We consider a finite element discretization for the reconstruction of the
final state of the heat equation, when the initial data is unknown, but
additional data is given in a sub domain in the space time. For the
discretization in space we consider standard continuous affine finite element
approximation, and the time derivative is discretized using a backward
differentiation. We regularize the discrete system by adding a penalty of the
H1-semi-norm of the initial data, scaled with the mesh-parameter. The
analysis of the method uses techniques developed in E. Burman and L. Oksanen,
Data assimilation for the heat equation using stabilized finite element
methods, arXiv, 2016, combining discrete stability of the numerical method with
sharp Carleman estimates for the physical problem, to derive optimal error
estimates for the approximate solution. For the natural space time energy norm,
away from t=0, the convergence is the same as for the classical problem with
known initial data, but contrary to the classical case, we do not obtain faster
convergence for the L2-norm at the final time