8,576 research outputs found

    End-to-end QoE optimization through overlay network deployment

    Get PDF
    In this paper an overlay network for end-to-end QoE management is presented. The goal of this infrastructure is QoE optimization by routing around failures in the IP network and optimizing the bandwidth usage on the last mile to the client. The overlay network consists of components that are located both in the core and at the edge of the network. A number of overlay servers perform end-to-end QoS monitoring and maintain an overlay topology, allowing them to route around link failures and congestion. Overlay access components situated at the edge of the network are responsible for determining whether packets are sent to the overlay network, while proxy components manage the bandwidth on the last mile. This paper gives a detailed overview of the end-to-end architecture together with representative experimental results which comprehensively demonstrate the overlay network's ability to optimize the QoE

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Using Dedicated and Opportunistic Networks in Synergy for a Cost-effective Distributed Stream Processing Platform

    Full text link
    This paper presents a case for exploiting the synergy of dedicated and opportunistic network resources in a distributed hosting platform for data stream processing applications. Our previous studies have demonstrated the benefits of combining dedicated reliable resources with opportunistic resources in case of high-throughput computing applications, where timely allocation of the processing units is the primary concern. Since distributed stream processing applications demand large volume of data transmission between the processing sites at a consistent rate, adequate control over the network resources is important here to assure a steady flow of processing. In this paper, we propose a system model for the hybrid hosting platform where stream processing servers installed at distributed sites are interconnected with a combination of dedicated links and public Internet. Decentralized algorithms have been developed for allocation of the two classes of network resources among the competing tasks with an objective towards higher task throughput and better utilization of expensive dedicated resources. Results from extensive simulation study show that with proper management, systems exploiting the synergy of dedicated and opportunistic resources yield considerably higher task throughput and thus, higher return on investment over the systems solely using expensive dedicated resources.Comment: 9 page

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc
    • …
    corecore