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Abstract— We apply Mortensen’s deterministic filtering ap-
proach to derive a third order minimum-energy filter for a
system defined on the unit circle. This yields the exact form
of a minimum-energy filter (namely an observer plus a Riccati
equation that updates the observer gain). The proposed Riccati
equation is perturbed by a term depending on the third order
derivative of the value function of the associated optimal control
problem. The proposed filter is third order in the sense that
it approximates the dynamics of the third order derivate of
the value function by neglecting the fourth order derivative
of the value function. Additionally, we show that the near-
optimal filter proposed by Coote et al. in prior work can indeed
be derived from a second order application of Mortensen’s
approach to minimum-energy filtering on the unit circle.

I. INTRODUCTION

Optimal filtering involves estimating the state of a noisy
system based on a criterion that is typically expressed as
minimizing a cost function. For linear systems, the Kalman
filter [1], posed in a stochastic system modeling framework,
is a finite-dimensional optimal filter designed to minimize
the error covariance.

Filtering theory has also been developed in a deterministic
system modeling framework, where unlike in the stochastic
framework, the uncertainties of a system are not modeled
as stochastic processes with a priori assumptions on their
statistics but rather as unknown functions of time. The
deterministic filtering problem is to find a solution to the
system equations that is compatible with the observations
and minimizes the magnitude of the associated noise sig-
nals. Such filters are known as minimum-energy filters [2]
since the cost used is typically the energy in the unknown
noise signals. For linear systems it is known that the same
Kalman filtering formulas are obtained also in a deterministic
framework using a least squares cost (cf. [2]–[5]).

Minimum-energy filtering for nonlinear systems has been
studied by Krener [6] who proved that under some conditions
including the uniform observability of the system and the
presence of a time-dependent “forgetting factor” in the cost,
a minimum-energy estimate converges exponentially fast to
the true state. Aguilar et al. [7] proposed a minimum-energy
nonlinear filter for systems with perspective outputs and
algebraic state constraints. They consider embedding the
nonlinear geometry given by the constraints in a general
Euclidean space Rn yielding asymptotically optimal results
for systems inherently defined only on a submanifold of Rn.
In separate work, Coote et al. [8] designed a near-optimal
minimum-energy filter that utilizes the geometric structure of
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the unit circle S1. In recent work by the authors [9] a near-
optimal minimum-energy filter posed directly on the Special
Orthogonal Group SO(3) is derived. These latter two filters
are designed directly on the underlying geometric structure
of their application space through identification of a suitable
“Lyapunov” function for the optimality analysis and include
explicit bounds on their distance to optimality.

In the late 1960’s Mortensen [10] proposed a systematic
approach to deriving deterministic minimum-energy filters
for nonlinear systems. The method was further explored by
Hijab [11]. In this approach the optimal filtering problem is
broken down into two steps. The first step involves applying
the maximum principle of optimal control and dynamic
programming to optimize an energy functional in the system
“noise” signals. In the second step a further optimization
takes place over the system’s initial state value.

In this paper we consider applying Mortensen’s minimum-
energy filtering approach to design a filter on the Lie group
S1. Invariant systems such as systems defined by invariant
vector fields on Lie groups appear in many applications
including mechanical control systems [12]. The Lie group
S1 ' SO(2) is important as it acts as a “training ground” for
the Lie group SO(3) that describes the attitude of rigid bodies
such as autonomous flying vehicles [9]. Using Mortensen’s
method we obtain the exact form of a minimum-energy
filter (namely an observer on S1 plus a Riccati equation
updating the observer gain). We note that the obtained Riccati
equation is perturbed by a term depending on the third order
derivative of the value function of the associated optimal
control problem. The proposed filter is third order in the
sense that it approximates the ordinary differential equation
(ODE) governing the evolution of the third order derivate of
the value function by neglecting the fourth order derivative of
the value function. We also point out that using Mortensen’s
method higher order optimal filters are straight forward to
obtain and we discuss their general formulation. Although
we only present derivation of the third order approximate
filter the approach is straight forward to generalize to higher
order approximate filters and we provide simulations for ap-
proximate filters up to the eighth order. This work improves
the previous results on S1 [8] which we prove is a second
order approximation of the current filter.

The paper is organized as follows. Section II defines the
system on S1 and introduces the problem of minimum-
energy filtering applied to this system. Mortensen’s approach
is the subject of Section III where a recursive third order
approximate solution to the problem in Section II is derived.
We formally presents the results and includes remarks on
the numerical implementation of the proposed filter. The
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filter derived in [8] is shown to be equal to the second
order Mortensen approximate of the minimum-energy filter.
A suite of simulations are included in Section IV that present
the tracking performance of an eighth-order approximate of
the minimum-energy filter on S1. Moreover, a discussion
around the higher derivatives of the value function and their
relationship to each other is provided. Lastly Section V
concludes the paper.

II. MINIMUM-ENERGY FILTERING ON THE UNIT CIRCLE

Consider the system

θ̇(t) = u(t)+gδ (t), θ(0) = θ0,

y(t) = θ(t)+ ε(t),
(1)

where θ , y and ε are the state, output and output measure-
ment error signals that evolve on the unit circle S1. The
signals u and δ denote the scalar valued input and input
measurement errors that live in the tangent space Tθ S1. The
scalar g is a known positive constant.

This system represents the kinematics of an object moving
on a unit circle. The angle θ(t), associated to the current
position of the object on the circle, is considered as the
current state of the system (1). We assume we can measure
the “rate” of rotation u of the system and δ denotes the
unknown measurement error that we make in measuring u.
We also assume we can directly measure the current state
(θ(t)) of the system and ε models the error that occurs in
this measurement process. We will drop the explicit argument
(t) for the reminder of the paper.

Remark 1: In deterministic minimum-energy filtering the
signals δ and ε are considered as unknown deterministic
functions of time. This is different to the stochastic setup
where these signals are typically modeled as stochastic
processes with some a priori assumptions on their statistical
distribution.

Consider the cost

J(t;θ0,δ |[0, t],ε|[0, t]) =
∫ t

0

(
1
2

δ (τ)2 +(1− cos(ε(τ)))
)

dτ

+
1

K0
(1− cos(θ(0))),

(2)

where K0 is a positive scalar.
The problem is to design a filter that estimates the current

state θ(t) of the system (1), given that a record of the past
measurements u|[0, t] and y|[0, t] is available. The filtering
criterion is to minimize the cost functional (2).

Note that the cost (2) depends on the unknowns (δ |[0, t],
ε|[0, t], θ0) of the system (1) and encodes the total energy
associated to them. In a sense, by minimizing (2) the
goal is to find unknowns of minimum energy that together
with the measurements u|[0, t] and y|[0, t] satisfy the system
equations (1). Note that in general one might find infinitely
many possible combinations of the unknown signals (δ |[0, t],
ε|[0, t], θ0) that together with the measurements satisfy the
system equations (1). However, the principle of minimum-
energy filtering singles out a set of minimizing unknowns

(δ ∗|[0, t], ε∗|[0, t], θ ∗0 ). Plugging them into system (1), together
with the known measurements, yields the minimum-energy
state trajectory θ ∗[0, t]. The subscript [0, t] indicates that the
optimization takes place on the interval [0, t]. We pick the
final optimal state θ ∗[0, t](t) as our minimum-energy estimate
at time t, θ̂(t) := θ ∗[0, t](t).

At each time t, the filtering principle entails finding the
full optimal state trajectory θ ∗[0, t] and picking its final value
θ ∗[0, t](t) as our minimum-energy estimate at that time. Rather
than resolving this infinite dimensional optimization problem
at each time instance, the aim is to design a recursive filter
that updates directly the state estimate θ ∗[0, t](t).

We begin by turning this problem into an optimal control
problem. Firstly, note that the cost (2) depends on the
unknowns (δ |[0, t], ε|[0, t], θ0), but given δ |[0, t] and θ0 and
the known measurements u|[0, t] and y|[0, t], the signal ε|[0, t]
is uniquely determined by (1). Hence, substituting ε in (2)
from (1) yields the simplified cost

J(t;θ0,δ |[0, t]) =
∫ t

0

(
1
2

δ
2 +(1− cos(y−θ))

)
dτ

+
1

K0
(1− cos(θ(0))).

(3)

Now, the signal δ |[0,t] is treated as the control input and (3)
is minimized over δ . Initially, θ(0) = θ0 is considered as
fixed. The end point θ(t) is free but constrained by the
measurements and by (1) in the period [0, t]. Note that to
fully solve our original optimal filtering problem we need a
further step to optimize over the initial value θ0.

To apply the Maximum Principle, define the following
Hamiltonian [13].

H (θ , p,δ , t) :=
1
2

δ
2 +1− cos(y−θ)− pθ̇ , (4)

where p ∈ T ∗
θ

S1 is the costate variable. Minimizing the
Hamiltonian over δ to compute the critical point of H yields

∇δ H = 0,=⇒ δ − pg = 0, (5)

that results in δ ∗ = gp where the superscripted star denotes
the optimal variable. Here ∇δ H denotes the partial deriva-
tive of H with respect to δ . Substituting δ ∗ the optimal
Hamiltonian is

H ∗(θ , p, t) =−1
2

g2 p2 +1− cos(y−θ)− pu. (6)

From the Maximum principle one has the Hamilton equations{
θ̇ = ∇pH ∗(θ , p, t),
ṗ =−∇θ H ∗(θ , p, t).

(7)

Since θ(t) is free one has the boundary condition

p(0) =
sin(θ0)

K0
. (8)

Applying the dynamic programming principle to this prob-
lem, define the value function

V (θ , t) := min
δ |[0, t]

J(t;θ0,δ |[0, t]), (9)



where J is the cost (3) and the minimization is subjected
to the system equations (1). The Hamilton-Jacobi-Bellman
equation is then [13]

H ∗(θ ,∇θV (θ , t), t)−∇tV (θ , t) = 0, (10)

with the initial time boundary condition

V (θ0,0) =
1

K0
(1− cos(θ0)). (11)

Up to here we have only addressed the optimal control part
of the problem (by only minimizing over δ ). To complete the
optimal filtering problem, we also need to optimize V over
θ0. This is equivalent to a further optimization step over θ(t)
(given the measurements from (1), θ0 and δ |[0,t] uniquely
determine θ(t) and vice versa θ(t) and δ |[0,t] uniquely
determine θ(0)). Hence the optimal filtering solution θ̂ is
characterized by the following criticality condition [10]

∇θV (θ , t)|
θ=θ̂(t) = 0. (12)

Recall that the minimum-energy estimate θ̂(t) is the mini-
mizing argument θ ∗(t), that yields the final condition (12).
Solving Equation (12) is clearly a way to characterize θ̂(t).
However, the goal is to find a differential equation that
dynamically updates θ̂(t).

Up to here we have introduced our optimization problem
and we have shown how to approach it in the context of the
Maximum Principle and dynamic programming. In the next
section we employ the proposed solution by Mortensen [10]
to derive an approximation of a recursive minimum-energy
filter on S1.

III. OPTIMAL FILTER DERIVATION

In this section we apply Mortensen’s filtering ap-
proach [10] to the problem introduced in Section II to obtain
a third order minimum-energy filter.

The goal is to obtain a dynamic equation for the solution
θ̂ by computing the total time derivative of (12).

d
dt
{∇θV (θ , t)|

θ=θ̂(t)}= 0. (13)

Applying the chain rule yields

{∇θ

(
∇θV (θ , t) ˙̂

θ(t)+∇tV (θ , t)
)
}

θ=θ̂(t) = 0. (14)

From (10) one can substitute ∇tV (θ , t) to get

{∇2
θV (θ , t) ˙̂

θ(t)+∇θ (H
∗(θ ,∇θV (θ , t), t))}

θ=θ̂(t) = 0,
(15)

From the chain rule the second term is

∇θ (H
∗(θ ,∇θV (θ , t), t)) = [∇θ H ∗(θ , p, t)

+∇
2
θV (θ , t)∇pH

∗(θ , p, t)]p=∇θV (θ ,t).
(16)

Using the optimal Hamiltonian (6) yields

∇θ (H
∗(θ ,∇θV (θ , t), t)) =−sin(y−θ)

+∇
2
θV (θ , t)(−g2

∇θV (θ , t)−u).
(17)

Replacing (17) in (15) and assuming that ∇2
θ
V (θ , t) is

nonzero yields the following optimal observer. Note that part

of the second term in (17) is zero as ∇θV (θ , t) yields zero
from the final condition (12).

˙̂
θ = u+(∇2

θ̂
V (θ̂ , t))−1 sin(y− θ̂), (18)

where the optimal initial guess θ̂(0) = 0 is obtained by
evaluating the final condition (12), at time zero, using the
boundary condition (11).

Remark 2: In practice, some prior information about the
system’s initial state value θ(0) might be available. In that
case the cost function (2) is modified as follows.

J(t;θ0,δ |[0, t],ε|[0, t]) =
∫ t

0

(
1
2

δ (τ)2 +(1− cos(ε(τ)))
)

dτ

+
1

K0
(1− cos(θ(0)−µ)),

(19)

where µ is as a priori estimate for the initial state θ(0).
This also affects the boundary condition (11) and leads to
the optimal initial state estimate θ̂(0) = µ .

Equation (18) is the exact kinematics of the optimal
nonlinear observer. This equation consists of a copy of the
system, i.e. the input u, plus a weighted innovation term
sin(y− θ̂). The innovation term is the difference between
the output measurement y and the estimate θ̂ projected
onto the tangent space using the sin function. Note that
in this equation the inverse Hessian of the value function
(∇2

θ̂
V (θ̂ , t))−1 acts as a time varying gain on the innovation

term sin(y− θ̂).
In order to implement (18) one requires the knowledge

of the Hessian ∇2
θ̂
V (θ̂ , t) of the value function. Mortensen’s

approach provides an algorithmic approach to derive a dy-
namical system that can compute ∇2

θ̂
V (θ̂ , t) on-line. From

now on we will denote P := ∇2
θ̂
V (θ̂ , t) and hence the

observer (18) takes the form

˙̂
θ = u+

sin(y− θ̂)

P
, θ̂(0) = 0. (20)

In order to obtain the kinematics of P we proceed similarly
to our previous calculations by taking the total time derivative
of the Hessian and by applying (12) and (10).

Ṗ =
d
dt
{∇2

θV (θ , t)|
θ=θ̂(t)}. (21)

Applying the chain rule yields

Ṗ = {∇3
θV (θ , t) ˙̂

θ(t)+∇
2
θ H ∗(θ ,∇θV (θ , t), t)}

θ=θ̂(t). (22)

Note that we have used (10) to replace ∇tV (θ , t). Next, the
second term in (22) is obtained by differentiating (17).

∇
2
θ H ∗(θ ,∇θV (θ , t), t) = cos(y−θ)

+∇
3
θV (θ , t)(−g2

∇θV (θ , t)−u)−g2(∇2
θV (θ , t))2.

(23)

Replacing this equation and (20) in (22) and using the final
condition (12) yields

Ṗ = ∇
3
θ̂
V (θ̂ , t)

sin(y− θ̂)

P
−g2P2 + cos(y− θ̂), (24)



where the initial Hessian P(0)= 1
K0

is obtained by calculating
the Hessian of the initial condition (11) evaluated at θ̂(0) =
0. We denote by S the third order derivative of the value
function S :=∇3

θ̂
V (θ̂ , t). Hence the resulting Riccati equation

is

Ṗ = cos(y− θ̂)−g2P2 +S
sin(y− θ̂)

P
, P(0) =

1
K0

. (25)

Equation (25) encodes the exact scalar Riccati equation
that updates the observer gain P in (20). Note that this Riccati
equation is perturbed by a weighted correction term sin(y−θ̂)

P .
In order to fully realize this equation one needs to know the
weighting S that is again a time-varying signal.

Now in order to obtain the dynamics of the third order
term S compute the following derivative along the optimal
trajectory θ̂ .

Ṡ =
d
dt
{∇3

θV (θ , t)|
θ=θ̂(t)}. (26)

Applying the chain rule yields

Ṡ = {∇4
θV (θ , t) ˙̂

θ(t)+∇
3
θ H ∗(θ ,∇θV (θ , t), t)}

θ=θ̂(t). (27)

Note that (10) is used to replace ∇tV (θ , t). Next, the second
term in (27) is obtained by differentiating (23).

∇
3
θ H ∗(θ ,∇θV (θ , t), t) = sin(y−θ)

+∇
4
θV (θ , t)(−g2

∇θV (θ , t)−u)−g2
∇

3
θV (θ , t)∇2

θV (θ , t)

−g2
∇

3
θV (θ , t)∇2

θV (θ , t)−g2
∇

2
θV (θ , t)∇3

θV (θ , t).
(28)

Applying the final condition (12) yields

∇
3
θ H ∗(θ ,∇θV (θ , t), t) = sin(y−θ)−∇

4
θV (θ , t).u

−3g2
∇

3
θV (θ , t)∇2

θV (θ , t)
(29)

Replacing (29) in (27) yields

Ṡ = sin(y− θ̂)−3g2PS+∇
4
θ̂
V (θ̂ , t)

sin(y− θ̂)

P
, S(0) = 0,

(30)
where the initial condition S(0) is obtained by evaluation the
third derivative of the initial value function (11) along θ̂ .

Note that (30) is the exact form of an optimal first order
differential equation that updates the scaling of the correction
term sin(y−θ̂)

P in the Riccati equation (25). In the same
way S was used as a variable to compute ∇3

θ̂
V (θ̂ , t), we

could continue to introduce variables for the unknown higher
order derivatives of the value function and derive ordinary
differential equations for their evolution by taking their time
derivative. In order to exactly realize the optimal filter, then
at some point, knowledge of the nth derivative ∇n

θ̂
V (θ̂ , t) is

required. Although, in general this may never be possible,
there are certain situations where the structure of a system
may yield knowledge of this term. For example, for linear
systems with a quadratic cost functional it is known that
∇3

θ̂
V (θ̂ , t) = 0 and the second order filter becomes optimal.

The following theorem is stated for the third order filter case
but can easily be reformulated to an arbitrary order filter.

Theorem 1: Consider the system (1) and the cost (2).
Given some output measurements y|[0, t] and their associated
input measurements u|[0, t], assume that unique solutions P(t)
to (25) and S(t) to (30) exist on [0, t]. Assuming that the
value function (9) is four times differentiable and that the
Hessian ∇2

θ̂
V (θ̂ , t) is nonzero, the three equations (20), (25)

and (30) yield a minimum-energy (optimal) filter on the
system defined on S1 (1) given that ∇4

θ̂
V (θ̂ , t) is known.

Proof: Following the maximum principle and
Mortensen’s approach in Sections II and III and given that the
assumptions in Theorem 1 hold Equations (20), (25) and (30)
are obtained only using the optimality conditions (6), (10)
and (12).

In practice, the filter equations can be truncated at any
desired order by neglecting the contribution of the unknown
higher order derivative of the value function. In this paper,
we will assume that the fourth order derivative of the value
function ∇4V (θ , t) is small enough to be neglected and use
the following approximation to Equation (30).

˙̃S = sin(y−θ)−3g2PS̃, S̃(0) = 0, (31)

where S̃≈ S.
In summary, we obtain the following third order approx-

imate filter. Note that for convenience we drop the tilde
notation.

˙̂
θ = u+

sin(y− θ̂)

P
, θ̂(0) = 0, (32a)

Ṗ = cos(y− θ̂)−g2P2 +S
sin(y− θ̂)

P
, P(0) =

1
K0

, (32b)

Ṡ = sin(y− θ̂)−3g2PS, S(0) = 0, (32c)

where the signals u and y are the measurements available
from the system (1), K0 is a scalar given in the definition
of the cost (2) and g is a scalar given from system (1).
The filter (32) consists of three interconnected equations that
together yield a third order minimum-energy estimate θ̂ .

Remark 3: In [8] it was shown that by using a scalar
coefficient g in the system model (1) the problem of minimiz-
ing (2) subject to the system (1) is equivalent to minimizing
a more general cost (33) subject to a system without the
coefficient g.

J̃(t;θ0,δ |[0, t],ε|[0, t]) =
∫ t

0

(
1
2

Qδ
2 +R(1− cos(ε))

)
dτ

+
1

K̃0
(1− cos(θ(0))),

(33)

where Q, R and K̃0 are positive gains that allow us to scale the
energy of the unknowns (δ |[0, t], ε|[0, t], θ0) according to the
a priori expectations that we might have on these unknown
signals in a specific application.

Proposition 1: Assuming that the value function (9) is
four times differentiable and that the Hessian ∇2

θ̂
V (θ̂ , t) is

nonzero, S in (32c) approximates the true kinematics of the
third order derivative of the value function ∇3

θ̂
V (θ̂ , t) to the

order O(∇4
θ̂
V (θ̂ , t)).



Proof: In Section III, the matrix S was derived using the
optimality conditions (6), (10) and (12) and the optimal filter
equations (32a) and (32b). However, the fourth order deriva-
tive of the value function was neglected and the kinematics
of S was approximated up to the third order derivatives of
the value function.

Remark 4: Using the inverse of P denoted by K := 1
P

can potentially improve the numerical implementation of
the filter (32) by reducing the number of inverse operations
needed. Applying this idea to (32) yields

˙̂
θ = u+K sin(y− θ̂), θ̂(0) = 0, (34a)

K̇ =−K2 cos(y− θ̂)+g2−SK3 sin(y− θ̂), K(0) = K0,
(34b)

Ṡ = sin(y− θ̂)−3g2 S
K
, S(0) = 0. (34c)

Remark 5: Assuming that the third order derivative of the
value function S = ∇3

θ̂
V (θ̂ , t) is negligible yields the second

order filter equations

˙̂
θ = u+K sin(y− θ̂), θ̂(0) = 0, (35a)

K̇ =−K2 cos(y− θ̂)+g2, K(0) = K0. (35b)

These equations coincide with the near-optimal filter recently
derived by Coote et al. [8]. It was shown in that work that
the distance to optimality of the second order filter (35) is
bounded by a term that is fourth order in the estimation
error θ − θ̂ . Also in [8] the second order filter (35) shows
comparable results to an extended Kalman filter (EKF) with
the advantage of needing less tuning. The current work
extends these result by taking into account higher order terms
and also by providing a systematic approach to obtaining
higher order approximations.

IV. SIMULATIONS

In this section we provide simulation results for approxi-
mate filters up to eighth order derived using the concepts of
Sections III.

Firstly, the system (1) is initialized to θ0 = 15◦. The signal
δ is a zero mean random variable with standard deviation of
12 degrees per time units and the signal ε is a zero mean
random variable with standard deviation of 9 degrees. The
sinusoidal input u(t) = 2sin(5t) and the constant g = 1 are
utilized.

Figure 1 shows the tracking performance of the eighth-
order filter in the presence of noise and a 15◦ initialization
error. As can be seen the filter achieves tracking of the
true state after a short transition period. Figure 2 shows
the time evolution of the filter gains during this simulation.
As can be seen, after a short transition period, the odd-
order derivatives (gains) converge to zero and the even-order
derivatives converge to small values. Note that the higher
order derivatives converge to smaller values.

Fig. 1. Note that the figure is zoomed to the range (0◦,75◦). Some of the
measurement data that have values less than zero degrees wrap around the
circle and are hence not shown.

Fig. 2. Second to eighth order derivatives of the value function (9) are
plotted against time. Note that the eighth order derivative is derived by
neglecting the ninth order derivative.

Moreover, we have calculated Taylor series approximations
of the value function (9) using the derivatives we computed.
Note that the approximations are obtained at the simulation
end time when the filter has converged. Also note that
the expansion is around the final estimate θ̂(t) centered
at zero. Figure 3 shows approximations obtained using
Taylor expansions of second up to seventh order. It is noted
that approximations of the value function, after the overall
convergence of the filter, resemble a (second order) parabola
and that the higher order terms only seem to influence the
global shape of the value function away from the optimal
state value. Note that odd-order approximate value functions
almost identically fall on the lower even-order approximates



Fig. 3. Second to seventh order Taylor expansions of the value function (9)
are plotted. Note that the expansion is around the final state estimate θ̂(t)
centered at zero.

Fig. 4. The tracking performance of the eighth-order filter in the presence
of a large initialization error.

of the value function. This is due to the odd-order derivatives
converging to zero which was seen in Figure 2 before.

Finally, we include a simulation result in which a large
initialization error (more than 120◦) is considered. The same
noise and input signals are used here. Figure 4 shows that
despite the large initialization error the eighth-order filter
converges to the true state trajectory after a short transition
period. Note that the transition period is longer compared to
the situation with 15◦ of initialization error.

V. CONCLUSIONS

We have applied Mortensen’s minimum-energy filtering
approach to a system defined on the Lie group S1. We
noted that this method yields a systematic program to derive
higher order approximations of a minimum-energy (optimal)
filter for a nonlinear system. We have shown that in general
a nonlinear filter consists of an observer that includes a

copy of the system plus a weighted innovation term. The
observer’s weighting proved to be the inverse Hessian of the
value function of the associated optimal control problem.
The dynamics of the Hessian is a Riccati equation perturbed
by a third order derivative of the value function weighting
the same innovation term. The kinematics of all higher order
derivatives of the value function are first order ODEs that are
in turn perturbed by a one step higher order derivative of the
value function weighting the innovation term. The proposed
filter on S1 is third order in the sense that it approximates
the kinematics of the third order derivative of the value
function by neglecting the fourth order derivative of the value
function. We provided simulation results showing the per-
formance of an eighth-order filter derived using Mortensen’s
approach for the system on S1. Simulation results indicate
excellent convergence of the filter in the presence of large
disturbances and initialization errors. Mortensen’s approach
to nonlinear optimal filtering is potentially extend-able to
higher dimensional Lie groups using the general geometric
theory of optimal control on Lie groups.
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