487,679 research outputs found

    Information Loss and Anti-Aliasing Filters in Multirate Systems

    Full text link
    This work investigates the information loss in a decimation system, i.e., in a downsampler preceded by an anti-aliasing filter. It is shown that, without a specific signal model in mind, the anti-aliasing filter cannot reduce information loss, while, e.g., for a simple signal-plus-noise model it can. For the Gaussian case, the optimal anti-aliasing filter is shown to coincide with the one obtained from energetic considerations. For a non-Gaussian signal corrupted by Gaussian noise, the Gaussian assumption yields an upper bound on the information loss, justifying filter design principles based on second-order statistics from an information-theoretic point-of-view.Comment: 12 pages; a shorter version of this paper was published at the 2014 International Zurich Seminar on Communication

    A Multivariate Band-Pass Filter

    Get PDF
    We develop a multivariate filter which is an optimal (in the mean squared error sense) approximation to the ideal filter that isolates a specified range of fluctuations in a time series, e.g., business cycle fluctuations in macroeconomic time series. This requires knowledge of the true second-order moments of the data. Otherwise these can be estimated and we show empirically that the method still leads to relevant improvements of the extracted signal, especially in the endpoints of the sample. Our filter is an extension of the univariate filter developed by Christiano and Fitzgerald (2003). Specifically, we allow an arbitrary number of covariates to be employed in the estimation of the signal. We illustrate the application of the filter by constructing a business cycle indicator for the U.S. economy. The filter can additionally be used in any similar signal extraction problem demanding accurate real-time estimates.

    A Multivariate Band-Pass Filter

    Get PDF
    We develop a multivariate filter which is an optimal (in the mean squared error sense) approximation to the ideal filter that isolates a specified range of fluctuations in a time series, e.g., business cycle fluctuations in macroeconomic time series. This requires knowledge of the true second-order moments of the data. Otherwise these can be estimated and we show empirically that the method still leads to relevant improvements of the extracted signal, especially in the endpoints of the sample. Our filter is an extension of the univariate filter developed by Christiano and Fitzgerald (2003). Specifically, we allow an arbitrary number of covariates to be employed in the estimation of the signal. We illustrate the application of the filter by constructing a business cycle indicator for the U.S. economy. The filter can additionally be used in any similar signal extraction problem demanding accurate real-time estimates.

    Minimum-energy filtering on the unit circle

    Get PDF
    Abstract— We apply Mortensen’s deterministic filtering approach to derive a third order minimum-energy filter for a system defined on the unit circle. This yields the exact form of a minimum-energy filter (namely an observer plus a Riccati equation that updates the observer gain). The proposed Riccati equation is perturbed by a term depending on the third order derivative of the value function of the associated optimal control problem. The proposed filter is third order in the sense that it approximates the dynamics of the third order derivate of the value function by neglecting the fourth order derivative of the value function. Additionally, we show that the nearoptimal filter proposed by Coote et al. in prior work can indeed be derived from a second order application of Mortensen’s approach to minimum-energy filtering on the unit circle

    Investigation, development, and application of optimal output feedback theory. Volume 3: The relationship between dynamic compensators and observers and Kalman filters

    Get PDF
    Relationships between observers, Kalman Filters and dynamic compensators using feedforward control theory are investigated. In particular, the relationship, if any, between the dynamic compensator state and linear functions of a discrete plane state are investigated. It is shown that, in steady state, a dynamic compensator driven by the plant output can be expressed as the sum of two terms. The first term is a linear combination of the plant state. The second term depends on plant and measurement noise, and the plant control. Thus, the state of the dynamic compensator can be expressed as an estimator of the first term with additive error given by the second term. Conditions under which a dynamic compensator is a Kalman filter are presented, and reduced-order optimal estimaters are investigated

    Noise gain expressions for low-noise second-order digital filter structures

    Get PDF
    The quantization noise of a fixed-point digital filter is commonly expressed in terms of its noise gain, i.e., the factor by which the noise power q2/12 of a single quantizer is amplified to the output of the filter. In this brief, first a closed-form expression for the optimal second-order noise gain in terms of the coefficients of the numerator and denominator polynomials of the transfer function is derived. It is then shown, by deriving a similar expression for its noise gain, that the second-order direct form structure has an arbitrarily larger noise gain the closer the filter poles are to the unit circle. The main result, however, is that the wave digital form and the normal form structures have noise gains which are only marginally larger than the minimum gain. For these forms, the expressions for their noise gain in terms of the transfer function are given as well. The importance of these forms lies in the fact that they use less multipliers than the optimal structure and that they are much easier to design: properly scaled forms are given requiring no design tools
    • …
    corecore