1,828 research outputs found

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Agent based modeling of power distribution systems

    Get PDF
    The electric power system is a very vast network and becoming more complex each day. The traditional vertically monopolistic structure has been deregulated and replaced by gencos, transcos and, discos; increasing the power system intricacy. During the past few decades there has been remarkable development in software and hardware technologies for the analysis and design activities in power system planning, operation, and control. However, much still depends on the judgment of human experts. A single fault in power system can lead to multiple faults and can collapse the whole system. Power System needs a more decentralized control mechanism for solving these problems. One novel solution would be Multi-agent Systems. A Multi-agent system is a collection of agents, which perceives the system changes and acts on the system in order to achieve its goals. Recent technology developments in the area of Multi-agent systems making it a viable solution for today\u27s complicated power network.;A Multi-agent system model is developed for fault detection and reconfiguration in this thesis work. These models are developed based on graph theory tree models and mathematical models. A set of objective functions are specified in the mathematical model for the restoration of the network.;The agent platform for the fault detection is developed by Java Agent Development Framework. The restoration algorithm is programmed in MATLAB and applied to the distribution system modeled in the commercial software, Distributed Engineering Workstation and Power World Simulator. The test system in this thesis is, a distribution system developed by Southern California Edison called Circuit of the Future.;The Multi-agent system can detect the fault precisely and reconfigures the circuit using the reconfiguration algorithm. The reconfiguration will happen in a way that it always try to supply all the critical loads in the network. When there are multiple solutions available for reconfiguration, the one with good voltage profile and less power loss is selected as the solution. The algorithm makes use of shunt compensation and priority based load shedding in order to control the voltage across the network. Agents make use of learning to speed up the reconfiguration process

    Robotics and IoT: Interdisciplinary Applied Research in the RIoT Zone

    Get PDF
    Short Abstract: Robotics and the Internet of Things are intrinsically multi-disciplinary subjects that investigate the interaction between the physical and the cyber worlds and how they impact society. As a result, they not only demand careful consideration of digital and analog technologies, but also the human element. The “RIoT Zone” brings together disparate people and ideas to address intuitive autonomy. Full Abstract: Robotics and the Internet of Things are intrinsically multi-disciplinary subjects that investigate the interaction between the physical and the cyber worlds and how they impact society. As a result, they not only demand careful consideration of digital and analog technologies, but also the human element. The “RIoT Zone” brings together disparate people and ideas to address a human-centric form of intelligence we call “intuitive autonomy”. This talk will describe human/robot interaction and the programming of robots by human demonstration from the perspectives of Engineering Technology, Computer Information Technology, Industrial Engineering and Psychology

    Internet of Things Based Technology for Smart Home System: A Generic Framework

    Get PDF
    Internet of Things (IoT) is a technology which enables computing devices, physical and virtual objects/devices to be connected to the internet so that users can control and monitor devices. The IoT offers huge potential for development of various applications namely: e-governance, environmental monitoring, military applications, infrastructure management, industrial applications, energy management, healthcare monitoring, home automation and transport systems. In this paper, the brief overview of existing frameworks for development of IoT applications, techniques to develop smart home applications using existing IoT frameworks, and a new generic framework for the development of IoTbasedsmart home system is presented. The proposed generic framework comprises various modules such as Auto-Configuration and Management, Communication Protocol, Auto-Monitoring and Control, and Objects Access Control. The architecture of the new generic framework and the functionality of various modules in the framework are also presented. The proposed generic framework is helpful for making every house as smart house to increase the comfort of inhabitants. Each of the components of generic framework is robust in nature in providing services at any time. The components of smart home system are designed to take care of various issues such as scalability, interoperability, device adaptability, security and privacy. The proposed generic framework is designed to work on all vendor boards and variants of Linux and Windows operating system

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    An architectural selection framework for data fusion in sensor platforms

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, February 2007.Includes bibliographical references (leaves 97-100).The role of data fusion in sensor platforms is becoming increasingly important in various domains of science, technology and business. Fusion pertains to the merging or integration of information towards an enhanced level of awareness. This thesis provides a canonical overview of several major fusion architectures developed from the remote sensing and defense community. Additionally, it provides an assessment of current sensors and their platforms, the influence of reliability measures, and the connection to fusion applications. We present several types of architecture for managing multi-sensor data fusion, specifically as they relate to the tracking-correlation function and blackboard processing representations in knowledge engineering. Object-Process Methods are used to model the information fusion process and supporting systems. Several mathematical techniques are shown to be useful in the fusion of numerical properties, sensor data updating and the implementation of unique detection probabilities. Finally, we discuss the importance of fusion to the concept and operation of the Semantic Web, which promises new ways to exploit the synergy of multi-sensor data platforms. This requires the synthesis of fusion with ontology models for knowledge representation. We discuss the importance of fusion as a reuse process in ontological engineering, and review key lifecycle models in ontology development. The evolutionary approach to ontology development is considered the most useful and adaptable to the complexities of semantic networks. Several potential applications for data fusion are screened and ranked according to the Joint Directors of Laboratories (JDL) process model for information fusion. Based on these predetermined criteria, the case of medical diagnostic imaging was found to offer the most promising applications for fusion, on which future product platforms can be built.by Atif R. Mirza.S.M

    Enabling Technologies for Web 3.0: A Comprehensive Survey

    Full text link
    Web 3.0 represents the next stage of Internet evolution, aiming to empower users with increased autonomy, efficiency, quality, security, and privacy. This evolution can potentially democratize content access by utilizing the latest developments in enabling technologies. In this paper, we conduct an in-depth survey of enabling technologies in the context of Web 3.0, such as blockchain, semantic web, 3D interactive web, Metaverse, Virtual reality/Augmented reality, Internet of Things technology, and their roles in shaping Web 3.0. We commence by providing a comprehensive background of Web 3.0, including its concept, basic architecture, potential applications, and industry adoption. Subsequently, we examine recent breakthroughs in IoT, 5G, and blockchain technologies that are pivotal to Web 3.0 development. Following that, other enabling technologies, including AI, semantic web, and 3D interactive web, are discussed. Utilizing these technologies can effectively address the critical challenges in realizing Web 3.0, such as ensuring decentralized identity, platform interoperability, data transparency, reducing latency, and enhancing the system's scalability. Finally, we highlight significant challenges associated with Web 3.0 implementation, emphasizing potential solutions and providing insights into future research directions in this field

    Towards the integration of process and quality control using multi-agent technology

    Get PDF
    The paper introduces a vision on the design of distributed manufacturing control systems using the multi-agent principles to enhance the integration of the production and quality control processes. It is highlighted how agent technology may enforce interaction of manufacturing execution system and distributed control system, enhancing the exploitation of the available information at the quality control and process control levels. A specific focus is made on a suitable engineering methodology for the design and realization of such concept. Innovation is also presented at the level of adaptive process control and self-optimizing quality control, with examples related to a home appliance production line

    Agents for active network management and condition monitoring in the smart grid

    Get PDF
    Recent interest in the smart grid or intelligent grid concept focuses on the desired capabilities of future energy networks, without much consideration of how to transition from current networks to the smart grid of tomorrow. This paper explores the required functionality and capability of an intelligent network management system, and shows how agent technology can address these needs. Agents can provide the platform for staged deployment of smart grid functionality, allowing the integration of current equipment and systems while remaining extensible for future developments. This paper describes how agent technology can be used to achieve this goal
    corecore