17 research outputs found

    A factorization approach to inertial affine structure from motion

    Full text link
    We consider the problem of reconstructing a 3-D scene from a moving camera with high frame rate using the affine projection model. This problem is traditionally known as Affine Structure from Motion (Affine SfM), and can be solved using an elegant low-rank factorization formulation. In this paper, we assume that an accelerometer and gyro are rigidly mounted with the camera, so that synchronized linear acceleration and angular velocity measurements are available together with the image measurements. We extend the standard Affine SfM algorithm to integrate these measurements through the use of image derivatives

    A factorization approach to inertial affine structure from motion

    Full text link
    We consider the problem of reconstructing a 3-D scene from a moving camera with high frame rate using the affine projection model. This problem is traditionally known as Affine Structure from Motion (Affine SfM), and can be solved using an elegant low-rank factorization formulation. In this paper, we assume that an accelerometer and gyro are rigidly mounted with the camera, so that synchronized linear acceleration and angular velocity measurements are available together with the image measurements. We extend the standard Affine SfM algorithm to integrate these measurements through the use of image derivatives

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    Path Planning for Motion Dependent State Estimation on Micro Aerial Vehicles

    Get PDF
    Abstract — With navigation algorithms reaching a certain maturity in the field of mobile robots, the community now focuses on more advanced tasks like path planning towards increased autonomy. While the goal is to efficiently compute a path to a target destination, the uncertainty in the robot’s perception cannot be ignored if a realistic path is to be computed. With most state of the art navigation systems providing the uncertainty in motion estimation, here we propose to exploit this information. This leads to a system that can plan safe avoidance of obstacles, and more importantly, it can actively aid navigation by choosing a path that minimizes the uncertainty in the monitored states. Our proposed approach is applicable to systems requiring certain excitations in order to render all their states observable, such as a MAV with visual-inertial based localization. In this work, we propose an approach which takes into account this necessary motion during path planning: by employing Rapidly exploring Random Belief Trees (RRBT), the proposed approach chooses a path to a goal which allows for best estimation of the robot’s states, while inherently avoiding motion in unobservable modes. We discuss our findings within the scenario of vision-based aerial navigation as one of the most challenging navigation problem, requiring sufficient excitation to reach full observability. I

    Cooperative Visual-Inertial Sensor Fusion: Fundamental Equations

    Get PDF
    International audienceThis paper provides a new theoretical and basic result in the framework of cooperative visual-inertial sensor fusion. Specifically, the case of two aerial vehicles is investigated. Each vehicle is equipped with inertial sensors (accelerometer and gyroscope) and with a monocular camera. By using the monocular camera, each vehicle can observe the other vehicle. No additional camera observations (e.g., of external point features in the environment) are considered. First, the entire observable state is analytically derived. This state includes the relative position between the two aerial vehicles (which includes the absolute scale), the relative velocity and the three Euler angles that express the rotation between the two vehicle frames. Then, the basic equations that describe this system are analytically obtained. In other words, both the dynamics of the observable state and all the camera observations are expressed only in terms of the components of the observable state and in terms of the inertial measurements. These are the fundamental equations that fully characterize the problem of fusing visual and inertial data in the cooperative case. The last part of the paper describes the use of these equations to achieve the state estimation through an EKF. In particular, a simple manner to limit communication among the vehicles is discussed. Results obtained through simulations show the performance of the proposed solution, and in particular how it is affected by limiting the communication between the two vehicles

    Outlier-robust manifold pre-integration for INS/GPS fusion

    Get PDF
    We tackle the INS/GPS sensor fusion problem for pose estimation, particularly in the common setting where the INS components (IMU and magnetometer) function at much higher frequencies than GPS, and where the magnetometer and GPS are prone to giving erroneous measurements (outliers) due to magnetic disturbances and glitches. Our main contribution is a novel non-linear optimization framework that (1) fuses preintegrated IMU and magnetometer measurements with GPS, in a manner that respects the manifold structure of the state space; and (2) supports the usage of robust norms and efficient large scale optimization to effectively mitigate the effects of outliers. Through extensive experiments, we demonstrate the superior accuracy and robustness of our approach over filtering methods (which are customarily applied in the target setting) with minimal impact to computational efficiency. Our work further illustrates the strength of optimization approaches in state estimation problems and paves the way for their adoption in the control and navigation communities.Shin-Fang Ch'ng, Alireza Khosravian, Anh-Dzung Doan and Tat-Jun Chi

    On-Manifold Preintegration for Real-Time Visual-Inertial Odometry

    Get PDF
    Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time, this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a \emph{preintegration theory} that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the \emph{maximum a posteriori} state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a \emph{structureless} model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular \VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.Comment: 20 pages, 24 figures, accepted for publication in IEEE Transactions on Robotics (TRO) 201

    Cooperative Visual-Inertial Sensor Fusion: the Analytic Solution

    Get PDF
    International audienceThis letter analyzes the visual–inertial sensor fusion problem in the cooperative case of two agents, and proves that this sensor fusion problem is equivalent to a simple polynomial equations system that consists of several linear equations and three polynomial equations of second degree. The analytic solution of this polynomial equations system is easily obtained by using an algebraic method. In other words, this letter provides the analytic solution to the visual–inertial sensor fusion problem in the case of two agents. The power of the analytic solution is twofold. From one side, it allows us to determine the relative state between the agents (i.e., relative position, speed, and orientation) without the need of an initialization. From another side, it provides fundamental insights into all the theoretical aspects of the problem. This letter mainly focuses on the first issue. However, the analytic solution is also exploited to obtain basic structural properties of the problem that characterize the observability of the absolute scale and the relative orientation. Extensive simulations and real experiments show that the solution is successful in terms of precision and robustness
    corecore