1,275 research outputs found

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Finite element error analysis of wave equations with dynamic boundary conditions: L2L^2 estimates

    Get PDF
    L2L^2 norm error estimates of semi- and full discretisations, using bulk--surface finite elements and Runge--Kutta methods, of wave equations with dynamic boundary conditions are studied. The analysis resides on an abstract formulation and error estimates, via energy techniques, within this abstract setting. Four prototypical linear wave equations with dynamic boundary conditions are analysed which fit into the abstract framework. For problems with velocity terms, or with acoustic boundary conditions we prove surprising results: for such problems the spatial convergence order is shown to be less than two. These can also be observed in the presented numerical experiments

    Fully discrete finite element data assimilation method for the heat equation

    Get PDF
    We consider a finite element discretization for the reconstruction of the final state of the heat equation, when the initial data is unknown, but additional data is given in a sub domain in the space time. For the discretization in space we consider standard continuous affine finite element approximation, and the time derivative is discretized using a backward differentiation. We regularize the discrete system by adding a penalty of the H1H^1-semi-norm of the initial data, scaled with the mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods, arXiv, 2016, combining discrete stability of the numerical method with sharp Carleman estimates for the physical problem, to derive optimal error estimates for the approximate solution. For the natural space time energy norm, away from t=0t=0, the convergence is the same as for the classical problem with known initial data, but contrary to the classical case, we do not obtain faster convergence for the L2L^2-norm at the final time

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising
    • …
    corecore