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ABSTRACT

The role of data fusion in sensor platforms is becoming increasingly important in various
domains of science, technology and business. Fusion pertains to the merging or
integration of information towards an enhanced level of awareness. This thesis provides
a canonical overview of several major fusion architectures developed from the remote
sensing and defense community. Additionally, it provides an assessment of current
sensors and their platforms, the influence of reliability measures, and the connection to
fusion applications.

We present several types of architecture for managing multi-sensor data fusion,
specifically as they relate to the tracking-correlation function and blackboard processing
representations in knowledge engineering. Object-Process Methods are used to model
the information fusion process and supporting systems. Several mathematical techniques
are shown to be useful in the fusion of numerical properties, sensor data updating and the
implementation of unique detection probabilities.

Finally, we discuss the importance of fusion to the concept and operation of the Semantic
Web, which promises new ways to exploit the synergy of multi-sensor data platforms.
This requires the synthesis of fusion with ontology models for knowledge representation.
We discuss the importance of fusion as a reuse process in ontological engineering, and
review key lifecycle models in ontology development. The evolutionary approach to
ontology development is considered the most useful and adaptable to the complexities of
semantic networks. Several potential applications for data fusion are screened and
ranked according to the Joint Directors of Laboratories (JDL) process model for
information fusion. Based on these predetermined criteria, the case of medical diagnostic
imaging was found to offer the most promising applications for fusion, on which future
product platforms can be built.
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Title: Associate Professor of Aeronautics & Astronautics and Engineering Systems
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CHAPTER 1: INTRODUCTION

1.1 Data Fusion Defined

Data fusion is interpreted widely depending on the applications, technologies and

communities of interest. It refers in a broad sense to the processing and distribution of

data from two or more sources to obtain a property of an environment or object.

Common sensor devices include video cameras, range finders, tactile sensors and sonar.

Environments may include oceanic or terrestrial surfaces, airborne or ground-based

combat zones, warehouse facilities and web-based retail (e.g. Fig.1-1). The list of

stakeholders grows as new forms of sensors are developed and applied to data-rich

environments. The following definitions are culled from the remote sensing community,

where fusion concepts and nomenclature have been matured over several decades.

"Image fusion is the combination of two or more different images to form a new
image by using a certain algorithm" [Pohl and Van Genderen, 1998]

"...techniques combine data from multiple sensors, and related information from
associated databases, to achieve improved accuracy and more specific inferences
than could be achieved by the use of a single sensor alone "[Hall and Llinas,
1990]

"...a multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and information
from multiple sources" [US Department of Defense, 1991]

In recent years, fusion has been extended beyond the process-centered view, to reflect a

more holistic methodology for information management. For instance, Buchroithner and

Wald (1998) advanced the following definition:

"Data Fusion is a formalframework in which are expressed means and tools for
the alliance of data originating from different sources. It aims at obtaining
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information of greater quality; the exact definition of 'greater quality' will

depend upon the application."

Figure 1-1 Data fusion example:
Image Superposition from 3 data sources

Overview of Data Fusion Models

Models are used to represent specific patterns of behavior or form (Maier and Rechtin,

2002). They capture the diverse, and often conflicting, architectural views of a product

or process. Different models can help bring specific problems to bear in complex system

engineering and architecting. In Table 1-1, these views are related to notions of

stakeholder value and system success. Many of these views can then be fitted to some

level of quantitative or qualitative model, which might help guide policy or manage

assets in interrelated political, technical or economic systems.

Perspective or View Description
Purpose / objective What the client wants

Form What the system is

Behavioral or Functional What the system does

Performance objective / requirements How effectively the system does it

Data The information retained in the system and
its interrelationships

Managerial The process by which the system is
constructed and managed

Table 1-1 Representation Models and their Objectives

10
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Representation Models. Various representation models have been developed to help

illustrate, on both behavioral and predictive terms, the commonly accepted stages of data

fusion. The focus of this work will be on the form, functional and data models needed to

implement state-of-the-art fusion systems. Performance-related or technology policy

issues will not be investigated in depth in this research.

Purpose and Function Models. An inference, according to Webster's dictionary, is

defined as a deduction made on the basis of a set of hypotheses. The Joint Directors of

Laboratories (JDL) published a model in 1992 that extends conventional single-source

methods to a multi-level, multi-source inference hierarchy. It is the most widely used

method for categorizing data fusion functionality in the US. In 1998, the JDL model was

revised to provide a framework for investment in automation, among other things.

Fusion objectives can be expressed by the system problem statement:

"To align, associate, predict and infer... [in order] to produce identity estimates
and situational refinements.. .in support of a diverse mission environment which
operates on processed and referenced sensor data."

In later sections, various concept fragments in the JDL model, such as threat assessment,

will be reinterpreted and evolved to serve commercial requirements for data fusion needs.
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Figure 1-2 The Sensor-to-Signal Value Chain.

The data fusion functions are defined according to the hierarchy in Table 1-2 (Hall, 2002)

Level 0 Sub-Object Data Association and Estimation: pixel/signal level data association

and characterization
Level I Object Refinement: observation-to-track association, continuous state estimation

(e.g. kinematics), discrete state estimation (e.g. target type & ID), prediction

(Kalman filter)
Level 2 Situation Refinement: object clustering and relational analysis, to include force

structure and cross force relations, communications, physical context, etc.

Level 3 Impact Assessment: [Threat Refinement]; threat intent estimation, [event

prediction], consequence prediction, susceptibility and vulnerability assessment

Level 4 Process Refinement: adaptive search & processing (element of resource
management)

Table 1-2 Function Hierarchy
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In level 0, association addresses the problem of sorting and correlating observations into

common groups. This grouping, by entity, makes it easier to characterize the

observations for refinement at the next stage. It also makes the determination, if any, of

a relationship between source data and entity. An example algorithm used to perform

association in Level 1, object refinement, adds the step of tracking to the cycle. Tracking

refers to the estimation of position and velocity of the entity and can be implemented by

Kalman filters, Hidden Markov Models and dynamic Bayesian nets (Wald, 2002).

Level 2 situation refinement fuses the spatial and temporal relationships between entities

and forms an abstracted interpretation of patterns on the order of battle data. Finally,

level 3 focuses on the prediction algorithms to infer intentions and perform threat

assessment. Level 4 extends the adaptive search and processing steps to include

regulation of data that is acquired. In other words new data is acquired in a way that is

directly influenced by the processing and interpretation of data obtained at previous time

steps. Level 4 is also known as the 'meta-manager' where decisions are represented and

fused.

The object-process refinement cycle in Figure 1-3 maps to the representation models

described in Table 1-1. It also approximates the holistic framework posited by Crawley

(2005) for product and operator attributes.' However, while Crawley's framework

focuses exclusively on the global architecture issues related to product attributes, the JDL

model considers a more granular definition. This suggests two ways to approach fusion

analysis; one which tailors each activity to the available set of models (the 'model-

An attribute, here, is meant to denote the form, function, needs, goals, and timing of a system. This is
different from notion of attribute fusion, through which sensor data is translated into decisions.
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centric' view), and another that captures all fusion activity into a single model (the

'system-generic' view). The model-centric view might be thought of in terms of the

physical model based on the physical characteristics of the object (Hall, 1992), whereas

the system-generic view might be considered in light of the monitoring system described

by level 4.

where what when who why how how well

Level 0: Level 1: Level 2: Level 3: Level 4:
Association & Object Situation Threat Process
Estimation Refinement Refinement Refinement Refinement

DATA FUSION PROCESSING

physical objects

individual organizations

events

specific aggregated

environment & enemy tactics

local global

enemy doctrine objectives & capability

local global

friendly vulnerabilities & mission

options needs

friendly assets

local global

effectiveness

battle theatre

resource management

local global

Figure 1-3 DF Cycles Span
(Courtesy: Llinas, DF Working Group)

Form Models. Form is the ultimate object of design (Alexander, 1964). A form model is

closely tied to the function model, and both are unified in an overarching system concept.

Form represents a level of physical abstraction that accommodates the working principles

of the system concept, which must allow for the execution of all functions (Crawley,

2005). In data fusion, a form model is directly related to domain-specific notions of
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space and connectivity. That is, an electromechanical device which fuses data to deliver

value adopts different form aspects than does a C4ISR defense system. Therefore,

diverse products need to be assessed at roughly the same architectural level and order of

complexity to draw meaningful inferences from system concepts.

Data Models. The drive for increasing levels of automation in corporate and

governmental information systems has created a requirement for innovative data models.

One of the functional objectives in data systems is to establish structure- and elicit

learning- from complex and disparate sources. Solutions are increasingly being

manifested in computer database systems, but the principles of data modeling apply

equally to paper-based methods. This work will attempt to expand the reference case

models from remote sensing systems to other domains. Here, we can take lessons from

commercial retailing operations, where companies such as Wal-Mart have invested in

sophisticated data warehouses to manage their inventory using new technologies such as

RFID (Cebrowski and Garstka, 1998). These self-synchronizing networks have emerged

from the co-evolution of organization. This data becomes valuable when it extracts

marketplace trends and gets coupled with real-time transaction information about local

retail operations. The core elements of fusion, then, have already been successfully

deployed in some commercial settings.
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1.2 Literature Review

Origins

The concept of data fusion goes back to the defense research community of the 1980's.

Specifically, three models were borne out of military applications in radar, missile and

surveillance technologies. Much of the lexicon developed in the data fusion community

is designed to support intelligence cycles (Bedworth and O'Brien, 2000). In the UK, the

defense establishment considered this to be a process - comprised of collection, collation,

evaluation and dissemination. Note that there is not a specific planning and direction

phase, as articulated in the American cycle concept. A brief description of activities in

the various phases is given below:

* Collection- Information from electronic or human sources is gathered and
reported.

* Collation- Adjacent reports are combined or compressed for next stage fusion.
* Evaluation- Intelligence is fused, either through some form of automation or via

human interpretation, to make informed decisions at the next stage.
* Dissemination- Distribution of intelligence reports to commanders for asset

deployment.

The UK Intelligence Cycle organizes methods and tasks (data collection) toward some

concrete deliverable (asset deployment), without prescribing tools. An even higher level

of abstraction can be achieved with Boyd's four-phase action loop: Observe, Orient,

Decide and Act (Boyd, 1987). Although semantically, this model is rooted in the military

command process and is somewhat analogous to the JDL model, it introduces the notion

of iteration and feedback. This distinguishes it from the JDL sequence, which is a linear

'bus' of information inflows and outflows. By adding a dimension of control, Boyd

recasts fusion as a systems-theoretic problem that can be described by all three

16



mathematical formalisms: continuous time, sampled data and discrete event analysis.

Random set measurement models extend single-sensor single target point-variate

statistics to describe a variety of multi-sensor, multi-target scenarios. They do this by

incorporating ambiguous evidence (natural language reports, rules) in multi-sensor and

target estimation.

The Waterfall Model proposed by Bedworth (1994) was endorsed by the UK Technology

Foresight Data Fusion Working Group. It focuses on lower-level sensing capabilities and

divides the fusion levels more finely than others. Since there is no control loop, the

interactions to decision making are linear. The Dasarathy Model (1997) likens the five

levels of fusion to an input-output paradigm. In Table 1-3, a feature refers to the property

or target attribute of an object. Features can be mathematical attributes (measurements)

or image attributes (color).

Input Output Notation Analogues
Data Data DAI-DAO Data-level fusion
Data Features DAI-FEO Feature selection

and feature
extraction

Features Features FEI-FEO Feature-level fusion
Features Decisions FEI-DEO Pattern recognition

and pattern
processing

Decisions Decisions DEI-DEO Decision-level
fusion

Table 1-3 Dasarathy Model

The data is injected to the input pipeline and returns output data at the first level.

In subsequent levels, it feeds data and returns features, which in turn yield decisions.

These processes correspond to the feature extraction, pattern recognition and decision

17



selection stages. The Omnibus Model (Bedworth and O'Brien, 1999) in Figure 1-4

attempts to unify the above views in a single, iterative decision loop. The primary

architectural merit of Omnibus is that it captures - in one graphic - the respective

zooming by previous models.

Decision-
Soft Decision making Hard Decision

Fusion Fusion

Context-
orocessiny

U Decide
Pattern-Cotl

Feature processing Orientate
Fusion Feature- Resource

extraction Observe tasking

Signal
processing

Sensor DataSensor
Fusion Sensing Management

Figure 1-4 Omnibus Model

Current Research Agenda

System Engineering and Data Fusion. The research agenda in the Data Fusion

Community is broad and deep. The problems can be seen as either classification-based,

relating to sensor deployment, placement, behavior and coordination in networks (Luo,

2002). The problems can also be stated as methodological, which take a decision-

theoretic approach to resolving system trades. This view of data fusion would employ

utility-oriented concepts that seek to quantify the value of information to stakeholders. It

takes an analytic approach to problems via qualitative tools for reasoning abstractly about

18



the fusion process. Some of the quantitative research methods apply Bayesian statistics,

Dempster-Schafer theory, Hough transforms and combinatoric set theory (Hall, 2002).

Finally, beyond the logical and physical questions, there are real management and policy

issues at stake, such as: how best to inject information fusion during various system

development activities; how to create a secure, replicable base for applications, and what

is the correct competitive space for fusion systems?

The Information Systems Office at the Defense Advanced Research Projects Agency

(DARPA) allocates the issues according to operational and technical challenges.

Key barriers to implementing fusion systems - the operational challenge- include data

overload and interoperability. According to Flank (1998) over 80% of information is

either never usefully processed or is deposited in some remote database and rendered

obsolete. Real-time processing of information is then an important problem in the design

of fusion systems. So too are the notions of sensor reliability and availability. This is

also a technical challenge. Flank advocates performance metrics for characterizing and

aggregating entity-level fusion. Speed and cost of algorithm development further drain

management resources, for which Flank has suggested common fusion infrastructures to

launch new products. He also cites the need to use emerging object-oriented modeling

and wrapping techniques to make fusion 'engines' more interoperable. A diverse

application context requires data structures that are robust to changes in semantic

representations.
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The systems engineering (SE) discipline focuses on the frameworks and tools related to

design processes for multi-faceted products or services. It provides more than a set of

methods to deal with complexity in product development. Rather, it offers strategic and

tactical concepts for managing phases across a system's lifecycle. A generic lifecycle

would include ideation and requirements planning, design-build, integration and test,

maintenance and disposal. Specific design objectives render some processes more

critical than others; the emphasis should be a function of relative maturity and

hardware/software content. The Data Fusion Engineering Method (Project Correlation,

1997) presents a successful heuristic application of system engineering to fusion design.

The framework in Figure 1-5 divides the development task between functional

partitioning and point designs. Performance is evaluated at progressive levels of

complexity from high- level architecture to detailed design.

20



Operational
Test &
Evaluation Design Phases

1. Operational Architecture Design System Role

Requirements Functional Point Design Performance

Analysis Partitioning Evaluation

2. System Architecture Design Fusion Tree

Requirements Functional Point Design Performance

Analysis Partitioning Evaluation

3. Component Function Design Fusion Node

Requirements Functional Point Design Performance

Analysis Partitioning Evaluation

4. Detailed Design / Development Pattern App.

|Requirements Functional Point Design Performance
Analysis Partitioning Evaluation

Operational
Test &
Evaluation

Figure 1-5 Data Fusion Systems Engineering Process

Steinberg (2000) identified three systems engineering challenges in data fusion.

Firstly, how should uncertainty be modeled, both in sensory observations and in the

phenomenon which produce those observations? Secondly, how should systems

aggregate non-commensurate sensory data (i.e. imagery, text and signals)? Finally, how

should multiple observations (under single- and multi-source conditions) be correlated,

processed and maintained? Steinberg elaborates on the notion of data visibility with an

analogy to resource management. Both resource management and data fusion rely on a

certain level of granularity for effect. The former technique results in action, the latter in

21



estimation. As sensor design is pushed beyond conventional measures of estimation, so

too will the expected impact of fusion data. It is thus critical that the synergies between

data fusion and neighboring domains be leveraged.

At its core, data fusion is an information-theoretic process enabled through hardware and

software products and systems. Subjects such as quality assurance and risk assessment

are less developed in the information domain, relative to traditional hardware fields like

aerospace or nuclear engineering. This provides a unique opportunity for the practitioner

community to extend the Data Fusion knowledge base (and taxonomy) across all phases

of system engineering. When held to similar notions of reliability and utility as

mechanical components, sensor data might codify a more holistic framework for

specifying product requirements or mission objectives.
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System Architecture and Sensor Networks. System architecture has broad

interpretations depending on the domain of interest. It is both an early phase in systems

engineering, and an artifact of that process. Crawley (2005) provides the following

definition:

"The embodiment of concept, and the allocation of physical/informational

function to elements ofform, and definition of structural interfaces among

the elements and with the surrounding context."

TRACK MIDCOURSE

FUSION

UE

G RACKTERMINAL
FUSION

CUE

FUSION

FUSION PREDICT IMPACT OR
INTERCEPT POINT

EVENT ESTUATED LAUNCH POINT
TIP-OFF AREA UMITATION

Figure 1-6 Fusion Improvement of State Vector,
Launch to Intercept (Alberts et al., 2000)

Figure 1-6 demonstrates the increase in battle space awareness through progressive

fusing of the state vector. The improvement is measured as an enlargement of intercept

area from initial event tip-off.

Varshney (1997) elaborates on the system architecture issues related to distributed sensor

networks. Sensor suites can be configured in parallel, so that multiple sensors make

23
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observations concurrently. Likewise, they can be arranged in serial, or tandem,

contributing sequential observations. The effects of spatial and temporal aggregation can

drive the mission and performance outlook for a system. In the network of Figure 1-7,

various sensors are strategically placed throughout the building to monitor structural

health.

Accelerator Observation System Accelerator

Displacement Meter Video Camera Carbon Fiber Sensor

Figure 1-7 Sensor Network in a Civil Structure

The level at which fusion occurs is another architectural checkpoint of interest to

practitioners. It is widely accepted that data can be combined at three levels: data,

feature, and decisions. The attributes and requirements of these three modes are

summarized in the Hierarchical Classification Scheme of Table 1-4.
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Attribute- Data-level fusion Feature-level fusion Decision-level fusion
Level
Data Source Raw observations State vectors Combination of raw

data and state vectors
Source Commensurate (i.e. Commensurate Non-commensurate
Compatibility similar units/source)
Bandwidth High Low Reduced
needs
Accuracy High (resolution has Medium Low
(resolution) inverse relation to

wavelength)
Timeline Front-end processing Mid-stage processing Late-stage processing
System Centralized Distributed Hybrid
architecture
Examples Multi-spectral pixels Imaging sensors with Event identification or

of data, typically stereo vision that object confirmation
based on signal provide depth, range based on the
processing, spanning information observation of some
the electromagnetic common phenomena
spectrum

Table 1-4 Hierarchical Classification Scheme

Table 1-4 assumes that the input/output (I/O) transform is restricted to a specific level.

If, within a fusion process, the I/O is selected from non-commensurate sets of raw data

and feature vectors, it results in a combinatorial explosion of outcomes. An example

cited by Varshney is the data gathered by two human eyes; when processed, it returns

depth perception (data in-feature-out fusion). Similarly, the pattern recognition process

interpolates features and selects a decision (feature-in, decision-out fusion). Complex

fusion processing is more likely to draw on these kinds of multi-source, non-

commensurate and differential I/O regimes.

System architecture is not limited to topology or processing. It also involves setting

system goals, refining context, decomposing function, and planning for change. These

deliverables have been cast in the Conceive-Design-Implement-Operate framework for
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interpreting product development. Crawley (2005) groups architectural responsibility

under the conception phase. See Figure 1-8 below.

Generic PDP

Conceive Design Implement Operate

Mission Conceptual Prelianinry Detaled Element integration. Life Cycle Evolution

Design Design Design Cieation System Test Support

Business ~.Goals .Requirements .Design .Souroing .Product .Saleas, .Product

Strategyr I Funcl on defintion elboaton Implementtion irtgralton Dstribtiion i mprove-

Functional Concps . Model . Goal ramp-up . Product . Operations MT&

StraQy_ -. Regul all on development verification . Blemerd testing . Logistics Farily
Customer . Requirements . Failure & implementation . System . Customer expansion

Needs Tech ny ta n contingency . Eemert testing support Retirement

Compet s Platform pn DaIl analysis . tasting . Refinemert Mantenanoe,

Pro. am .Sitfo-upl decomposition. Validated . Eeme Certification repair,
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Figure 1-8 Architecture tasks in Product Development (Crawley, 2005)

The programmatic and business decisions made at this stage will significantly impact the

evolution of the system. Robust architectures should leave the vision of the architect

intact, well beyond his or her direct involvement with the project.

Finally, something should be said about architecting for multiple stakeholders and

enterprises. This is relevant to the data fusion challenge and addressed by Jackson

(2005). Architecture, he says, lends more than concept structure to a system. It is, rather,

a fundamental ontology, or vocabulary of terms, which can be applied across domains.

Bridging the Platform-Network Divide. Information fusion is enabled by a variety of

sensor technologies. Luo et al. (2002) classified these technologies according to

operating principles:
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* Mechanical parameter variation (e.g. pressure gauges, optical encoders)
* Material parameter variation (e.g. resistance thermometers, strain gauges)
* Direct signal generation (e.g. microphones, accelerometers, proximity

sensors (laser or eddy current))
* Ionization based (photo detectors, photomultipliers)
* Quantum mechanical (magnetometer)

These technologies span a range of application areas, from structural health monitoring

and medical diagnostics to supply chain management. As new applications are

discovered, traditional electro-mechanical sensors are being supplanted by embedded

circuits and optical devices. Such miniaturization techniques can improve overall

package density and increase performance, as well as lower power consumption. More

recently, many sensors are equipped with wireless transceivers, allowing them to be

placed in new environments, or not having to be physically connected, thus forming so

called wireless sensor networks (WSN). Finally, software tools have significantly

enhanced controllability and communications between sensor hosts. Jackson (2005)

discusses the importance of problem framing in both process and product development.

He goes on to recommend that solutions for software be considered in implementation

rather than structural terms.

The concept of product platforms presents some novel approaches to the design and

integration challenges that arise in data fusion (Simpson, 2005). The current lack of

information reuse, standardization and benchmarking motivates practitioners across

industry to seek unified and controllable development techniques. Platforms help to

bridge this gap through architecture and supply chain management. More importantly,
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they can help position a firm for cost and scale efficiencies throughout the lifecycle. This

is a pre-requisite for growth and sustainability of product lines.

The concept of product lines and families are relatively new to the software engineering

domain (Weiss, 2005). The motivation for platform thinking in software systems is

similar to that of hardware systems. In systems that undergo long durations/exposures,

the involvement of multiple contractor organizations and budgetary restrictions justifies

the use of platforms in order to develop "core assets." Weiss uses the example of the

Exploration Initiative by NASA, where software-dominant platforms can be used in the

development of large, spacecraft control software. At United Technologies Research

Center, information platforms need the same rationalization, model-based analysis and

evolution plan which influence hardware strategy (Bailey, 2005). The firm Design

Continuum finds that platforms make it difficult to reach alignment on future

requirements, but they can nevertheless improve time-to-market, service and reliability

(Merle, 2005). The up-front planning costs must be weighed against back-end delivery

objectives in determining the extent to which a firm decides to platform its technology.

The parallels only go so far, however; a fusion system will have radically different

specifications and constraints, which interleave its function and architecture. Such

constraints include the effects that disparate sensor location and information sources

might have on system design. These constraints influence both how the system is

decoupled and the extractable value from a platform strategy.
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1.3 How to Think about Data Fusion

The problems associated with data fusion have been laid out. How should we think about

the data fusion itself? Is it a product, a process, a system or a capability? The answer, of

course, is all of the above. It is a function of the value attached to the information,

capability or hardware which depends on data fusion.

Figure 1-9 places data fusion within the greater context of system terminologies. It

encompasses sensor fusion, with reference to defense applications; adjacent to this is a

commercial (IT) equivalent, information fusion. Though multi-sensor integration

overlaps with data fusion, it does not feature the Correlation and Estimation activity.

Similarly, resource management is an ancillary function extraneous to the whole system

but includes collection (data) management. Though fusion-related processes are set in a

holistic context, the diagram is not an adequate semantic decomposition. Nor does it

convey the spectrum of capability and infrastructure required to support product-systems.

Such a framework is necessary for integrating models with applications. They will be

developed in later chapters.
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Figure 1-9 A Context for Data Fusion
(adapted from Bowman et al., 1998)

For the system architect, there are significant multi-disciplinary issues which need to be

brought together under a single and robust fusion framework. While fusion techniques

have been employed since the development of radar and associated technology, the

concepts of detection, estimation and monitoring have taken hold in other sensory

domains. It is a multi-disciplinary specialty, drawing on the sciences of pattern and

feature recognition, artificial intelligence, operations research and signal/image

processing. And it is largely user-driven; depending on system stakeholders for concept

refinement and implementation. As the demand for fusion applications broadens, there is

an increased need to better evolve and integrate system design into complex network and
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platform architectures. This challenge can be met if the data fusion community continues

to develop the field, formally, as a scientific or engineering field of inquiry.

Commercial Transfer. An important challenge which must be addressed is how best to

transfer innovative DF technologies to the commercial realm. The success of data fusion

processes in civilian and defense C4ISR systems has promising applications for medical

diagnostics equipment, failure detection systems, condition-based maintenance and

supply chain management- using RFID and rule-based analytics- among others. The

community is currently trying to construct a generic taxonomy which can extend fusion

methods beyond its defense systems or earth science applications bias. The need to

establish such a lexicon of data fusion terms, measurements and performance models is

widely accepted among numerous national and international stakeholders. This is

evidenced by the establishment of Data Fusion working groups, both in government and

academia which have been collaborating for several years. The relation of ontology

working groups toward the development of comprehensive Semantic Web services will

be discussed in Chapter 5.
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In Table 1-5, Wald (1999) presents various views on the key design and implementation

issues related to sensor fusion.

Topological (Design) Processing (Implementation)
Spatial distribution of sensors How to fuse the data
Communications network Select performance measures
Bandwidth Determine relevance of data to objectives
Analytic Redundancy Artificial creation of signals based on

synthesis of other partially correlated
sensor signals

Global Architecture Select fusion methods and architectures

Table 1-5 Sensor Fusion Challenges

Steve Flank (1998) of the Information Systems Office views Data Fusion as a set of

strategy-oriented goals. These can be divided between operational and technical

objectives:

Operational Goals
* Reduce information overload
" Overcome barriers to interoperability
" Improve speed, cost, and reusability of development

Technical Goals
" Context and Performance Characterization
" Intelligent Fusion Strategist
" Fusion Engine Encapsulation

Composing a Solution. Developing the frameworks and taxonomy for complex fusion

design is a critical task for the system architect. As data environments become more

complex and interconnected, the role of the architect is to manage the ambiguity and

interaction of fusion and related-systems. These challenges are no longer the purview of

electrical or mechanical engineers, because their effects touch almost every conceivable

domain of innovation. Consequently, holistic solutions will synthesize all factors in

direct and indirect fields. Other benefits include the expansion of industrial capacity
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(factory automation), and defense capability (intelligence and surveillance). This thesis

is therefore motivated on a number of different levels, including business, organizational,

technical and societal. It will not address the sensor characterizations relating to various

applications, such as sensitivity, voltage and current levels, linearity, impedances, gain,

offset and drift. Rather, this thesis will address sensor applications in the 'macro' (in the

large), investigating design and development challenges in the integration and

implementation of data fusion technology onto sensor networks and platforms.

1.4 Thesis Objectives

In summary, this thesis seeks to address the global issues related to fusion design, and the

guidelines for selecting a specific architecture given an implementation task. The

objectives are defined as follows:

" To review current models of data fusion which are actively utilized in various

scientific/engineering communities (Chapter 1)

" To relate the concept of fusion to the operation of different types of sensors

and sensor platforms (Chapter 2)

* To provide a brief overview of current fusion algorithms and methods

(Chapter 3)

* To present basic fusion processes as they occur in a C4ISR system (Chapter 4)

* To model an information fusion ontology using Object-Process Methodology

and to discuss its relevance to the Semantic web (Chapter 5)

* To elaborate a set of fusion engineering and management architectures in

support of complex system design (Chapter 6)
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CHAPTER 2: SENSORS AND SENSOR PLATFORMS

2.1 Sensor Categories

The value of data fusion lies in the breadth of sensor categories available to the designer.

The traditional applications normally cull these sensors from the electromagnetic

spectrum. For instance, in data fusion through remote sensing, electro-magnetic energy

reflected or emitted from objects is measured and reported. However the energy from

acoustic, ultrasonic, magnetic and seismic waves all offer potentially rich sources of

information on which to design fusion system architectures.

2.2 Single Sensor Systems

A sensor is comprised of a transducer which converts energy entering an aperture into

lower frequencies from which targets and background information may be discerned

through a data processor. Digital sensors, actuators and low power RF radios all help to

enable the functionality of a single sensor system (NSF, Directorate for Computer and

information Science and Engineering) through integration of a single chip in a

processor's memory. Figure 2-1 illustrates the basic components of a typical sensor

system. Examples of sensor apertures include antennas (for RF energy), optics (for IR-

UV-visible light energy) and microphones/hydrophones (for acoustical energy).
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Figure 2-1 A sensor system
(adapted from Waltz and Lfinas, 1990)

There are significant limitations due to single sensors that should be mentioned. For

instance, weather, clutter and noise may interfere with the recognition of an object by a

single sensor system. A key determinant to the success of a single sensor system is the

orientation of the mission, and whether there are sufficient data processing resources that

are localized in each sensor (Klein, 1999).
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2.3 Multi-Sensor Systems

Multi-sensor systems offer numerous advantages over single sensors when it comes to the

fundamental tasks of utilizing and delivering information toward a specific objective. For

instance, Landsat- 1, the first earth observation satellite launched in 1972, was a historical

program designed to obtain information on agricultural and forestry resources, geology

and mineral resources, hydrology, pollution, oceanography and marine resources, among

other objectives. The system acquired visible light and near infrared earth photos, as well

as radiometric Earth images, through a multi-sensor vidicon and multi-spectral scanner.

The data was processed and stored in wide-band video tape recorders which offered

'near-global' coverage capability2 .The combination of microwave, millimeter wave,

infrared and visible sensors has also been used in daily weather forecasting.

Furthermore, the collection of ground-based and aerial sensor data has been useful for

characterizing the targets which are being imaged by these sensors.

The relative performance of multiple sensors over single sensor systems can be illustrated

through the graph in Figure 2-2, below, on detection probability. If performance is

measured over some nominal signal-to-noise ratio, the profile shows the improvement of

a tri-sensor suite (with MMW and IR sensors) over a single millimeter wave sensor.

When the system false alarm rejection is divided equally among three sensors, there is a

marked increase in false alarm probability 102 (versus 10-6 for a single sensor system).

More importantly, the voting fusion algorithm used here combines the signal processing

in series and parallel combinations that increases the detection probability for both
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nominal and suppressed target signature levels. When detection probability is the

priority, the tradeoff in false alarm sets versus detection probability clearly favors the

multiple sensor system- 63% compared to 27% for the reduced-signature target. False

alarm sets indicate that the measurement is unreal and to be ignored.

Tri-sensor suite

85% to 63%

Pfa = 10-2
MMW Radar as
the only sensor

70% to 27%

6Pfa =10~6

Suppressed 4- Nominal

I I

4 8 12

Signal-to-Noise Ratio

16

Figure 2-2 Multiple sensor versus single sensor performance with
suppressed target signatures (adapted from Klein, 1999)

In addition to the improved detection performance noted above, multiple sensors offer:

Improved system reliability through redundant sensor suites
Increased dimensionality of the measurement space
Enhanced spatial and temporal coverage
Enhanced confidence about the measurement sets.

However, one major challenge when measuring the same object or phenomenon with

multiple sensors at the same time is that of calibration. In large scale sensor networks,

manual, single sensor calibration does not work. Complexities from scaling, limited
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access to sensors in the field and sensor drift require alternative measures to be utilized.

Each sensor has its own calibration and the multiple sensors may not agree. This

problem has been resolved through a process of collaborative calibration that

systematically corrects errors (biases) in sensor readings. One scheme proposed

(Bychkovsky et al, 2003) relies on redundancy in measurements due to over-deployment

of sensor assets. This scheme first derives functions relating to the output discrepancies

of neighboring sensors, and then uses a heuristic method to address pair-wise

inconsistencies in the network.

"Y.theut zi-pnozi Mcwledse

i~r -~:kacwlede

4

Itffri=o Number

Figure 2-3 Identification probability convergence

Finally, another way to interpret the detection-false alarm tradeoff is through target

identification "correctness." Figure 2-3 (Kadar, 200 1) shows that correct target ID is

improved with a priori knowledge, both in terms of the detection probability as well as

the number of iterations required for detection. The monotonic increase in probability to

1 for the correct ID, and to 0 for the incorrect ID, is known as ID convergence.
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2.4 Active versus Passive Sensors

Sensors are often classified as either active or passive depending on their signal

conditioning. An active sensor requires external sources of excitation, while passive

sensors generate their own electrical output (without requiring external voltages or

currents). The need then, for external active circuitry to produce electrical output signals

from the sensor determine whether, structurally, a sensor should be classified as active or

passive.

In the microwave spectrum, these definitions take on a slightly different meaning.

Active microwave sensors provide their own source of radiation to illuminate a target, as

in RADAR imaging. They use radio waves to detect objects and determine their position,

range, or shape. Active sensors tend to provide more information than passive sensors, at

the cost of increased power consumption and interference when other active sensors are

in operation and easier detectability of the sensor. For instance, active MMW radars

operate in mono-static and bi-static configurations. In the former, the transmitter and

receiver are collocated on the same platform so that the receiver processes energy that is

backscattered from objects in the FOV. In the bi-static mode, the transmitter and receiver

are spatially disconnected, reducing the type and versatility of applications.

Passive microwave sensors record energy emitted by the atmosphere or surface,

reflected by the surface or transmitted from the subsurface. Another example of a purely

passive sensor is an electro-optical sensor, which in military applications can offer

stealthy (non-detectable) operation. Since passive sensors depend on naturally occurring

energy, they are limited in the location and timing of their operation. For instance, the
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amount of solar radiation at polar latitudes is insufficient for visible light sensors (during

the polar night), and limits the use of passive detectors to low latitudes. The Thematic

Mapper on Landsat satellites is an important exception to this design limitation, as it taps

into seven different sensor bands. These bands are sensitive to numerous ranges of the

electromagnetic spectrum, from the visible to thermal infrared portions of the spectrum.

The Landsat is therefore launched at strategic times to ensure that the satellite will make

passes during optimal periods of solar radiation (sun-synchronous orbits).
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2.5 Sensor Platforms

A sensor platform is a vehicle or system used to carry the sensor. Example platforms are

shown in Figure 2-4 (a-b). Typical sensor platforms in the C4ISR arena include satellites

and aircraft (manned or unmanned), but can also include balloon kits for low-level

surveillance (remote sensing), ladder trucks and a host of other mobile or stationary

devices. The fundamental selection factor is the altitude that determines the ground

resolution in turn sets the IFOV (Instantaneous field of view) of the sensor on board.

T

Figure 2-4 (a) Wireless reconfigurable Figure 2-4 (b) Truck mount
Platform at Dartmouth ground-based phased array

Ground-based sensors offer some cost advantages in terms of maintenance and operation

compared to aerial platforms. They can be placed on structures in buildings, towers or on

board terrain vehicles. The complexity and maintenance of the ground-based sensor is

dependent on the design involved. For instance, highly complex phased array antennas

are ground-based sensors with thousands of apertures array elements, see Figure 2-4 (b).

The advent of AESA (Active Electronically Steered Arrays) has replaced the need for

3 Retrieved from The GIS Development Portal.

41



mechanical turntables that require maintenance of bearings, hydraulics and auxiliary

components.

Aerial platforms are used to elevate the sensor above the earth's surface for better

coverage. Cameras mounted on aircraft constitute a type of aerial sensor that is used to

monitor land use practice, locate fires and produce high resolution mapping of remote or

inaccessible regions. Airborne scanning devices are becoming generally available, and

can record radiation over a wider spectral range than photographic devices. They also

offer the advantage of providing data in multi-channel digital format (Harrison and Jupp,

2000). They are considered easier to reuse than satellite or air platforms whose design

objective might be based on remote data and image sensing. An exception to this

category is the Unmanned Aerial Vehicle (UAV) which has shown to be a considerably

less expensive platform for communications, intelligence and surveillance information

gathering.
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CHAPTER 3: OVERVIEW OF FUSION ALGORITHMS &
METHODS

3.1 Fusion of Numerical Properties: The Kalman Approach4

State representation of a model is an important element in the fusion of numerical

properties. In 1960, R.E. Kalman's "New Approach to Linear Filtering and Prediction

Problems" laid forth the groundwork for fusion of numerical properties.

The state of a system is represented by the dynamic world model, M(t), whose list of

primitives describe a state at time t.

M(t) {PI(t), P2(t), ... , Pm(t)}

Each primitive Pi in the system model above is identified by unique identifier, or label, as

well as a confidence factor.

P(t)= {ID. X(t), CF(t)}

Where,

P(t) is the local descriptor of the world model M(t);

ID is the label by which the primitive may be identified andrecalled;

Xt) is a state estimate; and

CF(t) is the confidence factor.

We add an element of random noise to the observation Y(t), denoted by N(t).

Y 1 = X") Xft) - Nt).

4 This section is adapted from Crowley and Demazeau.
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The actual world state is estimable from the collection of the set of primitives of N

properties,

k(t = X i (t). . X ),)... in~t)

Incorporating uncertainty into this model can be represented by the expected deviation

between the estimated and true vector. It is approximated with the covariance matrix

between the estimated and actual system state:

Ct)=. E [X(t) - X)]X(t) -X(t)}] T}

The key result from Kalman's work is the development of the weighting matrix known

as the Kalman gain, defined using the prediction uncertainty, C*y (t).

K(t) := C*x(t YHxT [ C*y(t) - Cy(t)] -l

Where,

HxT is matrix transformation of the coordinate space of the estimated state X(t).

Hx is an observation process that projects onto the world an observation vector Y(t).

This relative weighting between the prediction and observation leads to the ability to

update the estimated properties and derivatives via the difference between predicted and

observed properties.

i) = * + K(TQ IY(t) - Y (t)]
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3.2 Bayesian Methods

In this section5 , we present Bayesian methods for data fusion. Whereas the Kalman

approach to data fusion focuses on the updating of properties, Bayesian methods focus on

updating probabilities.

The Bayesian form is derived from the conditional probability of the intersection of two

events.

P (BC I A) = p (C I AB) p (BIA)

This can be rewritten as,

P (CIAB) = p (BCIA) / p (BIA).

When C is interpreted as a set of mutually exclusive and collectively exhaustive set of

outcomes, we can derive the following,

P(CIjAB) = p (B CA) p (Ci JA)

Z P( B I CjA) p (Cj IA)

Where,

p (Ci IA) is an a priori (or prior) probability of Ci, based upon the state of

information A;

p (Ci |AB) is the a posteriori (or posterior) probability of Ci, given the data B and

the prior state A;

5 This section is adapted from Waltz and Llinas.
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p (B I Ci A) is the likelihood function, which is the likelihood of observing the

data B given Ci and the prior state of information.

jj P( B I CjA) p (Cj JA) is the pre-posterior or probability of the data occurring

given the state of prior information, conditioned on all possible outcomes of Cj.

An influence diagram for Bayesian identification fusion is presented in Figure 3-1.

Various sensor reports are converted in a given time period to likelihood functions. We

adapt an example (Waltz and Llinas, 1990) regarding IFFN and ESM sensors.

Sensor Type ID Joint
Report Given Sensor

Report Report

RAID RAID/

Joint
Report

"A" "B"/T

"4B"1"B

Previous
Period
Posterior

Current
Period
Posterior

:_ _ _ _ Type N

Figure 3-1 Influence Diagram

The interrogation chain requires that sensor response be represented in the form of some

sort of hypothesis or declaration, for later probabilistic combining. The IFFN sensor

responds with a "Friend" declaration, PIFFN (Data I FRD) when it receives a valid
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response to its query. Similarly, the electronic support measure would make a positive

identification based on the type of aircraft it detects PESM (data I Tk). This results in the

following equations:

PIFFN (data I T) = PIFFN (data I FRD) -p (FRDI T)

+ PIWFN (data I FOE) -p (FOE I Tk)

+ PIrN (data NEU) -p (NEUI Tk)

When there is no neutrality measure, then we can eliminate the final term.

PIFFN (data I T) = PIN (data I FRD) -p (FRD I T)

+ PI1 N (data not FRD) - p (not FRD I Tk)

Now that we have derived the type ID given report, the joint sensor report can be

computed. This example concerns non-commensurate sensors, i.e. they rely on different

phenomena (IFFN and ESM). Therefore, the probabilities are considered independent

and the joint likelihood values are:

P (data I Tk) = H pi (data IT)

For all k, or types of aircraft.

We can confirm this result numerically as follows:

PIFFN (data I Tk = PIFFN (data I FRD) - p (FRD I Tk)

+ PIFFN (data FOE) - p (FOE I Tk)

+ PIFFN (data I NEU) -p (NEU I Tk)

where the likelihoods, PIFFN (data ) is based on some a priori test measurement,
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PI1 N (data | FRD) = 0.6

PIFFN (data I FOE) = 0.2

PI1 N (data | NEU) = 0

PESM (data FRD) = 0.3

PESM (data F FRD) = 0.4

PESM (data F FRD) = 0

To calculate the likelihoods based on type of aircraft Tk , we can multiply the above

likelihoods by the binary probabilities of p (FRD I Tk) =1, p (FOE I Tk) =0 and p (NEU I
Tk) = 0. Thus, when there is no neutrality measure, for a scenario in which only one side

has a given type of aircraft,

PI1 N (data Ik) PIFFN (data I FRD) -p (FRD I Tk)

+ PI1 N (data I not FRD) - p (not FRD I Tk)

PIFFN (data ITk) =(0.6) x ()+(0.2) x (0) = 0.6

PESM (data I Tk) = (0.3) x (1) + (0.4) x (0) = 0.3

and

So that the joint likelihoods are

P (data I T) = H pi (data IT) = 0.6 x 0.3 => 0.18

where 0.18 is the probability of a joint sensor report for all k, or types of aircraft.
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Finally, the last link of the influence diagram is satisfied by Bayes's Rule

P(Tk ldata) = p (dataI T) - qTk

p (data)

Where,

qTk = previous period's value of p(Tk I data);

p (data) = Z p (dataI Tk ) -q Tk.

The level of updating is a function of the number of detections during a given time

period. The last step in Bayesian fusion is to calculate the friend, foe, or neutral

identification, as well as any class membership issues. This requires the posterior

probabilities for type and the scenario defined.

P(FRDIdata) = I p( Tk I data) -p (FRD IT)

P(FOEldata) = Z p( Tk I data) -p (FOE IT)

P(NEUjdata) = I p( Tk I data) -p (NEU ITk)

49



3.3 Voting Fusion

Voting fusion is a powerful approach to sensor fusion that uses Boolean methods to

estimate a system's detection and false alarm probability. In this section, we derive the

basis of this approach and then extend it to an example using nested confidence levels.

Nesting refers to the level of dependence of a confidence level for a sensor. Non-

nested confidence levels are based on the disjoint assumption of probability theory, so

that the system detection probability can be expressed as follows

Pd {Al U A2} = Pd{AI + Pd {A2}

And Pd {Al fA2} = 0

The number of confidence levels required for system functioning is proportional to the

number of sensors in the system. From a performance viewpoint, this requires an

understanding of how confidence intervals are related to detection and false alarm

probabilities. The Venn diagram in Figure 3-2 (a) (Klein, 1999) illustrates the detection

/ classification space for a tri-sensor configuration suite.

Sensor A, Sensor
B and Sensor C

B2 A2
Al B1 a -

C1
Sensor

C

Sensor B

Figure 3-2(a) Detection modes Figure 3-2(b) Confidence levels
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Due to the null set intersection equation described above, the non-nested confidence

levels allow false alarm probabilities to be optimized for each sensor's confidence level.

The 3 sensor suite is chosen because it has the least likelihood of false alarm detection,

compared to the probability of single sensor false alarm detection. Having at least 3

sensors, even with lower confidence levels, provides better assurance against false target

identification under non-commensurate conditions, where the sensors are responding to

different signal phenomena.

The system detection probability equation is derived from three dual sensor modes and a

single tri-sensor suite mode as follows. The first term, with all l's as subscripts,

represents the lowest level output combination. The next two terms represent

intermediate confidence outputs, and the fourth term, A3 B 3requires the highest-level

confidence output. The following equation is an exhaustive set with no confidence mode

overlap.

System Pd = Pd {AI BI CI or A2 C2 or B2 C2 or A 3 B3}

This can be reduced using the following Boolean expansion

P { Xor Y } = P{X} + P{Y} -P{XY}

to the result

System Pd = Pd{ AI Bi CI} + Pd {A2 C2} + Pd {B 2 C2 1 + Pd {A 3 B 3}

- Pd{A2 B 2 C 2}
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When the sensors are responding to different signal generation phenomena, then the

probabilities are independent of each other. The following two expressions relate this for

both detection and false alarm probability for the system.

SystemPd=Pd{A}Pd{BI}Pd{CI}+ Pd{A 2 }Pd{C 2 }+Pd{B2}Pd{C2}

+ Pd {A 3 } Pd {B 3} - Pd {A 2} Pd {B 2} Pd {C 2 } [detection]

System Pfa = Pfa { A, } Pfa {Bi } Pa {CI I + Pfa {A 2} Pfa{C2 } + Pfa {B 2} Pfa {C2 }

+ Pfa { A 3} Pfa {B 3} - Pfa { A2} Pfa {B2 } Pfa {C2 } [false alarm]

When detection probabilities are not independent of each other, we use the nested sensor

confidence levels. These are represented pictorially by Figure 3-3

Figure 3-3 Nested Confidence levels

where the confidence levels are embedded or dependent on each other. The union and

null intersection rules do not apply in this situation so that the areas of overlap need to be

discounted.
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This results in the following equation,

System Pd = Pd {A1

+

} Pd {B1} Pd {Cl I+ Pd {A2 } Pd {C2} + Pd {B2} Pd {C2}

Pd{A3} Pd{B3} -Pd {A2} Pd {BI} Pd{C2}

Pd {A1I Pd{B2} Pd {C2 } - Pd{A3} Pd {B 3} Pd{C 1}.

[detection]

Similarly,

System Pfa = Pa { Ai} Pfa {Bi } Pfa {Ci } + Pfa { A 2} Pfa {C2} + Pfa {B2 } Pa {C 2}

+ Pfa {A 3} Pfa { B 3} - Pfa { A2} Pfa {BI } Pfa {C 2}

- Pfa {AI} Pfa{B2} Pfa {C21 - Pfa {A 31 Pfa{B 3} Pfa {CI}

[false alarm]

By plugging in terms for A1 -A 3, B1-B 3, and CI-C3 , we can see that nested confidence

levels results in a lower probability of detection and false alarm rate than non-nested

confidence intervals.
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CHAPTER 4: MODEL OF A C 41SR SYSTEM

4.1 Scenario Profile

The Command, Control, Communications and Computers paradigm of a (C4ISR) system

present a variety of fusion challenges for the system engineer. The high-level system

functions can be broken down as follows (Waltz & Llinas, 1990):

" Sensing:

" Communications:

* Processing:

* Commanding:

* Controlling:

Methods used to search, acquire, identify, and track
targets including one's own and opposing forces
The links between one's own forces to communicate
the location and status of each other's forces as well
as the transmission of sensor and intelligence data
The fusion of sensor and source data to create an
accurate assessment of the combat environment in real
time.
The assessment of the possible meanings of the
situation.
The development and dissemination of the tasking
orders under control.

One such specific application is in Figure 4-1, an ocean surveillance system (Hall, 1997).

Radar

Towed and Hull-
Mounted Sonar Arrays

Sono u Helicopter
Dipping Sonar

Fixed Underwate'r
Sound Networks r

Figure 4-1 Ocean Surveillance scenario for a C4ISR system

54

.. .. . ........ ...... ............. .



4.2 System Concept

The mission of an ocean surveillance system is to protect, defend and warn against future

threats and scenarios. The system above uses multiple sensor platforms (hull-mount and

dipping sonar, airborne radar etc.) to act upon primary observable data, such as EM

signals, acoustics signals, or derived observations (wakes) over a predetermined

surveillance volume. The system concept for ocean surveillance is presented in

Figure 4-2, and it follows the generic, analytic model. The architecture is constructed

from position/entity nodes in a search volume, and value is delivered in the form of a

threat analysis.

Threat Analysis

Situation Assessment

Value
Behavior of an Entity

Concept
Identity of Emitter or Platform

Architecture
Position and/or Velocity

Existence of an Entity

Figure 4-2 Inference hierarchies: Specific and generic models

The C4ISR system was chosen because it provides a powerful framework for not only

analyzing the fusion objective but also all other intermediate processing and ancillary

functions, i.e. level I through level 3 (Refer to Table 1-2). These correspond to

alignment, association, correlation, classification, situation and threat assessment.
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4.3 Mission-level Decomposition

Decomposition, according to Crawley (2005) is the division of things. In this section, we

conduct form- and process-level decomposition in order to zoom in on various sensor

families as a function of the anti-submarine warfare mission.

r ------------------------------------------------------ I

Mission (ASW)

Targets Events Sensors Sources Command-
Control

---------------------------- -------- ------------

Sonar Signature Passive ESM Satellite
Surveillance

Non-acoustic Visual Sightings
sensors

L --- - - - - - - - - - - - - - - - - - - - - - -

I---- ---------------------------------------

Figure 4-3 The Place of Sensors in ASW

The advantage of hierarchically decomposing a system, Figure 4-3, is that it aggregates

various elements of the mission in an understandable way (i.e., it sets the usage context).

Inherent complexity in this system is borne from the fact that the sensors are spatially

distributed and may not process data in a known operational sequence. We need,

therefore, to further evaluate this structure to take into account specific discriminating

categories that may, among other things, highlight the sensor data effects timeline.

Object-Process Methodology can help us with such a transformation.
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4.4 Object-Process Modeling of the ASW Mission

We begin by documenting the functionality of the system architecture. Let us reorder the

core processes outlined in Section 4.1 to deliver some sense of parallelism with the JDL

model. In Figure 4-4, boxes constitute both human and physical objects whereas ovals

define the processes. The text inside each of the boxes is known as a command sentence

and the level of functionality is derived from a host of sensor output categories.

Decision- Controlling
maker

Ops Center Cmanding

Communi- Communicati
cation links ons

H/W Processing
Processor

SensorSensing

Deploy
counter-
measures

Assess
situation

Transmit
location

Real-time
fusion

I.---

r- --

les

-- 1

~~1

' I

-F-4------------------------

Figure 4-4 Function hierarchy

Level 5

Level 4

Level 3

Level 2

Level 1
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Structural relations of the observables.

The breadth of targets and events which arise in the C4ISR scenario can be modeled

based on the principle of exhibition-characterization, one of 4 fundamental OPM

structural relation links. Hall has developed 3 levels of discrimination, based on the

following set of attributes:

Directly Behavioral

Measured Characteristics

Acoustic Signature Speed

Magnetic Signature Depth

Atomic/Bio/Nuclear Maneuverability
Effects

Figure 4-5 Attribute Representation in OPM

Finally, the third discrimination category which can be added to Figure 4-5 is contextual

information, related to the origin of the mission, and its locations.

A typical antisubmarine warfare mission (ASW) is comprised of a battle group

commander, a surveillance volume of 2000 x 2000 km, 4 surveillance aircraft, 12 ASW

ships and 2 ASW submarines. The maximum targets in track are between 100-200, and

the number of reports/minute, between 1,000-5,000. This translates to 1-5 C2

decisions/minute. The non-commensurate data is compiled from the multitude of active

and passive sensor systems being deployed by land-based surveillance centers, (sub)

surface platforms and patrolling aircraft. The detection and monitoring activity is

occurring within an integrated air-land-ocean environment.
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The concept of a triggering event in OPM is one that initiates some type of

process in a system. In ASW, let us consider this event to be a surface activity or torpedo

launch. Upon detection of an enemy launch, there is uncertainty about the processing

state of the torpedo which needs to be resolved. The fixed underwater sonar network

will report transgression of the torpedo along its wake, but only after that trigger event

has occurred. Through the fusion nodes, this can trigger a state of engagement, or

awareness, and cue up anti-submarine systems along the outer ocean periphery.

Depending on the frequency of the tracks, the ASW contingent will be able to respond

through appropriate countermeasures prior to the torpedo exit event (target kill). The

rapidity of response will not only be a function of the target mobility and velocity; it is

very much dependent on the synchronization of fusion nodes in the sensor network. The

use of real-time object and process links in OPM can help simply the requirements for an

ASW scenario design.

Multi-sensor systems have supported the automation of data fusion processes through

multi-spectral methods such as Radio Frequency (RF), infrared (IR) and electro-optical

(EO) emissions and reflections (Waltz and Llinas, 1990). This automation is further

enabled by the deployment of theatre-wide data links and networks which support intra-

sensor cueing, and hand-off, as well as the exchange of target detection tracks for cross-

correlation and association. Finally, the redundant and complementary use of low-

observable weapons such as passive ESM, IR, and EO sensors has provided automation

advantages over active single sensor systems such as Active Electronically-Steered Array

(AESA) radars.

59



4.5 Integration

Integration, or fusion, of the observables toward some stakeholder objective is the next

step and a main driver of complexity in the system. Integration is more than a

mathematical combining of state and feature vectors. It refers to the broader assemblage

of hardware and software components which need to function cohesively in order to

deliver value. The risk in this process is that integration might not enhance but could

actually reduce the quality of the fused data. Processing by non-commensurate sensors

needs to be carefully managed in order to prevent the emergence of inferior data that

cannot be adequately utilized. We have presented Bayesian methods in Chapter 3 to

show that this approach enables non-commensurate processing for event prediction and

detection.

The notion of timing features highly among the design specifications of a fusion

system. Time can be analyzed along multiple dimensions - the sampling rate of sensor, as

listed above, the alignment- or registration- with other sensors, and delays due to data

filtering.

Registration refers to the process of making sensors commensurate in both spatial

and temporal dimensions, which means that measurements correspond to data from the

same location and time period. Geometrical transformation is one of many methods used

to make sensor output commensurate. When this does not occur, the system may revert

to separate operation of the sensors, or enact a guiding or cueing type of sensory

processing function. The example often cited is that of a vision-sensor which helps to

guide the movement of a tactile array at the end of manipulators (Luo and Kay, 1990).
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Filtering, or smoothing, is used to increase the signal-to-noise ratio. According to the

matching filter theorem, the filter that gives the optimum resolution of a signal from

noise is a filter that is matched to the signal.

Finally, modular system design eases the integration challenge through distributed

processing of sensors across a system. Distributed and smart sensors help to create

standardized digital interfaces that can be easily adapted to requirements of a branch or

field network. In this scheme, smart sensors are effectively plugged into nodes along a

device network based on the sensory processing requirements.

Field

Branch

e -Smart

rk sensor

Smart
sensor

Network 0

Node Node -

Smart Smart
sensor sensor

Figure 4-6 Network Integration of Smart Sensors (Kester, 1998)

The C4ISR example presented in this chapter illustrates some of the key issues

facing the fusion system designer. The high-level system functions were synthesized into

a unified concept for an anti-submarine warfare mission. This was then decomposed by

form and function into constituent parts according to the product-system and overall
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usage context. Core operations were matched to the JDL hierarchy for information

fusion and elaborated on using definitions from Object-Process methodology. The final

step in the system analysis involved re-integration of both the data and physical processes

which constituted the model. Sensor registration, filtering and integration across

distributed or wireless networks are becoming important design issues as C4 ISR systems

increase in both scale and complexity.
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CHAPTER 5: FUSION AND THE SEMANTIC WEB

5.1 Motivation

An ontology is a "specification of a conceptualization." (Gruber, 2000). It is a

description, often a program, of conceptual and relational links that exist between an

agent and community of agents. In practical terms, an ontology can therefore help to

specify various levels of knowledge representation - and therefore knowledge sharing -

in complex information systems where data fusion occurs. Promoting a common

understanding of domain helps to facilitate interoperability among disparate information

sources. Ontologies can range from controlled vocabularies to highly expressive

domain models, integrated data dictionaries, structured data models and computational

models (Bourey-Brisset, 2003). The interest in ontological engineering has increased due

to the need for improved knowledge management, organization, electronic commerce and

informational retrieval and extraction (Pinto & Martins, 2004). These attributes feature

highly in both intelligent transportation systems as well as supply chain management.
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5.2 Ontologies and the Semantic Web

Van Heist (1997) and Guarino (1998) identify three general classes of ontologies based

on existing frameworks:

* Representation- defining class, instance, superclass [Frame ontology]

* General or Upper Level- defining general concepts that are reusable

across domains such as a time, time point, time interval, time overlap

[Time ontology]

* Domain- defining concepts from a specific subject area, such as

chemistry, which lays out classes of reactive chemical elements, and the

electronic configuration of each chemical element (Chemical-Element

Ontology]

The complexity of developing an ontology is based on the need to be both specific

enough for particular applications while offering the representational breadth that can

reach multiple disciplines.

The Semantic Web, in the words of Tim Berners Lee (Chair, Worldwide Web

Consortium) is the application of weblike design to data. "Its structure will foster

environments where software agents roam from page to page to readily carry out

sophisticated tasks for users."7 The Semantic web adds identification tags to information

and then links them so that computers can discover data more efficiently and form new

associations. In his "stack of specifications" Berners-Lee talks about three stages of

evolution in the identifiers which are used for concepts: 1) numbers or strings, 2)

Universal Resource Identifiers (URIs) - identify the same thing in all contexts, and 3)

dereferencable URIs.

7 Retrieved from Scientific American.com, 2001
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What does this evolution mean for the data which gets generated in a complex C4ISR

system as described in Chapter 4? Firstly, it highlights the inadequacy of single sensor

systems that might only call on binary vector string data (for instance IFFN sensors).

Indeed, the profile of missions is increasingly complicated with multi-objective, multi-

source data that needs to be interwoven in context, behavioral and directly measured

features (Table 5-1).

Discriminating Categories ASW Mission

Directly Measure Features 0 Acoustic signatures,
0 Magnetic signatures,
0 Diesel fume spectra,
0 Bio-nuclear effects

Behavioral Characteristics 0 Speed
0 Sustained speed
0 Depth
0 Maneuverability
0 Hostile act

Contextual Information 0 Origin of mission
0 Location relative to friendly

vessels

Table 5-1 Target Discrimination Attributes

Secondly, URI protocols enable new applications to be defined so that friendly source

data can be received and integrated to an allocated domain space. Finally, the third stage

of concept evolution in the Semantic Web relates to the notion of metadata processing.

That is, an automated agent can pick up data "on the fly" and then use that metadata to

enhance processing in a specific ontology. The machine analogy made by Berners-Lee is

applicable here; if there is a semantic 'web machine', then it is a proof validator, not a
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theorem prover. For instance, sensor data should be validated using a combination of a

priori and posterior data to validate observations, not to prove particular theories.

5.3 The Ontological Lifecycle

The development of ontology follows an evolving prototype lifecycle, Figure 5-1

(Martins and Pinto, 2004). It requires constant iteration within and between the

fundamental steps in development: namely, specification, conceptualization,

formalization, implementation and maintenance. The evolving lifecycle for ontology is

different from the sequential waterfall approach or the a priori planning in iterative

development. It is inherently more flexible by allowing the designer to return to any

component at any point in time. But because there is no predetermined metric of quality,

it is more all the more challenging to ascertain when the ontology is complete.

Life -- *AI+} A3 A[ A2 A3 At A2 A

cycle

Final
pr ci.

Waterfall Iterative Evolving

Figure 5-1 Lifecycle Development Models

Ontologies must confer both structure and flexibility in order for the Semantic

Web to function. They can be used to enhance web searches, based on precise rather than
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ambiguous concepts. But they also must tailor to the decentralized nature of the web and

web services. For this arrangement to work, we propose that a knowledge representation

system has a degree of hierarchy to it. The syntactic problems have begun to be

addressed in developing the web through Semantic Web Language (SWL). Formal

ontologies and models for their development can play an important role in resolving the

semantic issues, i.e., giving names to the basic concepts of the data and writing rules to

take advantage of their connections. In managing this process, the source ontologies

require periodic updating in order to refresh the cycle of evolution which takes place.

Automatic Target Recognition (ATR) from the C4ISR example from Chapter 4

offers an opportunity for testing this ontology development model (Waltz and Llinas,

1990). The formalization process was completed with a system concept description. The

implementation of the ontology requires some formal knowledge representation scheme,

in this case the OWL Web Ontology language.

Classes
Database Classification:

> Syntactic: pattern grammar structures that relate target
features in time, space or spectrum

> Parametric: probability distributions for each (sub)class
> Non-Parametric: vector coordinates of each (sub)class in

feature space for computation of distance to each target
feature vector

> Distribution-free: non-statistical discriminant functions
that partition feature space into class regions.

Processes
> Preprocessing: removal, reduction of noise, bias, gain

and geometric distortions
> Detection: computational reduction of candidate targets

using criteria such as contrast relative to background,
intensity, closed boundary, shape, size

> Segmentation: boundary identification and target
extraction

> Feature Extraction: feature characterization from
picture element segmentation
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Classification:
o non-statistical partitioning of feature space into

decision regions
o statistical (parametric) methods
o syntactic classifiers parse components of target

class using grammatical techniques
> Contextual and High-level Classification

o Global classification for relationships within scene
o Temporal classification for changes recognized by

successive sensor frames
o Knowledge-based classification to reinforce global

and local scene data
Attributes

Product-System
> Sonar signature
> Passive ESM
> Satellite surveillance
> Non-acoustic sensors
> Visual sightings

Figure 5-2 OWL Ontology for C4ISR Mission

Figure 5-2 lays the foundation for ontology of a complex ASW mission with

Automatic Target Recognition processing. Like the OWL language, it subdivides the

mission into classes, subclasses and properties that have restrictive elements or attributes.

For instance, reduction occurs in both pre-processing and detection, but these classes co-

exist within a very different set of criteria. This is one of the outcomes of an effective

ontology- to define the elements of a complex system or domain without overlapping

intent or meaning.

5.4 Fusion as a Reuse Process

Ontology re-use is a common way to propagate the knowledge gained in various fields

without having to "reinvent the wheel." There are two commonly accepted modes of
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reuse in ontological engineering: fusion/merging and composition/integration (Martins

and Pinto, 2004). In fusion re-use, the ontology is built by bringing together knowledge

from different source ontologies from the same subject. These are not revisions or

improvements but rather unique ontologies that have been developed from similar subject

material. In composition/integration, ontologies are built through assembling source

modules from various subjects. This is appropriate when ontologies have gone through

extensive modification, adaptation or specialization over time.

Lucien Wald (1999) has developed terms of reference in data fusion that can be

repurposed toward various fusion ontologies. Wald derives most of his terms from the

remote sensing and defense system applications, but we will demonstrate their extension

to other fields through domain, goal-based and mathematical reasoning. The following

Object-Process diagram is an explicit representation of the semantic decomposition of

these terms for generalized fusion. Its overarching premise is the treatment and origins of

raw information, which can take several forms, from measurement and signal to

observations and verbal reports. The code in Figure 5-3 demonstrates the relation links

that constitute the OPD of Figure 5-4.

- "Is a". is the same as

- A code. surrogate. address of symbol for

A -Decomposes to. aggregates to

A& .Is characterized by. exhibits

3 -Specializes to. generalizes to

A -instantiated to. belongs to the class of

Figure 5-3 Relational links in OPM
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Although fusion is the central process in this diagram, it is helpful to include aspects of

the supporting system, as well as supporting processes, which act on the information. It

is worth noting that there are many types of raw information which can be refined over

various processes and environments. The hardware elements of the supporting system

have been simplified to represent a simple sensor arrangement. In reality, complex

fusion systems are comprised of multiple, distributed platforms with thousands of

apertures and waveforms. Similarly, there are many more supporting processes which

enable data fusion; these hierarchical classification schemes will be discussed later.
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Signal

Object

Continuous Non-continuous
Attribute Attribute

(color, size) (mode)

Figure 5-4 Object-Process Diagram for Information Fusion
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5.5 Parallelism and Other Taxonomies

Rule-based analytics in knowledge-based systems (KBS) have benefited tremendously

from the advent of parallel computers. For instance, the rules highlighted in Figure 5-4

under supporting processes can be subjected to rule-level partitioning, where classes such

as correlation, combination or association rules are generated.

Class-based rule partitioning forms another aspect of ontology development,

namely one based on fusion algorithm. Whereas the Object-Process Diagram above took

an information-based approach to ontology design, the class methods utilize a

hierarchical scheme which imparts a specific decompositional logic, or organization.

Hall develops taxonomy for level 1 processing that is extensible to other levels of fusion.

This is derived from algorithms- both statistical and heuristic- which are based on level 1

fusion, object identification. Level 1 is specialized into 3 classes: positional, identity and

ancillary support algorithms. These are further decomposed by technique or method.

Positional fusion, for instance, involves parametric association and estimation of data.

Identity fusion uses physical models, cognitive models and feature-based inference.

Ancillary support systems, which often comprise more than 80% of the fusion effort,

include numerical libraries, data alignment, preprocessing, database management and

man/machine interfaces. These are only one instance of a larger class of items.

The following taxonomy of identity-classification algorithms was developed (Waltz and

Llinas, 1990) and incorporates techniques described in Chapter 3, as well as other

methods.
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Recognition
Algorithms

Cognitive-
Based Models

Physical
Model- Logical

Temolates KBS Fuzzy Set
Parametric Theory

-Simulation Classification

-- Estimation-

Filtering Statistical-based Information-
- Max Likelihood algorithms theoretic techniaues

- Least Squares Classical inference -- Parametric templates

Syntactic -Bayesian methods H Cluster algorithms

- Image Algebra Dempster-Schafer Voting fusion

Entropy methods

Figure 5-5 Class-Based Ontology for
Identity Classification Algorithms

The purpose of Figure 5-5 is not to delve into the particular implementation aspects of

specific fusion algorithms, but rather to show another way in which ontology can be

constructed and indexed in the Semantic Web. A portion of the Semantic Web reference

card is given in Figure 5-6.
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Semantic Web Refeience Card o

A2. OWL Web Ontology Language
Classes

" owl:Class ahi OWL dasses, a sub-dass of rdfs: Cass

owl:equivalentClass [ow:Class + cwP:Cass]
ow:isjontW11h [ol:Class + oW:l ass]
owl:onef * (rdfs:Class + rdf List]
owl:InterseotionOf - [owl:Class -+ rdfList]
owl:unionOf' [ovA:Class + *dt.List]
owl:oomplementOf [ow:Class 4 awl:Cass]

" owl:Restriction
owl:cnProperty [ov:Restitbcn 4 rdtropertv
owl:allValuesFrom [owl:Restrction 4 rdfsGlass]
owl:someValuesFrom [ow:Restrcticn 4 rdfs:Class]
owl:hasValue [o%:Restcton + ] no range cInstrawr
owl:cardinality - [owl:Restrcticn 4 xsd:nonNegatveInteger
owl:maxCardinality - [ov:Restrction 4 xsd:ncnNegatveIn:eqer
owl:minCardinality - [ovA:Restr ction 4 xsd:ncnNegatvein:eger

" owl:DataRange ' sets of data values, -ange of data-valued property

" owl:DeprecatedClass Aersin coitro
Properties

- owA:DatatypeProperty range's ;nstance ofY s:Datatype

Figure 5-6 Classes in the OWL Ontology

Finally, parallelism can play an important role in developing ontology for

semantic networks. MacRae and Byrne (1987) studied the use of connectionist parallel

architectures for real-time data fusion applications for the Royal Navy. Their architecture

uses objects and relationship links as in OPM, but takes on a very different representation

scheme. Objects are identified by nodes and connected via links of inheritance. Sensor

data is processed at local active node centers, and then propagated along to parallel nodes

as further attribute data is generated. Figure 5-7 is the layout of connectionist

architecture from MacRae's research.
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(ATTRIBUTE-OF)
Generic
Class Generic

(vehicle) Property
(speed)

(IS-a)

Particular
Class (PLATFORM-SPEED)
(ship) (IS-a)

(ATTRIBUTE-OF) (VALUE-OF)
Particular
Ship
(HMS (PARTICULAR (PARTICULAR
Diana) PROPERTY) VALUE)

(Diana's Speed) (10 Knots)

Figure 5-7 Semantic Network Example

The semantic network example above illustrates the potential of ontology-based fusion

for the Semantic web. Like the wireless reconfigurable hardware platform developed at

Dartmouth (see Figure 2-4(a), Chapter 2), a web-based semantic network can enable

sensor networks to be "dynamically discovered, composed and integrated with distributed

fusion services" to support new and challenging missions. An easily evolvable ontology

will be a key facet to support rapid propagation of sensor data through the Semantic Web

value chain, from source providers to end users.
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CHAPTER 6: SYSTEM ENGINEERING FOR DATA FUSION

6.1 Implementation Challenges

Information quality and assurance discussed in the previous chapter are two elements of

the lifecycle which drives system design. The Electronic Industries Association / Interim

Standard 632 (EIA/IS 632) lifecycle in Figure 6-1 builds on the progression from

requirements and functional analysis to form allocation and synthesis. The lifetime is

indeed a function of the system architecture. In single sensor systems, it may be driven by

the dominant material and physical constraints, whereas multi-sensor nodes are more

likely to factor in attributes of the larger network in which they reside.

What drives the design of C4ISR? This is best understood in terms of mission-

level requirements, a key component in systems engineering methodology.

Requirements Analysis
Analyze Markets & Environments
Identify Functional Requirements
Define / Refine Performance
Design Constraint Requirements Requirements

Loop

Functional Analysis /
Allocation
Decompose to lower level functions
Allocate performance to lower levels

Define / Refine functional interfaces
Define / Refine / Integrate functional Design Loop

Synthesis
Transform architecture (functional to

physical)
Define configuration items & elements

Define / Refine Physical Interfaces
Select preferred Product / Process

Solutions

Figure 6-1 EIA/IS 632 System Lifecycle Standards
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The requirements loop. The market for C4ISR has been evolving since the Second

World War. Projected 2010 spending is $29.01 billion, with a base year U.S. C4ISR

budget of $19.03 billion. These segments can be roughly broken up as follows:

N Surveillance

E Intelligence

24% 32%
0 Computers

0024%/ 4 0 C2

N Comm unicatio
ns

Figure 6-2 DoD C4ISR Segment Funding (Frost & Sullivan, 2004)

Some of the major constraints in this first loop (for current operations) include a

congressional shift from technology to protection of troops, a prevalence of immature

technologies and the trend toward joint projects with more requirements.

Among the many challenges in data fusion, there are two which can be addressed by the

systems framework highlighted above. The first is the basis for selection of mathematical

techniques. This process must take into account the perspectives of various system

stakeholders, including the user, numerical analyst, operations researcher and system

engineer. The specific algorithms available include association methods, positional

estimation (Kalman filtering), identity fusion (templating, voting, D-S methods, classical

Bayesian inference) and pattern recognition techniques (adaptive neural nets and cluster
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methods), (Klein, 1999). Another challenge is the provisioning of data, a priori.

Increasingly, this requires the need for experiential models of cognition and situational

assessment in order for the fusion system to provide accurate and meaningful results.

The partitioning of data fusion into two problem domains is a reflection of this evolving

requirement for cognitive models. The first domain is based on whether any given entity

- signals, physical objects, aggregates or structures- are of interest in its attributes,

characteristics or behavior. The second domain is based on the assemblage of

components whose 'interrelations' are of interest, where the targets themselves are such

situations. This most closely relates to Level 2 data fusion concerning the implications

context.

Cognitive models for situation assessment can have an indeterminate number of

entities, depending on the reasoning of the agents. According to Situation Theory,

abstract situations, or infons, are represented by the form

(P,xi, ... , xn, h, k, p)

Where P is an m-place relation (mn);

x, ... , x, are entities;

h and k are a location and time (which may be points or an

extended region;

p is a polarity, or truth-value.

Real and abstract situations can be distinguished by their polarity. A real situation is a set

of facts with polarity equal to I (Bowman, 2004). Figure 6-3 illustrates Bowman's

cognitive model for a perceptual reasoning machine (PRM), based on the concept of

reinforcement learning.
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Interface to
Decision

Prior Domain Current Information Maker
Knowledge (Knowledge

Sources)

Estimation, Evidence
Learning Algorithms and Accumulation and Control Queries

Memory Algorithms
Beliefs and

Anticipate/Predict (AP) Gather/Assess (GA) Hypothesis

Reinforcement (Perceptual
Reasoning Cycle)

Figure 6-3 Perceptual Reasoning Machine (PRM)
for Cognition & Situational Awareness

The closed loop PRM provides situational feedback to a human perceptual system which

optimizes the decision-making process. This is viewed as a "meta-level" information

management system for resource control that continuously updates domain knowledge as

it is acquired.

The implementation challenges related to data fusion are often specific to the

platform on which the system is integrated. Some of the many platforms choices include

satellites, manned aircraft, unmanned vehicles, surface ships, submarines, fixed land

systems, mobile land systems and man-pack systems. These systems are driven by their

own physical and information constraints and therefore need to be accommodated for in

this manner. In any functional analysis of a given platform, due consideration need be

given to the lowest-level notions of form and objective.
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Figure 6-4 IR Sensor, Functional Decomposition

The system above has been decomposed to the lower-level, base functions such as gain

compensation, signal processing and automatic target recognition, per the design loop of

Figure 6-4. This type of analysis offers the advantage of allocating function at the sub-

system level, where performance can be more directly measured.

Test and evaluation (T&E) is a key element of the implementation process.

Along with simulation, it offers the designer a reduction of costs compared to military

exercises, flight test programs and operational evaluations. Furthermore, it enhances

overall security (data is analyzed in a controlled environment). Hall and Llinas (1997)

have constructed a framework for Test & Evaluation which prioritizes roles based on

pertinent mission, function, platforms, geographies and customer organizations. This

model is further refined by evaluating how fusion performs over the platform "space," i.e.

from single-platforms to multi-platforms, under highly-controlled, loosely managed and

fully autonomous scenarios.
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6.2 Process Selection: Comparing Fusion Levels

Table 6-1 (adapted from Luo and Kay, 1990), sets forth criteria that can be used in

selecting a fusion level for a given application. These characteristics form part of the

selection process that can be used in screening for an appropriate concept. The table is

divided among four levels of data that approximately correspond to the JDL fusion levels.

The criteria are based on the type of sensory information being generated -individual

signals, images, features, etc. The table goes on to characterize the content of such

information. The degree and means of registration are also important factors, as the

spatial position of sensors determines their ultimate footprint and target-detection space.

Overlapping footprints ensure that time-dependent phenomena such as a target motion

are observed by all sensors at the same time. The criteria in Table 6-1 can then be used to

select the type of architecture which factor into the fusion system design, i.e., central or

sensor-level processing. The main difference between these two is that the former

processes sensor reports directly, and in one place, requiring a more complex fusion

processor. This helps to achieve better accuracy when the multi-sensor data is not

generated by independent phenomena. Sensor-level fusion is preferred when the

signatures are independent. There is more cueing of sensors with others in the suite,

where the optimization of each sensor's signal is specific to the transducer design. Since

discrimination among targets occurs locally, before data entry, it reduces the load on the

fusion processor (Klein, 1999).

The next step in concept selection is known as the down-select phase. During

down-select, potential applications are screened according to their "fit" with the JDL

processing criteria. This method was developed by Stuart Pugh in the 1980's and helps
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design teams to decide on optimal strategies for their product goals. A Pugh concept

selection matrix is provided in the Appendix. It ranks applications based on the

processing requirements of the data.
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Characteristics Signal Level Pixel Level Feature Level Symbol Level

Type of Sensory Single or multi- Multiple images Features Symbol
information dimensional extracted from representing

signals signals and decision
images

Representation Low Low to Medium Medium High
level of
information
Model of Random variable Stochastic process Non-invariant Symbol with
sensory corrupted by on image or pixels geometrical associated

information uncorrelated with form, orientation, uncertainty
noise multidimensional position and measure

attributes temporal extent
of features

Degree of
registration

* Spatial High High Medium Low

" Temporal High Medium Medium Low

Means of
registration

" Spatial Sensor co- Sensor co- Geometrical Spatial attributes
alignment alignment or transformations of symbol

shared optics Temporal
Synchronization Synchronization Synchronization attributes

* Temporal or estimation
Fusion method Signal estimation Image estimation Geometrical and Logical and

or pixel attribute temporal statistical
combination correspondence, inference

and feature
attribute
combination

Improvement Reduction in Increase in Reduced Increase in truth
due to fusion expected performance of processing, or probability

variance image processing increased feature values
tasks measurement

accuracy, and
value of
additional
features

Type of Central-level Central-level Central-level or Hybrid-level
Architecture fusion fusion sensor-level fusion

(decentralized) (combines both
central and
decentralized)

Table 6-1 Comparison of Various Fusion Levels
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6.3 Tracker-Correlator Architectures

There are currently 3 general synthetic architectures for data processing which

exist today, centralized, decentralized (autonomous) and hybrid architectures. Refer to

Figures 6-5 through 6-7, (Hall and Llinas, 1997).

A. CENTRALIZED FUSION
Detection & Sensor Controls
Estimation

A Prsproceusing Gating and Control Parameters

Sensor Preprocessing Data c CSotaot
Alignent & Correlation Comporite
A1ssoition Fitrn

A II V...Trscking &
Is as atn Classification

Target Classification
Pro blity of Successful
Declarations

Figure 6-5 Centralized Fusion Architecture

The advanced combat direction system (ACDS) is an example of the centralized fusion

architecture (Waltz and Llinas, 1990). The system has external interfaces with existing

sensors which maintain different reporting protocols and data links. Acoustic, IFF, ESM

and Radar send sensor-level tracks and target reports to the track management processor

(indicated by the dashed line in Figure 6-5). These reports are fed into the ACDS

database which contains tactical status, intelligence, maps, doctrine and tracks. Each

track-to-track association or identification from the arrival of new observations requires

retrieval of the data from a central decision support processor (not shown).
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The common thread underlying these location-driven architectures is the notion of

a progressive data flow from sensor set (A, B...N) through detection, classification and

end-state. Under the centralized scheme, the preprocessed output is collected into the

data alignment / association through coordination transformation. Raw data from a

multi-target environment is correlated and then transmitted to the central processing

facility. A variant of this type of fusion is centralized fusion of feature vector data. This

construct drives ambiguity out of the system by extracting feature vectors from an image.

The feature-based method is one of many types of approaches to the object recognition

problem.

In autonomous or decentralized fusion architecture, Figure 6-6, individual

tracking and classification functions are assigned to each sensor output.

B. AUTONOMOUS FUSION
Detection & Estimation Sensor Controls

CPr e r ogI -s-ifgc a t io n G a t i n g a n d C o n t r o l P a r a m e t e r s g

Targe

Sesr Preprocessing Clasi ctIon *O tan& Correlation Compost!
tion Filtering

Sensor P racking

Preprocessing C * Ickin &mC- cation

I . Target ClassificationProbability of Successful
I Declaration

Figure 6-6 Decentralized Fusion Architecture

This effectively removes the fusion process (the track management processor) further

downstream. Rather than performing sequential estimation at the data level (as in the

centralized case), this architecture provides state vector estimation of position and

velocity for an object. Although they cull from single-source data, decentralized systems
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tend to degrade the output because there is information loss between the sensor and

fusion process. An example of a decentralized system is a robot navigation system that

can autonomously navigate through a continuous state-space through selective switching

between sensors, actuators and their effectors (legs, wheels, joints and grippers).

Intelligent agents such as robots might be designed factoring some goal-state into its

decentralized architecture.

The third generic tracker / correlator architecture is a hybrid system, Figure 6-7, which

combines state-vector and data-level fusion processes. This confers more flexibility than

the previous two cases but imposes a switching cost. For instance, a dense target

environment or complex signal propagation may require centralized fusion for a more

accurate assessment of identity. The availability of sensors may constrain the user to

select autonomous fusion; any changeover between the two will impose selection and

monitoring costs, as well as communication requirements which need to be carefully

weighed against the expected benefit. In the domain of robotic software architectures,

the hybrid tracker/correlator would be used to combine elements of reactive and

deliberate control. Reactive control refers to sensor-driven control that may be used for

low-level decision making processes, whereas deliberate (path planning) control refers to

global, executive decision-making. Both are necessary for the operation of unmanned

land or air vehicles as well as planetary rovers (Russell & Norvig, 2003).
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C. HYBRID FUSION

Seno Preprocess ---ng C ction Gating and Control Parameters
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Da , lta C *siat& State&i L'Preprocessing Ciet n Agment a Correlation Cltin

Seso Ib CFN4poingS cesu
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r g Detection

Farbiesion Aramter
Sensor Preproce aing Trair ng e t Clasification

futons.Inte igue 6-7PM tHeybrd uion heArchitectures r h a aao

measurement sets (centralized fusion), locally fused data (track file, or decentralized

approach) and raw/preprocessed data (hybrid approach).

The advantages of the three architectures are summarized below (Waltz and

Llinas, 1990). Centralized fusion requires high bandwidth buses to pass the high-rate raw

data and powerful central processing capability. The autonomous approach tailors the

track and classification functions to individual sensor outputs, at the expense of an

accurate position estimate. Finally, the hybrid approach selectively transitions between

the central and autonomous processes as the situation requires.

Real world architectures are designed to incorporate more than just the tracker-correlator

aspect highlighted above, which represents only 20% of the software development effort

for a fusion system, based on lines of code as a metric (Waltz & Llinas, 1990). Other
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representations exist for the identity component of Level 1 fusion. Levels 2 and 3 fusion

adopt, among others, the blackboard approach described in the following section.

Finally, Level 4 fusion models functions pertaining to communication, database

management, human factors and executive control.
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6.4 Hierarchical Architectures

A blackboard description of an object hierarchy is an excellent model for building

semantic knowledge databases and networks. Categories are the building blocks of any

large scale knowledge representation scheme (Russell & Norvig, 2003). The blackboard

adaptation in Figure 6-8 (Waltz and Llinas, 1990) illustrates the potential precursor to a

semantic network for target identification.

The blackboard approach uses categorical reasoning to relay the notion of

inheritance and parallelism.

Obiect

Target

Acquisition } Clutter Target

Airborne Ground

Threat Non-threat

Attacking Attacking
Rotary Wing Fixed Wing

Non-threat Threat
Target

Identity

Active Air

Tracked Wheeled Defense Unit

Tank BMP Tank Jeep Wheel Track

Types

Figure 6-8 Blackboard Processing Architecture
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The blackboard approach presents L2 (Situation) or L3 (Threat) assessments for an air-

land battle. It confers flexibility to the designer through static and dynamic

representation models that are based on independent, modular knowledge sources. As

rule-based expert systems, they are a useful construct for exploratory research and

incremental development of a problem. Finally, hierarchical decompositions help deal

with the problem of complexity in mission design by reducing the number of activities

through progressive levels of detail. Object-oriented representations in action

decomposition are stored in plan libraries- or databases- that can be accessed to fit the

needs of the mission. However, hierarchical methods such as blackboard architectures do

not always decompose problems correctly. In artificial intelligence (AI), the inability to

capture everything in a set of logical rules is known as the qualification problem (Russell

and Norvig, 2003). Consequently, blackboard architectures can be expensive to build,

modify and operate.
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6.5 Applications

Command, Control, Communications, Computers and Intelligence Surveillance &

Reconnaissance systems (C4ISR) provide mature, highly evolved examples of data

fusion, but they are not the only systems which make use of data fusion concepts. The

objective of a C4ISR system is to provide a comprehensive view of the tactical and

strategic battle space through a variety of technology- and intelligence-based media. The

systems are composed of software, hardware and human elements which work in concert

to support decision-making processes. Fulfillment of C4ISR objectives draws heavily on

the utilization of sensor data. Increasingly, fusion design needs to account for the

transition from platform-based systems to network-centric operations.

Sense & Respond is an emerging domain in military and commercial logistics

with powerful implications for the fusion paradigm. It is a managerial framework that

was originally proposed by researchers at IBM (Lin et al, 2005), based on the dynamic of

change in business, security and technology. It is comprised of a "value net" of self-

synchronizing partnerships which form and dissolve to adapt to demands in the

environment. Elements of this value net have been evolved, specifically the triumvirate

known as operational, logistics and intelligence command, for military and defense

scenarios. SRL almost mirrors the data fusion process itself, by observing patterns,

detecting issues, and performing root-cause analysis.

Finally, data fusion in robotics plays an important role in factory automation

processes, such as material handling, part fabrication and assembly. This can appear in

the form of cooperative systems, dexterous hands, and tele-operation for mining and

manufacturing.
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Biometrics offers interesting case applications of data fusion principles.

Biometrics are used in the security or identification sectors, where the systems draws on

an attribute database to make comparisons and declarations about ownership or identity.

This is characterized by a subset of the processes used in the JDL model of data fusion:

object identification (collection), collation and evaluation. The final stage of processing

uses relatively simple decision rules, to either accept or reject the user based on the

attribute data on record.

The Haughton-Mars expedition to the Canadian Arctic, conducted by MIT in

2005, synthesizes some of these and other considerations in a complex data fusion system

design. Among other objectives, the team set out to determine the efficacy of RFID

technology for intelligent agent and asset tracking in support of exploration logistics (de

Weck and Simchi-Levi, 2006). The International Space Station (ISS) is currently

dominated by manual tracking and barcodes, so the hypothesis was that automated, web-

accessible systems could offer potential savings in time and effort for inventory

management.

Though the concept of RFID tagging was simple, it led to complications with

respect to optimal antenna installation, and tracking of liquids and metallic items. The

system was equipped with both passive battery-run and active tagging, leading to

interference in the 915 MHz and 2450 MHz bands. This implied that the range data

could be reliable under more powerful, strictly active RF sensors. This would, of course,

require the proper level of EMI shielding of the agents, containers and ATVs being

tracked.
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In a separate part of the experiment, the team developed functional Class of

Supply (COS) ontologies to supplement the Cargo Category Allocations Rates Table

(CCART) used by NASA as well as supply classifications used by NATO and the US

Military. This was borne out of the need to capture all major items for the new space

exploration initiative not already listed in the CCART, such as categories for propellant,

fuels and surface transportation vehicles needed for remote science stations.

Dynamically indexing these remote logistics categories to a generic, upper level

ontology that is web-enabled could vastly improve the tracking operation. The sensor

data being fused could help teams to not only make operational adjustments to the

expedition (for instance, regarding ATV usage), but also improve the quality and

relevance of the experiments. For instance, an asset library that is hyperlinked to the web

could inform agents of similar expeditions with results/findings openly accessible to the

participants. Semantic web links would ensure that there is no violation in naming

conventions as new logistics applications are discovered. Connectionist architectures

would enable the Class of Supply and other ontologies to optimally evolve with remote

science networks, catering to the diversity of exploration missions around the world.

Table 6-2 adapted below (Hall and Llinas, 1997) lists some relevant domains for data

fusion, including applications pertaining to RFID / asset management.
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Table 6-2 Applications for Data Fusion

94

Application Inferences Sought by Primary Surveillance Sensor
Data Fusion Process Observables Volume Platform

Condition- 0 Detection, * EM signal Microscopic * Ships
based characterization of * Acoustic to hundreds of * Aircraft
maintenance system faults * Magnetic feet * Factory

0 Recommendations 0 Temperature
for corrective * X-Ray
actions * Vibration

Robotics 0 Location, ID of * TV Microscopic * Robot body
obstacles, and 0 Acoustic to tens of feet
objects to be - . EM
manipulated * X-Rays

Medical 0 Location, ID of * X-Rays Human body * Lab
diagnostics tumors and disease * NMR volume * Equipment

* Temperature
J IR

* Visual inspect
* Chem/bio data-

Environmental * Location, ID and * SAR Hundreds of * Satellite
monitoring evolution of natural o Seismic miles (site * Aircraft

phenomena * EM radiation monitoring) * Ground
* Core samples * Subsurface

Intelligent * Location of position, 0 Acoustic Tens of feet to * Satellite
Transportation state estimation / ID * Vibration miles * Doppler
Systems * Optical * GPS

* Range * INS

RFID Systems * Location of agents, * RF Dozens of * Human
assets, and manually * Range feet (30-60 ft) * Warehouses
kept inventory * Trucks

* All-terrain
vehicle



CHAPTER 7: CONCLUSIONS

This thesis has introduced some of the formal process models for data fusion which have

been developed by the remote sensing and defense communities. An overview of sensor

and sensor platforms was described, as they relate to the concepts and challenges of

multi-sensor data fusion.

The C4ISR example demonstrated some of the major processes and constituents

of a data fusion system. The data fusion development cycle can be matched to that of

other similar system engineering cycles, beginning with clearly defined mission

requirements, functional objectives and sensor requirements analysis. The inputs are

brought together during the design synthesis phase, and result in detailed specifications of

the fusion system.

Multi-sensor systems were compared to single sensor systems, and shown to

offer improved detection performance, especially under suppressed target signatures.

Some mathematical techniques for data fusion were also presented in this thesis. For

instance, the Kalman approach to linear filtering is applicable to the fusion of numerical

properties, Bayesian methods were demonstrated for the updating of detection

probabilities and Boolean algebra was used to illustrate that nested sensor confidence

levels result in a lower detection probability than non-nested confidence levels in multi-

sensor systems.

The role of fusion in ontological engineering was also discussed, specifically as it

relates to knowledge databases for fusion. Ontology reuse can be a major facilitator for

creating blackboard architectures for knowledge representation.
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Systems engineering processes can play an important role in structuring and

implementing complex fusion designs, beginning with concept selection. A Pugh

Concept Screening Matrix was developed (See Appendix) which ranked several potential

application areas for their adaptability to C4ISR-type fusion. The medical diagnostics

domain was found to be the most strongly correlated with the JDL data processing

criteria. The data may be simply gathered through visual observation, thermometers, etc,

or processed using sophisticated sensor machines, based on nuclear magnetic resonance,

acoustic imaging and X-ray imaging. In either case, there is a clear demand for the high-

tech application of fusion software algorithms and hardware sensing devices in this

expanding and important field.

Future research in data fusion can address how Object-Process Methodology can

be used to better understand problems related to concurrency control in localized sensors

and distributed sensor networks. It may also include an application of the fusion models

developed for commercial implementation in vehicle health monitoring, marketing

science and logistics or supply chain management. Additional research is required into

designing data fusion test-beds so that some of the tracker-correlator architectures

discussed in this thesis can be evaluated and verified for performance. Finally, research

can be undertaken in developing robust ontologies that will enable the benefits of multi-

sensor fusion to be more widely accessible through the Semantic Web.
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Appendix

Concepts
Selection Criteria C 4

1SR Remote Medical Intelligent Condition
(reference) Sensing Diagnostics Transportation Monitoring

Processing Systems
Level 1
Detection 0 0 + + +
Orientation 0 0 0 + -
Classification 0 + + - +
Identification 0 + + + +

Level 2
Object Aggregation 0 + + - +
Event & Activity Aggregation 0 0 + - 0
Contextual Interpretation &

Fusion 0 + 0 - 0
Level 3

Capability Estimation 0 - 0 - -
Prediction of Enemy Intent 0 - 0 - -
Identification of Threat 0 0 + - +
Multiperspective Assessment 0 + 0 0 +
Offensive & Defensive Analysis 0 0 - - 0

Level 4
Evaluations 0 + + + +
Fusion Control 0 0 0 + 0
Source Requirements

Processing 0 + 0 + +
Mission Management 0 0 0 + 0

Sum +'s 0 7 7 7 8
Sum O's 16 7 8 1 5
Sum -'s 0 2 1 8 3
Net Score 0 5 6 -1 5
Rank 3 2 1 4 2

Continue? Yes Yes Yes No Yes

This Pugh Concept Selection screen is designed to weight application areas against the

processes in the JDL implementation model. The baseline, reference case is the C4 ISR

system; all other selection criteria are comparatively ranked against the reference case (+

or -).

The method was developed to help narrow concepts quickly and to improve them
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in a structured manner. As we can see, it is an imperfect approach - according to the

ranking, the selection matrix above would not have us develop a fusion system for an

intelligent transportation system. However, all indicators point to this being a worthy

implementation of data fusion. Kobayashi et al. (1994) proposed the Kalman approach

for fusing measurement data from differential GPS, wheel speedometer and optical fibre

rate gyro. And Mirabadi and Schmid (1996), evaluated train speed and measurement

through a combination of GPS, INS and tachometers.

Medical diagnostics features highest as a JDL implementation option, which

means that it is best suited to leverage the algorithms and processes from the C4ISR

reference case. The example cited from Luo et al. (2002) is the case-based data fusion

methods used to support clinical decision support. The detection and classification

process might involve a cardiac event including ventricular and atrial activity. The

process being controlled referred to automatic rhythm monitoring through integration of

electrocardiogram and hemodynamic signals.

Although it is a quantitative tool for comparing concepts, there is inherent

subjective error in Pugh methods. In the example above, sources of error have mainly to

do with the bias of the selection criteria to the remote sensing and defense lexicon of data

fusion. This highlights the importance of developing upper-level ontologies which can

grasp the concepts and processes that underpin the widest possible range of fusion

applications.
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