemical conservation: elements and energy, rather than state variable
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traditional Euler-based schemes and the recently published modified Patankar schemes, and
conclude that none of these deliver unconditional positivity and biochemical conservation in
combination with higher-order accuracy. Finally, we present two new fixed-step integration
schemes, one first-order and one second-order accurate, which do guarantee positivity and
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1 Introduction

Biochemistry holds an interesting niche for numerical mathematics, as it com-
bines a great need for numerical techniques with model systems that are con-
strained by mathematically-relevant, real-world restrictions. Such restrictions
are a direct consequence of the nature of biochemical state variabes: these
represent combinations of mass and/or energy, both quantities that cannot
become negative, nor created or destroyed (as specified by the first law of ther-
modynamics) [20]. The former property implies state variables in biochemical
systems are unconditionally positive. The latter imposes a type of conserva-
tion. These properties represent two of the few cornerstones in biochemistry,
and are explicitly respected by any consistent biochemical modelling approach
[12]. Integration schemes must not violate either positivity or conservation, if
they are to produce results that are meaningful in biochemical context.

The exact mathematical implications of biochemical restrictions are often not
well understood. In particular, treatments of biochemical conservation in inte-
gration schemes abound [22,21,3], but are often limited at best. Various pro-
posed definitons of conservation are tailored to simple biochemical systems
[3], and would be demonstrably incorrect for many more advanced systems.
Most other definitons forgo – as argued in this paper – the exact meaning
of biochemical conservation [21], and should be considered too lenient for ap-
plication to biochemical problems. In section 2, we introduce a mathematical
framework for biochemical systems that combines ideas from metabolic con-
trol analysis [19] and theoretical biology [10,7]. We treat a minimal set of
biochemical concepts necessary to derive an exact definition of biochemical
conservation. This ultimately renders conditions for conservation as well as
positivity, against which any integration scheme can be tested.

The need for unconditionally positive schemes may not be obvious, as non-
positive integration schemes can render solutions that – though negative –
approach the true solution well. Additionally, these schemes recover from neg-
ative values in some cases. For many biochemical systems, however, this ar-
gument is not valid. Such systems include ODEs such as dy/dt = −y/(y + k)
with k > 0 (for substrate consumed in enzymatic reactions, or prey taken by
predators), or dz/dt = −z2 (when two molecules of the same compound react,
or species mortality is density-dependent). Obviously, y = 0 and z = 0 are
system invariants. Given positive initial values, both y and z converge to 0. For
negative initial values, this is not guaranteed: for y0 < −k and z0 < 0, state
variables will approach negative infinity. In other words, crossing the t-axis can
cause convergence to an unrealistic attractor that would never be approached
by the true solution. Hence, integration schemes that allow negative values
cannot guarantee consistency with the original system of ODEs.
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Many schemes obtain conditional positivity through adaptive time stepping.
For instance, in fluid flow dynamics the use of Courant-type conditions to en-
sure positivity (as well as stability) is prevalent [17]. However, we aim to apply
integration schemes to biochemical systems hosted in an existing biogeochemi-
cal modeling framework for water columns [2]. This comprehensive framework
imposes a global time step; within a step, splitting schemes are applied in or-
der to solve different parts of the problem – advection, diffusion, biochemistry
– with different numerical methods. The framework was not designed with
an adaptive time step in mind, and would, not surprisingly, require substan-
tial modification to deal with such. Therefore, we will in this paper consider
the framework as given, and exclusively deal with the biochemistry part of
the problem. We are thus confronted with the task of solving the biochemical
system for some predetermined time step. For such a scenario, non-adaptive
schemes represent the most straighforward and easily implemented solution;
adaptive time stepping – though possible if the adaptive step is an integer
fraction of the global step, or interpolation is used – is somewhat of a hassle.
Therefore, we restrict ourselves in this paper to integration schemes that are
unconditionally positive and conservative.

Few integration schemes offer unconditional positivity without caveats. In
their fundamental paper [1], Bolley and Crouzeix have shown that, within
the class of traditional methods like linear multistep and Runge-Kutta meth-
ods, unconditional positivity restricts the order of the method to one. In [8]
much attention is paid to this topic and it is surveyed how to arrive at con-
ditionally positive methods by taking special starting values. This applies in
particular to higher order BDF methods (also called Gear methods) which lack
unconditional positivity due to negative coefficients (in spite of the excellent
stability properties of these methods). Additionally, the first-order methods
that satisfy the condition of unconditional positivity are often computation-
ally expensive (e.g. Backward Euler), and hence unsuitable when one values
computational efficiency.

Mickens initiated the development of non-standard integration schemes [14],
designed to preserve the physical properties of the original systems (in par-
ticular stability properties). For several systems, efficient, non-standard first-
order schemes have been proposed that guarantee positivity of the solution
[18,9]. However, for other systems, such schemes have not been constructed,
although great effort has been put into their development. Therefore, non-
standard schemes do not represent a definitive, generic solution for the con-
dition of positivity. Another approach has been suggested by Sandu [21], and
involves a projection method to get around the first-order barrier; however,
its projection technique is founded on a common, ‘macroscopic’ definition of
conservation that we show in section 2 (definition 7) to be insufficient for
biochemical systems.
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Burchard et al. [3] presented a collection of unconditionally positive schemes
that are inspired by the so-called Patankar trick [16]. The collection includes
the first-order accurate Modified Patankar (MP) scheme, and the second-order
accurate Modified Patankar-Runge-Kutta (MPRK) scheme. Both the original
Patankar scheme and the MP/MPRK schemes obtain unconditional positivity
by treating the positive terms (sink fluxes) in the right-hand sides of ODEs dif-
ferently from the negative terms (source fluxes). Unlike the original Patankar
scheme, the Modified Patankar schemes could be shown to satisfy a mini-
mal definition of conservation [3]. In section 2 of this paper, however, we
demonstrate that this basic definition of conservation is unsuitable for many
biochemical problems, and show that the Modified Patankar schemes are con-
servative in the strict biochemical sense, only if certain, restrictive conditions
are met.

In section 4, we systematically analyze a selection of integration schemes,
both traditional (Euler schemes) and recent (Modified Patankar schemes), and
prove that none of these satisfy the requirements of unconditional positivity
and (biochemical) conservation. In the same section, we propose two new fixed-
step integration schemes, inspired by the Patankar trick [16] and the work of
Burchard et al. [3], and prove that these schemes are unconditionally positive,
and conservative in the biochemical sense. Finally, in section 5, the accuracy,
order, and computational cost of the new schemes is analyzed empirically with
the two simple test cases described in section 3.

2 Biochemical concepts

A generic system of I ordinary differential equations will be denoted by:

dc

dt
(t) = f (t, c(t)) ,

c(t) denoting the vector of length I with state variable values at time t, and
f (t, c(t)) denoting the vector with ODE right-hand sides. Elements of c(t) and
f (t, c(t)) will be denoted by ci(t) and fi (t, c(t)), respectively, i ∈ {0, ..., I}.
For any vector c, c > 0 will be used to denote ci > 0 ∀ i.

For numerical schemes, the time at integration step n will be denoted by tn.
The time step will be denoted by ∆t. As this paper deals only with schemes
using a fixed time step, we have tn+1 = tn + ∆t for any n ∈ N. The numerical
approximation of the solution vector c(tn) will be denoted by cn.
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2.1 A framework for biochemical systems

The typical biochemical system of I ordinary differential equations can be
completely described by a set of R reactions. A reaction describes the conver-
sion of a set of source compounds into a set of sink compounds. Compounds
appear in ODE-based system definitions as state variables.

Take for instance the four dimensional system of which the dynamic behavior
is described by the following set of ODEs:

dC

dt
=−a rmax

C

KC + C

N

KN + N
P

dN

dt
=−b rmax

C

KC + C

N

KN + N
P

dP

dt
= rmax

C

KC + C

N

KN + N
P − eP

dD

dt
= eP. (1)

This system describes the growth of phytoplankton (P ) on two nutrients C and
N (e.g. a carbon source and a nitrogen source), and the death of phytoplank-
ton, resulting in formation of detritus (D). The system contains six parame-
ters: C requirement a (dimension: C/P ), N requirement b (dimension: N/P ),
maximum specific growth rate rmax (dimension: time−1), C half-saturation
KC (dimension: C), N half-saturation KN (dimension: N), and phytoplank-
ton mortality e (dimension: time−1). Note that system (1) was chosen for
notational simplicity rather than realistic kinetics: the product of hyperbo-
lae suffers from several problems regarding interpretation; better, mechanistic
replacements have been suggested [11,12].

This system can also be represented by two reactions:

aC + bN
r1(C,N,P )
−−−−−−→ 1P

1P
r2(P )
−−−→ 1D

, with
r1(C, N, P ) = rmax

C
KC+C

N
KN+N

P

r2(P ) = eP.
. (2)

Each reaction distinguishes source compounds (left of the arrow), and sink
compounds (right of the arrow).

For each reaction, the reaction rate rj(t, c) represents the rate at which the
reaction progresses. These may depend both on time and the state of the sys-
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tem. The dimension (dim) of a reaction rate typically equals that of one of the
participating variables, per time. In (2), both reaction rates have been arbi-
trarily normalized on the reference variable P : dim(r1) = P produced · time−1

and dim(r2) = P destroyed · time−1. Reaction rates may be negative, in which
case the reaction is reversed, and the roles of sink and source interchange.

Constants preceding sink- and source variables in reactions refer to the amount
of the variable destroyed or produced per reaction, and are commonly refFed
to as stoichiometric coefficients. These coefficients are independent of both
time and the state of the system. The dimension of stoichiometric coefficients
equals the dimension of their associated variable, divided by the dimension of
the reference variable on which the reaction rate was normalized, e.g. dim(a) =
dim(C) · dim(P )−1.

When dealing with reactions and stoichiometric coefficients, it is appropriate
to define the system using matrix-vector notation. This allows us to split the
system in a time- and state-dependent part that describes reaction rates, and
a constant part that describes stoichiometric coefficients.

Definition 1 For a given (biochemical) system of R reactions, define the
time- and state dependent reaction rate vector r ∈ R

R, such that every el-
ement rj equals the rate at which reaction j progresses [20,19,21].

For system (2), the reaction rate vector is given by:

r(C, N, P ) =







r1

r2





 =







rmax
C

KC+C
N

KN+N
P

eP





 . (3)

Definition 2 For a given (biochemical) system of R reactions, define the
time- and state-independent stoichiometry matrix S ∈ R

I×R [20,19,21]. Let
every element Sij represent a stoichiometric coefficient, which describes the
amount of state variable i produced per reaction j. If a compound acts as source
in a reaction, it is consumed rather than produced, and the corresponding Sij

is negative. If a compound acts as sink, it is produced and the corresponding
Sij is positive.

For system (2), the stoichiometry matrix is:

S =





















−a 0

−b 0

1 −1

0 1





















. (4)

6



Rows correspond with state variables C, N , P and D, respectively, columns
with reactions.

Definition 3 The product of the stoichiometry matrix and the reaction rate
vector renders the net change in state variable values, i.e. the right-hand side
of the ODEs:

dc

dt
= Sr(t, c). (5)

For example (2), one can easily check that the product of (4) and (3) indeed
renders the ODEs given in (1).

2.2 Positivity

Definition 4 A system of ODEs is called unconditionally positive if f(t, c) is
such that c(t) > 0 for all t > 0, given c(0) > 0.

Definition 5 An integration scheme Φ is called unconditionally positive if
cn+1 > 0 for any given cn > 0 and any arbitrary time step ∆t > 0.

It is important to note that an unconditionally positive integration scheme
only makes sense if applied to systems that are themselves unconditionally
positive.

2.3 Conservation

In biochemical context, conservation refers to the fact that atoms and energy
are conserved. State variables represent compounds, which are time-invariant
compositions of atoms of various element species, and a given amount of chemi-
cal energy (e.g. enthalpy, or Gibbs free energy). Compounds are not conserved,
but their constituents are. Therefore, the common closed-system-based defini-
tion of conservation that states the sum of all state variables is constant does
not cover the biochemical concept of conservation.

Definition 6 For a given (biochemical) system, define the time- and state-
independent compound composition matrix E ∈ R

E×I, such that every element
Eij equals the amount of compound constituent i (energy or some element
species) per compound j. Every row in E corresponds with a compound con-
stituent; the number of rows E (i.e. the number of constituents monitored)
depends solely on the interest of the modeler.
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It is worth noting that many authors distinguish an elemental composition
matrix that defines element counts per compound, and an energy vector that
defines energy (or enthalpy) per compound [20,10,7]. For the sake of simplicity,
we combine both in the compound composition matrix E: the energy vector
is represented by one row of E.

Typically, one includes in E only a selection of constituents tuned to the
modeler’s interest. The selection may exclude many element species, and even
energy, if the modeler takes no interest in energetics. For system (2), one could
focus on the element species carbon (C) and nitrogen (N), and write:

E =







1 0 a a

0 1 b b





 , (6)

where rows correspond with compound constituents (the elements C and N,
respectively) and columns with compounds (C, N , P and D, respectively).

In other words, state variable C contains 1 atom of carbon and no nitrogen,
state variable N contains no carbon and 1 atom of nitrogen, and both variable
P and D contain a atoms of carbon and b atoms of nitrogen.

The product of compound composition matrix E and stoichiometry matrix
S renders a matrix that defines the change in elements and energy (rows)
for the different reactions (columns). For the system to be conservative in
the biochemical sense, the total amount of any element species, and the total
amount of energy must not be affected by any reaction. For a conservative
system, this implies that the product of E and S must render a zero matrix.

Definition 7 A system is called conservative if it can be written as a set of
reactions such as (2), with an associated compound composition matrix E, that
multiplied with stoichiometry matrix S, renders a E × R zero matrix, that is:
ES = 0 [20,10].

Above implies the columns of S are part of the null space of E. Equivalently,
range(S) ⊂ nullspace(E), and since E ∈ R

E×I , we have rank(S) ≤ I − E if
we assume rows of E are linearly independent [21]. In other words, the number
of linearly independent rows in S cannot be greater than the dimension of the
system (I) diminished with the number of linearly independent conservation
laws (rows of E).

If we multiply (6) and (4) for system (2):
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ES =







1 0 a a

0 1 b b



























−a 0

−b 0

1 −1

0 1





















=







0 0

0 0





 ,

i.e. none of the reactions changes the total amount of any compound con-
stituent (C, N).

In effect, definition 7 defines conservation on the microscopic level: the level
of individual reactions. One commonly encounters a macroscopic definition of
conservation that directly follows from definition 7: Ef(t, c) = ESr(t, c) = 0,
which in turn implies Ec(t) is constant [21]. However, macroscopic conserva-
tion is a necessary but not sufficient condition for microscopic conservation.
If rank(S) < I − E = dim nullspace(E) (assuming the rows of E are lin-
early independent), there exists a subspace N ⊂ R

I , N ⊂ nullspace(E) for
which macroscopic but not microscopic conservation is met (Andreas Meister,
personal communication). Definiton 7 is thus notably more strict than the
common macroscopic definition of conservation [21], and deserves additional
motivation. The main difference between macro- and microscopic conservation
is this: systems that are conservative on the macroscopic level might preserve
total element- and energy counts in the system by redistributing mass and
energy along routes unaccounted for by any reaction. Specifically, this would
allow for apparent stoichiometric ratios to deviate from the imposed ratios
in S; as these ratios are key determinants in various problems in biochem-
istry (e.g. the famous carbon:nitrogen:phosphorus ‘Redfield’ ratio in marine
systems), such deviations are better avoided.

Remark 8 Many biochemical systems are open to mass and energy, in the
sense that one or more compounds participating in reactions are external to
the system. Such external compounds appear in the system as (environmental)
parameters, rather than as state variables, and are therefore not included in S.
For the purpose of demonstrating conservation, however, one can easily define
a complete stoichiometry matrix that does include external compounds; this
matrix, rather than its subset S, should meet definition 7.

Numerical integration involves a scheme-specific approximation of the change
in state variable values within one time step. To ensure meaningful results, the
state variable change must foremost be consistent with the original system. For
biochemical systems, this obviously requires conservation of mass and energy.
Arguably, consistence with biochemistry not only implies conservation on the
macroscopic level (no elements or energy leave the system), but also on the
microscopic level (no elements or energy are destroyed or created within one
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reaction). Analytically, conservation across individual reactions is ensured by
constructing S such that it meets definition 7. Microscopic conservation for
any arbitrary biochemical system is then only guaranteed if state variables
change direcly and exclusively according to the original stoichiometry matrix
S, using a scheme-specific approximation of reaction rates.

Definition 9 An integration scheme Φ is called consistent with respect to
biochemical systems, and conservative with respect to mass and energy, if for
every integration step n + 1, there exists a vector rn that satisfies:

cn+1 − cn = Srn∆t, (7)

S denoting the system-specific stoichiometry matrix (definition 2). Vector rn

may be thought of as to represent a scheme-specific approximation of the av-
erage reaction rate vector r(t, c) between tn and tn+1.

Obviously, for biochemical systems that are conservative in the sense of defi-
nition 7, (7) implies conservation at the macroscopic level:

E
(

cn+1 − cn
)

= E (Srn∆t) = ES (rn∆t) = 0, (8)

i.e. the total amount of any element species, and of energy, remains constant.
Condition (7) implies (8), but the opposite is not necessarily true. This again
reflects the difference between macroscopic and microscopic conservation as
described under definition 7.

In the special case where all compounds are of equal composition, the columns
of compound composition matrix E are identical, i.e. Eij = Ei1, ∀ j ∈
{2, ..., I}. Then, (8) implies that the sum of all ci is constant; this is often
used as definition of conservation [3], but obviously falls short for biochemical
purposes, except for simple cases such as the nitrogen-based NPZ-type models
like the one of Fasham et al. [5].

2.4 Order of accuracy

It is common ODE practice to define the order of accuracy of a method by
means of its local truncation error:

Definition 10 Let cn+1 denote the numerical approximation obtained by ap-
plying the method Φ, starting at time tn on the exact solution, i.e., cn = c(tn).
Then, e := c(tn+1) − cn+1, the error made in one step, is called the local
truncation error.
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The method Φ is said to be of order p if e behaves as [6]:

e = O((∆t)p+1).

To visualize the order of the methods to be discussed, we will employ a rela-
tive mean square error, taken over all time steps and averaged over all state
variables:

ERR =
1

I

I
∑

i=1

√

√

√

√

∑N
n=1(ci(tn) − cn

i )2

∑N
n=1(ci(tn))2

. (9)

3 Model problems

To analyze the performance of the new integration schemes at realistic ∆t,
we apply these schemes to two test cases: a simple linear system for which an
analytical solution is available, and the simple non-linear system (1).

3.1 Simple linear system

The simple linear system used in Burchard et al. [3] is given by:

dc1

dt
= c2 − ac1,

dc2

dt
= ac1 − c2, (10)

with non-dimensional time, non-dimensional parameter a ≥ 0 and initial val-
ues c1(0) = c0

1 > 0 and c2(0) = c0
2 > 0.

The analytical solution of this system is given by:

c1(t) =
(

1 + c e−(a+1)t
)

c∞1 ,

with the asymptotic solution

c∞1 =
c0
1 + c0

2

a + 1
and c =

c0
1

c∞1
− 1.

Given that the system is closed and conservative (which implies c1(t) and c2(t)
represent compounds with the same composition and unit), c1(t) + c2(t) =

11



PSfrag replacements

t

co
n
ce

n
tr

at
io

n

Simple linear system

c2, analytical
c1, analytical

c2, analytical

0 0.5 1 1.5

0

0.5

1

Fig. 1. Analytical reference solution for the simple linear system (10).

c0
1 + c0

2 for all t ≥ 0. Thus, c2(t) is defined by:

c2(t) = c0
1 + c0

2 − c1(t).

In sample simulations, a = 5, c0
1 = 0.9 and c0

2 = 0.1 are used. Obviously,
c1(t) + c2(t) = 1 for all t. All values correspond with those used by Burchard
et al. [3]. The analytical solution of the system for these values is shown in
figure 1.

3.2 Simple non-linear system

As second test case, we use the simple biochemical system (1). This system
may be interpreted as describing the ecosystem in the upper-mixed layer of
the ocean in spring. It is similar to the simple non-linear system presented in
Burchard et al. [3], but includes an additional nutrient C. This change has been
made to demonstrate conservation problems of the Modified Patankar scheme
proposed in Burchard et al. [3] when reactions contain more than one source
compound. Note that for the limiting case C → ∞, system (1) reduces to the
simple non-linear system of Burchard et al. [3] if b = KC = KN = rmax = 1.

In sample simulations, we use a = b = KC = KN = rmax = 1 and e = 0.3.
Initial state variable values were set to C0 = 29.98, N 0 = 9.98, and P 0 =
D0 = 0.01. Since phytoplankton P requires equal amounts of C and N for
growth (a = b = 1) while C is available in much higher amount than N , C
represents in effect a non-limiting nutrient.
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Fig. 2. High-resolution numerical approximation of the solution of the simple
non-linear system, as given by (1). This approximation was obtained with a
fourth-order accurate Runge-Kutta scheme [6, p. 138], with ∆t = 0.01.

Total initial amounts of compound constituents are given by the product of
the compound composition matrix as defined in (6), and the vector of initial
state variable values, i.e.:

Ec0 =







1 0 1 1

0 1 1 1



























29.98

9.98

0.01

0.01





















=







30

10





 .

Note that this implies C + P + D = 30 and N + P + D = 10 for all t, since
the system is conservative (see also definition 7).

An analytical solution for the system cannot be obtained. Hence, we resort
to a high-resolution approximation of the solution to compare the results of
various schemes against. This reference solution is shown in figure 2.
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4 Numerical schemes

4.1 Forward Euler, Runge-Kutta

To familiarize the reader with biochemical conservation in the sense of (7), we
first consider the well-known Forward Euler scheme:

cn+1 = cn + ∆t f(tn, cn).

This well-known scheme is first-order accurate. It is obviously not uncondi-
tionally positive, even given cn > 0: for any fi(t

n, cn) < 0, there exists a time
step ∆t that results in cn+1

i < 0.

The Forward Euler scheme is conservative with respect to mass and energy.
Applying the scheme to (5), one obtains:

cn+1 = cn + ∆t Sr(tn, cn),

and it is easily seen that the Forward Euler scheme satisfies (7), with rn =
r(tn, cn).

Second- and higher order Runge-Kutta schemes are, like the Forward Euler
scheme, derived using Taylor series expansion of c(t). For these schemes, one
can also easily show that they are conservative, but not unconditionally posi-
tive.

4.2 Backward Euler

The Backward Euler (or Implicit Euler) scheme is given by:

cn+1 = cn + ∆t f(tn+1, cn+1).

This scheme is known to be unconditionally positive [1,8]. Also, it is conser-
vative in the sense of definition 9 with rn = r(tn+1, cn+1). In addition, the
Backward Euler scheme is also, unlike Forward Euler, well suited for solv-
ing stiff systems. Thus, it would seem well suitable for biochemical systems.
However, the main drawback of the Backward Euler scheme is the high com-
putational cost in each step: it requires the solution of a system of non-linear
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equations. The Newton method typically applied to this end requires (approx-
imation of) the matrix ∂f(t, c)/∂c, which for most biochemical systems cannot
be calculated analytically. Thus, one has to resort to numerical approximation
of ∂f(t, c)/∂c, for instance by finite differences. This involves repeated, costly
evaluations of ODE right-hand sides.

Aside of associated computational costs, Backward Euler is only first order
accurate, and higher-order implicit schemes of this type (e.g. Gear schemes)
cannot be constructed without sacrificing positivity [1,8].

4.3 Modified Patankar

Using the reaction-based system definition presented in section 2, the Modified
Patankar (MP) scheme [3] is given by:

cn+1 = cn + ∆t S′(cn, cn+1) r(tn, cn),

matrix S′(cn, cn+1) being of the same size as the stoichiometry matrix S, with
elements:

S ′
ij =











































Sij
cn+1
i

cn
i

for Sijrj < 0

0 for Sijrj = 0

Sij

∑

k∈Kj

(

ρijk
cn+1
k

cn
k

)

for Sijrj > 0, Kj 6= ∅

Sij for Sijrj > 0, Kj = ∅

. (11)

The set Kj represents the set of indices of state variables that act as source
in reaction j:

Kj = {i : Sijrj < 0, i ∈ {1, ..., I}} . (12)

Constants 0 ≤ ρijk ≤ 1 in (11) are constrained by the condition

∑

k∈Kj

ρijk = 1.

In words, source fluxes are multiplied with an associated ‘relative change’:
the ratio between the approximated source value at tn+1 and its value at
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tn. Sink fluxes are multiplied with a weighed sum of relative changes in the
corresponding sources.

It is worth noting that the original Patankar approach [16] is very similar, the
only difference being that S ′

ij = Sij for Sijrj > 0 in (11).

The MP scheme has been shown to be unconditionally positive [3]. In the same
paper, this scheme has been shown to be conservative in the sense that for a
closed system, the sum of state variables is constant. This, however, does not
imply that the scheme is conservative in the sense of definition 9.

For our example (2), matrix S′(cn, cn+1) would be given by:

S′(cn, cn+1) =























−a
cn+1
C

cn
C

0

−b
cn+1
N

cn
N

0

1
(

ρ3,1,C
cn+1
C

cn
C

+ ρ3,1,N
cn+1
N

cn
N

)

−1
cn+1
P

cn
P

0 1
cn+1
P

cn
P























,

with ρ3,1,C + ρ3,1,N = 1.

To be conservative in the sense of definition 9, there must exist a vector rn,
such that matrix S′(cn, cn+1) satisfies:

S′(cn, cn+1) r(tn, cn) = S rn.

For the example, this implies there must exist constants rn
1 and rn

2 , such that:

−a
cn+1
C

cn
C

r1 =−arn
1

−b
cn+1
N

cn
N

r1 =−brn
1

1

(

ρ3,1,C

cn+1
C

cn
C

+ ρ3,1,N

cn+1
N

cn
N

)

r1 − 1
cn+1
P

cn
P

r2 =1rn
1 − 1rn

2

1
cn+1
P

cn
P

r2 =1rn
2 .

From the first two equations, one can derive that there only exists a valid
rn
1 in the special case where cn+1

C /cn
C = cn+1

N /cn
N : the relative decreases of the

nitrogen- and the carbon source must be equal. Obviously, this condition will
only be met in rare, temporary states. Thus, for system (2), the MP scheme
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is typically not conservative in the sense of definition 9. In fact, even the
common, more lenient definition of conservation (8) does not hold for the MP
scheme applied to the example: figures 3 and 5 show that the total amount of
carbon (i.e. C + P + D) decreases over time.

The above result can be generalized: if for every set Kj, all elements i have
equal cn+1

i /cn
i = pj ratios, the Modified Patankar scheme can be written as

cn+1 = cn + ∆t S rn(tn, cn, cn+1) with rn
j (tn, cn, cn+1) = rj(t

n, cn)pj, (13)

implying conservation in the sense of definition 9. Consequently, if every Kj

contains at most one element, the MP scheme is conservative with pj = cn+1
1 /cn

1

for non-empty Kj, and pj = 1 for Kj = ∅.

We can conclude that the MP scheme is not conservative in the sense of defi-
nition 9 for any arbitrary system (with arbitrary E and S). It is conservative
if (1) all system reactions contain at most one source compound (all sets Kj

contain at most one element), or (2) the relative changes in all sources are
equal. However, for the many biochemical systems that do not satisfy either
requirement, the MP approach is clearly not suitable.

The second-order Modified Patankar-Runge-Kutta (MPRK) scheme may be
considered to consist of two consecutive MP steps. Therefore, it suffers from
the problems with conservation as the MP approach. Although we do not
present the mathematical proof showing that the MPRK scheme is not con-
servative, we do show in figures 4 and 5 that the MPRK scheme applied to
the simple non-linear system (1) violates equation (8): the total amount of
carbon (i.e. C + P + D) decreases over time, due to the inordinate decrease
of C over time. Therefore, the MPRK scheme cannot be conservative in the
sense of definition 9.

4.4 New scheme: first-order accuracy

We propose an integration scheme that is based on the (Forward) Euler
scheme, but guarantees cn > 0, n ∈ N, given c0 > 0.

The new scheme is given by:

cn+1 = cn + ∆t f(tn, cn)
∏

j∈Jn

cn+1
j

cn
j

with Jn = {i : fi(t
n, cn) < 0, i ∈ {1, ..., I}} , (14)
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where Jn represents the set of indices for state variables with negative deriva-
tive. Note that for Jn = ∅, the product term drops out, and we are left with
the Euler scheme (however, for a closed conservative system, Jn 6= ∅ per defi-
nition).

The scheme as given in (14) renders a system of I non-linear implicit equations,
which must be solved to arrive at cn+1.

4.4.1 System reduction

Let us start with a positive solution vector cn > 0. Writing (14) component-
wise and dividing the ith equation by cn

i , we arrive at:

cn+1
i

cn
i

= 1 +
∆t fi(t

n, cn)

cn
i

∏

j∈Jn

cn+1
j

cn
j

, i ∈ {1, ..., I} .

Calculating the product of all cn+1
i /cn

i , ∀i ∈ Jn, we find
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∏

i∈Jn

cn+1
i

cn
i

=
∏

i∈Jn



1 +
∆t fi(t

n, cn)

cn
i

∏

j∈Jn

cn+1
j

cn
j



.

Defining p :=
∏

j∈Jn

cn+1
j /cn

j , this can be simplified to:

p =
∏

j∈Jn

(

1 +
∆t fj(t

n, cn)

cn
j

p

)

.

To find p, it is convenient to define a function g(p):

g(p) =
∏

j∈Jn

(

1 +
∆t fj(t

n, cn)

cn
j

p

)

− p = 0, (15)

or, briefly:

g(p) =
∏

j∈Jn

(1 + ajp) − p = 0 with aj = ∆t fj (tn, cn)/cn
j .

The function g(p) is a polynomial of a degree equal to the number of elements
in Jn, and therefore has as many roots, which may be real or complex. Thus,
the problem to solve has been reduced from a set of I non-linear implicit
equations to a polynomial equation in one single unknown.

4.4.2 Restrictions on the p-domain

From equation (14) and the fact that we require cn+1 > 0, we obtain the
condition

cn
i + ∆t fi(t

n, cn) p > 0 for all i ∈ {1, ..., I} .

As time step ∆t is positive by definition, parameter p has to satisfy the fol-
lowing I inequalities:

p >−
cn
i

∆t fi(tn, cn)
if fi(t

n, cn) > 0 (16)

p <−
cn
i

∆t fi(tn, cn)
if fi(t

n, cn) < 0. (17)
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Note that if fi(t
n, cn) = 0 for some i ∈ {1, ..., I}, no further restrictions on p

are posed.

Since we require cn+1 > 0, given cn > 0, we obtain:

p =
∏

j∈Jn

cn+1
j

cn
j

> 0, (18)

which gives another lower bound for p. This lower bound exceeds, and thus
replaces, the (negative) bound defined by (16).

From equation (14) and conditions (17) and (18), we know that 0 < cn+1
j < cn

j

for all j ∈ Jn, which implies there exists another upper bound for p:

p =
∏

j∈Jn

cn+1
j

cn
j

< 1. (19)

Thus, the upper bound for p is given by conditions (17) and (19):

pmax = min

(

1, min
j∈Jn

(

−
cn
j

∆t fj(tn, cn)

))

.

Now, the domain for p is given by p ∈ (0, pmax).

For these bounds, one can calculate g(p):

g(0) = 1

g(pmax) =















−pmax for pmax = min
j∈Jn

(

−
cn
j

∆t fj(tn ,cn)

)

γ − 1 with γ < 1 for pmax = 1
.

Since g(0) > 0 and g(pmax) < 0 and g(p) is continuous, g(p) must cross the
p-axis an uneven number of times within the p-domain. Hence, we know g(p)
has at least one real root in the domain p ∈ (0, pmax), potentially more (the
maximum depending on Jn).

4.4.3 Behavior of g(p) in the p-domain

The derivative of g(p) equals:
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dg

dp
=
∑

i∈Jn





∆t fi(t
n, cn)

cn
i

∏

j∈Jn,j 6=i

(

1 +
∆t fj(t

n, cn)

cn
j

p

)



− 1.

Replacing ∆t fi (t
n, cn)/cn

i by ai yields

dg

dp
=
∑

i∈Jn



ai

∏

j∈Jn,j 6=i

(1 + ajp)



− 1.

Within the p-domain, we know 1+aip > 0 for all i ∈ Jn. Also, every ai will be
negative for all i ∈ Jn, as Jn by definition comprises only those state variables
for which fi(t

n, cn) < 0. Thus, it is easily verified that dg/ dp < 0 within the
p-domain.

Summarizing, within the p-domain of interest, g(p) is a continuous decreasing
function of p, starting at g(0) > 0, and ending at g(pmax) < 0. Hence, there
exists exactly one real root of g(p) in this range.

To find this root, we may employ the relatively slow, but robust bisection
iteration process, which is guaranteed to find a root of g(p), as we know g(p)
changes sign within the p-domain(0, pmax). While other schemes may find the
root of g(p) much faster than the bisection process, such other schemes are
often not guaranteed to converge to the correct root (e.g. Newton-Raphson,
Secant), or have a strongly problem-dependent convergence rate (e.g Regula
Falsi). More intelligent approaches, e.g. the use of a bisection-Newton-Raphson
hybrid scheme, might be used to maximize performance, but such are not
further explored in the present paper.

Theorem 11 The scheme (14) is first-order accurate.

PROOF.

Given p :=
∏

j∈Jn

(

cn+1
j /cn

j

)

, the new scheme can be written as:

cn+1 = cn + ∆t f(tn, cn)p.

For cn+1 to be a first-order approximation in t = tn + ∆t, we need lim
∆t→0

p = 1.

To prove this, we expand the product in equation (15):

g(p) = 1 +
k
∑

i=1

bip
i(∆t)i − p = 0, (20)
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with k denoting the cardinal number of set Jn, and every bi denoting some
product of fj(t

n, cn)/cn
j ratios, independent of both p and ∆t.

For (20), one can easily see that p = 1 is a solution for lim
∆t→0

g(p) = 0. Since the

bisection technique is guaranteed to converge to the only valid real value of p, it
will ultimately converge to p = 1, making the new scheme first-order accurate.
However, the actual accuracy of the found p(r) depends on the number of
bisection iterations r; only for r → ∞, we find p(r) → p. Therefore, the scheme
(14) is theoretically only first-order accurate if r → ∞.

In practice, we stop bisection when the following condition is satisfied:

2
pright − pleft

pright + pleft
< 10−9, (21)

pleft and pright denoting the left- and right bounds of the bisection p-domain.
Note that (21) implies that the first 9 digits of p are known accurately. We
found that additional bisection iterations had no qualitative effect on the
results.

Theorem 12 The scheme (14) is unconditionally positive.

PROOF.

To enforce positive values for all cn+1
i , we found above p ∈ (0, pmax). The

bisection technique will return a value for p from within this range, indepen-
dent of the number of bisection iterations. Thus, the new first-order scheme
is unconditionally positive.

This is perhaps even more obvious if one considers that (14) can be interpreted
as a rescaling of the time step to preserve positivity, compared to Forward
Euler: ∆t → p∆t. The actual value of p as found by our scheme is restricted by
(16) and (17): precisely the bounds required by conditionally positive schemes.

Theorem 13 The scheme (14) is conservative in the sense of definition 9.

PROOF.

Using definition 3, the new scheme is given by

cn+1 = cn + Sr(tn, cn) (∆t p) , with p =
∏

j∈Jn

cn+1
j

cn
j

.
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This clearly satisfies definition 9, with

rn = p r(tn, cn).

Note that definition 9 is satisfied for any arbitrary scalar p. Conservation of
the new first-order scheme is therefore independent of the number of bisection
iterations.

4.5 New scheme: second-order accuracy

We suggest the following scheme for second-order accurate results that are
unconditionally positive and conservative:

c(1) = cn + ∆t f(tn, cn)
∏

j∈Jn

c
(1)
j

cn
j

cn+1 = cn +
∆t

2

(

f(tn, cn) + f(tn+1, c(1))
)

∏

k∈Kn

cn+1
k

c
(1)
k

(22)

where

Jn = {i : fi(t
n, cn) < 0, i ∈ {1, ..., I}}

Kn =
{

i : fi(t
n, cn) + fi(t

n+1, c(1)) < 0, i ∈ {1, ..., I}
}

. (23)

Clearly, the first part of this scheme is identical to (14), i.e. identical to one
integration step of the first-order scheme. The second part in the scheme may
be rewritten in the form:

cn+1 = cn + ∆t h(tn, tn+1, cn, c(1))
∏

k∈Kn

cn+1
k

cn
k

with h(tn, tn+1, cn, c(1)) =
1

2

(

f(tn, cn) + f(tn+1, c(1))
)

∏

k∈Kn

cn
k

c
(1)
k

, (24)

which, since h(tn, tn+1, cn, c(1)) is independent of cn+1, adequately demon-
strates that also the second part is mathematically similar to a step with the
first-order method.
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Given that the new scheme consists of two consecutive parts that are each
mathematically equivalent to a step with the first-order scheme (14), the
scheme {(22), (23)} can be implemented in the same manner as described
in section 4.4. Thus, the new scheme will need to find the real root of two
different polynomials, for which we will again apply the bisection technique.

Theorem 14 The scheme {(22),(23)} is second-order accurate.

PROOF.

As the first part of the new scheme is first-order accurate, we know:

c(1) = c(tn+1) + O(∆t2) = cn + ∆t f(tn, cn) + O(∆t2).

This can be used in a Taylor expansion of f(tn+1, c(1)):

f(tn+1, c(1)) = f(tn, cn) + ∂f

∂c
(tn, cn)(c(1) − cn) + ∆t∂f

∂t
(tn, cn) + O(∆t2)

= f(tn, cn) + ∆t
(

∂f

∂c
(tn, cn)f(tn, cn) + ∂f

∂t
(tn, cn)

)

+ O(∆t2)
.

(25)

Using this in the second part of equation (22), we obtain:

cn+1

= cn + ∆t
2

(

f(tn, cn) + f(tn+1, c(1))
)

∏

k∈Kn

cn+1
k

c
(1)
k

= cn + ∆t
2

(

2f(tn, cn) + ∆t
(

∂f

∂c
(tn, cn)f(tn, cn) + ∂f

∂t
(tn, cn)

)

+ O(∆t2)
)

∏

k∈Kn

cn+1
k

c
(1)
k

= cn +
(

∆t f(tn, cn) + ∆t2

2

(

∂f

∂c
(tn, cn)f(tn, cn) + ∂f

∂t
(tn, cn)

)

+ O(∆t3)
)

∏

k∈Kn

cn+1
k

c
(1)
k

.

For the new scheme to be second-order accurate, the product term on the
right must behave as 1 + O(∆t2) for ∆t → 0. Notice that a behavior of this
term as 1 + O(∆t) would destroy the second-order of the scheme.

Because a step with the new first-order scheme has been proven to be first
order accurate, we can use the fact that we perform two first-order steps
consecutively (see equation 24). For ∆t → 0 we may write:
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∏

k∈Kn

cn
k

c
(1)
k

=
∏

k∈Kn

cn
k

cn
k + ∆t fk(tn, cn) + O(∆t2)

∏

k∈Kn

cn+1
k

cn
k

=
∏

k∈Kn

cn
k + ∆t

2

(

fk(t
n, cn) + fk(t

n+1, c(1))
)

∏

k∈Kn

cn
k

c
(1)
k

+ O(∆t2)

cn
k

∏

k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + ∆t

2

(

fk(t
n, cn) + fk(t

n+1, c(1))
)

∏

k∈Kn

cn
k

c
(1)
k

+ O(∆t2)

cn
k + ∆t fk(tn, cn) + O(∆t2)

.

Using the first term in the Taylor expansion of (25) for all fk(t
n+1, c(1)), we

arrive at:

∏

k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + (∆t fk(t

n, cn) + O(∆t2))
∏

k∈Kn

cn
k

c
(1)
k

+ O(∆t2)

cn
k + ∆t fk(tn, cn) + O(∆t2)

.

Since
∏

k∈Kn

cn
k/c

(1)
k behaves as 1 + O(∆t) for ∆t → 0, we see that

∏

k∈Kn

cn+1
k

c
(1)
k

=
∏

k∈Kn

cn
k + ∆t fk(t

n, cn) + O(∆t2)

cn
k + ∆t fk(tn, cn) + O(∆t2)

indeed behaves as 1 + O(∆t2). Thus, the new scheme {(22),(23)} is second-
order accurate. Notice that the above proof also demonstrates that the choice
of the factor

∏

k∈Kn

cn+1
k /c

(1)
k in (22) is not arbitrary. For instance, the alternative

choice
∏

k∈Kn

cn+1
k /cn

k would lead to 1 + O(∆t) for ∆t → 0, making the scheme

only first-order accurate.

Note that in theory, second-order accuracy is achieved only for an infinite
number of bisection iterations. In practice, we stop bisection when condition
(21) is satisfied; results did not further improve with more bisection iterations.

Theorem 15 The second-order scheme {(22),(23)} is unconditionally posi-
tive.

PROOF.

As demonstrated in equation (24), the final step of the second-order scheme
is mathematically equivalent to a first-order step, using the vector function
h(tn, tn+1, cn, c(1)) rather than the typical f(tn, cn). The first-order scheme has
been shown to guarantee positive values, independent of f(tn, cn) and of the
number of bisection iterations. Therefore, the second-order scheme likewise
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guarantees positive values for all elements of any cn, given a positive starting
vector c0.

Theorem 16 The second-order scheme {(22),(23)} is conservative in the
sense of definition 9.

PROOF.

Using definition 3, the final part of the new scheme is given by:

cn+1 = cn +
∆t

2

(

Sr(tn, cn) + Sr(tn+1, c(1))
)

p, with p =
∏

k∈Kn

cn+1
k

c
(1)
k

.

This may be written as:

cn+1 = cn + S
(

r(tn, cn) + r(tn+1, c(1))
)

(

∆t

2
p
)

,

which clearly shows that the second-order scheme satisfies definition 9, with:

rn =
p

2

(

r(tn, cn) + r(tn+1, c(1))
)

.

Note as with the first-order scheme, definition 9 is satisfied for any arbitrary
constant p. Conservation of the new second-order scheme is therefore indepen-
dent of the number of bisection iterations.

5 Discussion and conclusion

Mathematical analysis and numerical simulations have shown that the first-
and second-order schemes we present in this paper are unconditionally posi-
tive, and conservative in the strict biochemical sense. The order of accuracy of
both schemes has been proven mathematically, and is also well demonstrated
by figure 14.

Figures 6-13 demonstrate that the new schemes can deliver relatively accurate
results, even at large ∆t. Our numerical approximation of the solution of the
linear system is clearly more accurate than the one provided by traditional

27



PSfrag replacements

t

co
n
ce

n
tr

at
io

n

Euler scheme

c2, simulated

c1, analytical

c2, analytical

c1, simulated

c2, simulated

0 0.5 1 1.5

0

0.5

1

Fig. 6. Numerical approximation (∆t = 0.25) and analytical solution of the simple
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Fig. 7. Numerical approximation (∆t = 0.25) and analytical solution of the simple
linear system (10) with the Runge-Kutta 2 scheme ((22) without product terms).

schemes: the solution produced by the new first-order scheme is more accurate
than that of the Euler scheme, and the solution provided by the new second-
order scheme is more accurate than that of the Runge-Kutta 2 scheme. This
is reflected by the local truncation error of the various schemes, as shown in
figure 14. Conversely, the traditional Forward Euler and Runge-Kutta schemes
approximate the solution of the simple non-linear system more accurately than
the new schemes.

As shown in figure 15, the new schemes require a computational cost that
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Fig. 8. Numerical approximation (∆t = 0.25) with the new first-order scheme and
analytical solution for the simple linear system (10).
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Fig. 9. Numerical approximation (∆t = 0.25) with the new second-order scheme
and analytical solution for the simple linear system (10).

is substantially higher than that of the traditional schemes. This is a disad-
vantage, but not enough to discard the new schemes: biochemical problems
require schemes that are unconditionally positive and conservative; results that
do not satisfy these requirements are completely meaningless in biochemical
context. It is also worth noting that the new schemes will scale more favorably
to higher-dimensional systems than for instance the MP and MPRK schemes.
This is due to the fact that the new schemes always solve a scalar polynomial
equation, whereas the MP/MPRK schemes solve a linear system of order I.
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Fig. 10. Coarse numerical approximation (∆t = 0.5) with the Forward Euler scheme
and high-resolution numerical approximation (∆t = 0.01) with a Runge-Kutta 4
scheme [6, p. 138] for the simple non-linear system (1).

Although unconditional positivity is the default in biochemistry, it is worth
noting that some biochemical systems include one or more state variables
that can become negative. For instance, the ERGOM model [15] includes a
state variable ‘oxygen concentration’ that represents oxygen when positive,
and hydrogen sulfide when negative. With the new schemes, this can easily be
accounted for by excluding any such state variables from sets Jn and Kn.

Given the new schemes are unconditionally conservative and positive, the step
size will be dictated by accuracy reasons only. To obtain maximum efficiency,
one could combine the new schemes with techniques that dynamically adjust
the time step based on estimated local error. While such approaches are be-
yond the scope of this paper, we may remark that the second order scheme
(22) also provides us with a first-order approximation to the solution in the
new time level. The difference between this value and the final result can be
considered a (conservative) estimate of the local truncation error, and thus
serve as the basis of an error estimator.

Further, we have shown that the Modified Patankar and Modified Patankar-
Runge-Kutta schemes presented by Burchard et al. [3] are not conservative
for any arbitrary biochemical system. The new schemes do conserve mass and
energy in two special cases, namely if: (1) all reactions in the system contain
one source compound, or (2) the relative change over time is the same for all
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Fig. 11. Coarse numerical approximation (∆t = 0.5) with the Runge-Kutta 2
scheme ((22) without product terms) and high-resolution numerical approxima-
tion (∆t = 0.01) with a Runge-Kutta 4 scheme [6, p. 138] for the simple non-linear
system (1).

source compounds.

Condition (1) is only met if one deals with simple biochemical systems [5];
realistic systems readily include multiple source compounds per reaction. For
instance, most marine ecosystems are modeled with phytoplankton growing
on two or more nutrients (e.g. nitrate, phosphate, iron), and thus contain re-
actions with multiple source compounds [13]. It must be noted that in some
cases, a system that does not satisfy condition (1) can be reduced to a system
that does via elimination of variables (elimination is possible in any conserva-
tive system, as rows of S cannot be linearly independent; see definition 7). This
is demonstrated in Reder [19]. One could apply this technique to reduce the
simple non-linear system (1) to a two-dimensional system that satisfies con-
dition (1). However, for more complex and realistic systems, this is typically
not feasible in practice.

Condition (2) is even more unlikely to be met, as it requires both specific
initial state variable values (their ratio corresponding to the stoichiometric
ratio of use), and highly simple system kinetics.

This does not imply that the Modified Patankar schemes are without value:
for biochemical systems that do meet one of both conditions, the Modified
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Fig. 12. Coarse numerical approximation (∆t = 0.5) with the new first-order scheme
and high-resolution numerical approximation (∆t = 0.01) with a Runge-Kutta 4
scheme [6, p. 138] for the simple non-linear system (1).

Patankar schemes offer a relatively inexpensive approach, which incidentally
is known to perform well on stiff systems [3,4].

In the present paper, we do not analyze the stability properties of the new
schemes in detail. Application of the new schemes to the infamous, highly
stiff Robertson test case proved that the schemes have at least some problems
with (highly) stiff systems: the new first-order scheme rendered oscillating
(but positive) solutions, whereas the second-order scheme stalled the system
through extremely small p factors. This behavior differs notably from that of
the Modified Patankar schemes, which were capable of resolving the Robert-
son test case [3] and other stiff biochemical problems [4]. This difference be-
tween Patankar-inspired schemes can intuitively be explained as follows: MP
schemes adjust the effective time step for different components of the system
individually, whereas the new schemes adapt the effective time step for the
whole system to the fastest component. Nevertheless, under no circumstances
will the new schemes perform more poorly with respect to stability than the
tradional schemes they were based upon, since the new schemes can be inter-
preted as traditional schemes with a downscaled time step. For many purposes
they could suffice; preliminary results showed that the new schemes were ca-
pable of solving the realistic stiff test cases of [4]. This line of thought also
suggests alternative approaches: one might selectively slow down individual
reaction rates rather than the whole system, thus obtaining a scheme that
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Fig. 13. Coarse numerical approximation (∆t = 0.5) with the new second-order
scheme and high-resolution numerical approximation (∆t = 0.01) with a
Runge-Kutta 4 scheme [6, p. 138] for the simple non-linear system (1).

performs well on stiff systems, and (unlike MP schemes) adheres to biochem-
ical conservation.

In conclusion, this paper has presented a structured, mathematical approach
to the biochemical concept of conservation. This approach integrates recurrent
ideas in biochemistry [20,19,10,7], and, to our knowledge, has not before been
used in the analysis of numerical schemes. It may provide a context of analysis
for existing and future schemes, and will hopefully result in an increasing
number of schemes known to be suited for biochemical problems.
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