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Outlier-Robust Manifold Pre-Integration for INS/GPS Fusion

Shin-Fang Ch’ng, Alireza Khosravian, Anh-Dzung Doan and Tat-Jun Chin

Abstract— We tackle the INS/GPS sensor fusion problem for
pose estimation, particularly in the common setting where the
INS components (IMU and magnetometer) function at much
higher frequencies than GPS, and where the magnetometer and
GPS are prone to giving erroneous measurements (outliers) due
to magnetic disturbances and glitches. Our main contribution is
a novel non-linear optimization framework that (1) fuses pre-
integrated IMU and magnetometer measurements with GPS,
in a manner that respects the manifold structure of the state
space; and (2) supports the usage of robust norms and efficient
large scale optimization to effectively mitigate the effects of
outliers. Through extensive experiments, we demonstrate the
superior accuracy and robustness of our approach over filtering
methods (which are customarily applied in the target setting)
with minimal impact to computational efficiency. Our work
further illustrates the strength of optimization approaches in
state estimation problems and paves the way for their adoption
in the control and navigation communities.

I. INTRODUCTION

Pose estimation is integral to robotic navigation and con-
trol systems. Recent works and surveys suggest that this
problem is a subject of active research [1]-[4]. Generally,
micro-electromechanical Inertial Measurement Units (IMU)
are favourable for pose estimation on robotics systems due to
the IMU’s low weight, power consumption, and cost. IMUs
(that give angular velocity and acceleration measurements)
are typically combined with 3-axis magnetometers (that give
partial pose information) to realise Inertial Navigation Sys-
tems (INS) that are able to give a richer set of measurements
for pose estimation. However, low cost INS suffer from high
noise levels and time-varying biases. Estimating robot pose
based on INS dead reckoning is thus subject to drift [5].

To mitigate INS drift, a common solution is to fuse
it with a GPS navigation unit that provides velocity and
position measurements [6]. However, low cost GPS units are
vulnerable to glitches and measurement errors, especially in
areas with poor line-of-sight to the GPS satellites [7]. In
fact, magnetometer measurements can also be affected by
magnetic interference arising from the robot motors or the
environment, leading to erroneous measurements [8]. Hence,
a significant challenge in INS/GPS fusion is to exploit the
relative strengths of the sensors to mitigate drift, without
being biased by measurement errors or outliers.

Many sensor fusion methods have been developed and
successfully deployed in navigation systems [6], [9]-[16].
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Stochastic filtering techniques, especially Extended Kalman
Filtering (EKF), are arguably the most common approaches
for INS/GPS fusion due to their well-understood princi-
ples [17]. However, outliers will invariably lead to poor
outcomes in standard EKF, which assumes that all measure-
ments are trustworthy [7], [18], [19]. Generally speaking,
designing an EKF variant that is outlier-robust and asymp-
totically stable for a problem with nonlinear dynamics and a
state space with a Lie group structure—characteristics of our
INS/GPS fusion problem—has proven to be challenging [5].

A. Handling outliers in stochastic filtering

There have been efforts to improve the robustness of clas-
sical Kalman Filtering (KF) towards outliers. The simple and
common technique of discarding any observation that differs
from the predicted value by a predefined threshold [19] is
prone to false negatives, which can lead to the (false) build up
of estimation variance and eventually poor estimates. More
principled approaches developed for outlier handling in KF,
such as the usage of alternative noise models [20] and Huber
technique to KF residuals [21], may negatively affect the
stability of the system if directly applied to INS/GPS fusion,
due to the Lie group structure of the state space [2], [11].

B. Stochastic filtering on Lie groups

Recently, there has been an attention on systematically
designing KFs that function intrinsically on Lie groups [3],
[11]. The aim is to properly observe the underlying symmetry
of the problem to enhance the convergence and stability
of the filter. These efforts have led to the development of
invariant KFs [11] that exhibit stronger stability properties
than ad-hoc adaptations of classical KFs, especially when
applied to INS/GPS fusion. However, these invariant filters
do not consider measurement outliers in their design. Also,
robustifying the invariant filters via the ad-hoc or heuristic
approaches alluded to above seems challenging, due to the
complex design and structure of these filters.

C. Nonlinear optimization in state estimation

In a parallel development, impressive results from Visual
SLAM have shown that state estimation approaches based on
nonlinear optimization (specifically nonlinear least squares)
consistently outperform stochastic filtering methods, given
the equivalent amount of computing resources [22]-[25]. In
fact, nonlinear optimization can readily be brought to bear
on Lie groups, and can more conveniently attain robustness
against outliers by using robust norms. Yet another advantage
is the availability of “generic" open source optimization
packages [26]—[28] that simplify implementation.



Unsurprisingly, enthusiasm for optimization-based ap-
proaches have begun to grow in the control community, who
have traditionally used stochastic filtering approaches. The
recent works [29]-[32] have in fact targeted inertial naviga-
tion applications. However, these works have not considered
scenarios with outliers or have systematically handled asyn-
chronous sensor modalities (the latter is a fundamental weak-
ness of optimization-based state estimation approaches [25]).
Techniques including downsampling/interpolation [30] and
averaging [31], [32] have been adopted by previous works
to tackle the latter problem. However, these relatively sim-
ple strategies to handle sensor asynchrony are problematic,
e.g, downsampling discards useful information, whereas the
interpolation approach is dependent on the choice of the
interpolation function (e.g. piecewise constant, polynomial,
linear) and characteristics of the data points. If there are
outliers in the data (which often occur in practice), the inter-
polated data creates even more problematic data. Moreover,
generating interpolated data for the slower sensor will lead
to a more expensive optimization problem as more variables
are required to be optimized. Also, crude averaging method
ignores the manifold structure of the state space.

D. Our contributions

We develop a novel non-linear optimization technique to
address the state estimation problem in the INS/GPS fusion.
The primary contribution of our work is the proposal of a
sliding-window optimization technique which; 1) computes
an accurate 6DoF robot trajectory, 2) concurrently com-
pensate for the inherent IMU bias, 3) correctly fuse mea-
surements from the three complementary but asynchronous
sensors (IMU, magnetometer and GPS), by adapting the pre-
integration approach [25] to derive the error terms associated
with IMU and magnetometer that enable them to be pre-
integrated across time and in a manner than respects the Lie
group structure. Also, leveraging the ability of pre-integration
theory to perform recursive optimization can significantly
reduce the computational complexity. Our work can be seen
as an extension of the pre-integration theory for visual-
inertial (camera and IMU) SLAM [25] to INS/GPS fusion.

Moreover, we also explore the usage of robust norms in
nonlinear least squares to effectively handle outliers from the
measurements (particularly the GPS outliers), which can be
easily affected by environmental factors. Our experimental
results demonstrate the superior accuracy and robustness of
our method over existing filtering techniques that solve the
equivalent problem, i.e., INS/GPS fusion in the absence and
presence of the outliers.

Note that the works closest in spirit to ours [29]-[32]
have not considered outliers or have systematically handled
asynchrony in the measurements, as described in Sec. I-C.

II. PROBLEM FORMULATION

Consider a rigid body is equipped with an IMU, a GPS,
and a magnetometer. The body-fixed frame coincides with
the IMU frame, which is denoted by b. We denote the
North-East-Down (NED) reference frame as w (the world

frame). Neglecting the effects due to the rotation of the
Earth, we assume that w is an inertial frame. The following
measurements are available:

o The IMU consists of a 3-axis gyro which measures the
angular velocity pw, and a 3-axis accelerometer that
measures the specific acceleration ,a. The sampling rate
of IMU is denoted by fimu.

e The GPS unit measures the linear velocity v and
position ,,p, sampled at rate fgps.

o The 3-axis magnetometer measures the magnetic field
of the earth in the body-fixed frame. The magnetometer
output, ,m provides partial information of the attitude
matrix, R}’ as:

ym = (RY)T,m, (1)

where ,m is the (approximately constant) magnetic
field of the earth at the position of the rigid body
expressed in the NED frame. We represent fy,g as the
sampling rate of magnetometer measurements.

Here we allow the sensor measurements to be asynchronous,
i.e., fimu, faps, fmag can be different. By default, we assume
that fimu > fmag > fops, which is sensible since in most
practical settings the sampling rate of IMU exceeds those of
the magnetometer and GPS [30].

A. The State

Our goal is to estimate the state at time ¢ when each GPS
measurement is received up to time 7. We define the state
of our system as:

X = (Rt, Vi, Pt, bt), (2

where (Ry, p:) € SE(Q3) is the pose of the rigid body,
vi € R3 is its linear velocity, and b; € R? is the
(unknown) gyroscope bias. Here, we propose a non-linear
least square formulation to minimize the sum of squared of
all measurement residuals, as:

T

1 . .
min 52 @ iU (ZIMUt— 415 Xy ) ||22i+ Iraps (zaps, X¢) ||22b
tT =1

~ 2 ~
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where riviu(ZiMut—t+1, X¢) Tops (Zapss Xy)» TB(2B, X;) and
I'Mag (ZMag, X¢) correspond to residuals for IMU, GPS, IMU

bias and magnetometer measurements, respectively. Detailed
definition of each residual term will be presented in Sec. III-
A, 1II-B, 1II-C, III-E.

B. IMU model

The IMU measures angular velocity and linear accelera-
tion of b frame relative to w frame. We assume that raw
gyroscope measurements, pw is affected by a slowly varying



sensor bias b9 [25]: !
bW = pwy + bY “4)
- 'wg)v (5)

where yw € R3 is the instantaneous angular velocity of b
relative to w expressed in coordinate frame b, ,a € R? is the
instantaneous linear acceleration of b relative to w expressed
in w, and ,,g is the constant gravitational acceleration vector
in w frame.
We employ the following continuous-time model [25]:
wI.) =wV, év = Révwa 5 (6)

5 T
badn = RE; (wan

wV = wa,

where the operator (.)x maps a vector in R? to its associated
skew symmetric matrix in s0(3).

Assuming that ,w and ,,a are constant between two time
instants n = % and n = ¢ 4+ 1, Euler integration is applied
to (6) to propagate the rigid body’s pose and velocity using
IMU measurements, yielding:

wPit1 = wPi + wVilt + S (R, + wg) At (Ta)
wVi+l = wVi + (Rzi béi + wg)At (7b)
b, = Ry, exp ((bd:l- - bf)xAt) , (7c)

where exp : 50(3) — SO(3). Although more sophisticated
numerical integrated methods can be employed [35]-[38],
our experiments suggest that the above Euler approximation
performs very well for our specific application where IMU
sampling rate is high [39].

C. Pre-integration of IMU on manifold

In this section, to simplify the presentation and without
loss of generality, we assume fgps = fumag and fGps, fMag <
fimu- We further generalize this in Sec. III-E.

We initialize a state variable (i.e. a node in the opti-
mization) of the form (2) each time we receive a GPS
measurement. Our goal in this section is to combine all of
the IMU measurements received between successive GPS
measurements and generate a single pre-integrated IMU
measurement. This pre-integration significantly reduces the
computational complexity of the least squares problem (3)
since it prevents re-incorporating all of the IMU measure-
ments at each iteration of the least-squares problem.

Assume that two consecutive GPS measurements are re-
ceived at times ¢t = ¢ and t = j. We, hence, initialize two
state variables (i.e. two nodes of the optimization) according
to (2) at times ¢ = ¢ and j. Inspired by [25], we summarize
all the IMU measurements between the two required states

and X; (to be estimated).
We denote the pre-integrate position velocity, and orienta-
tion from¢t =7 to ¢t = j by Aplﬁj7 AVHJ,ARZ;J,, respec-
tively, to represent the relative motion increments between

Xi

IWe opt not to incorporate the accelerometer bias compensation as
adding an unknown accelerometer bias to (5) (on top of the unknown gyro
bias) our problem setup would introduce unobservable modes, that in turn
might lead to instability/divergence of the optimization solution [33], [34].
This is of particular importance in our scenario where we consider mea-
surement outliers in addition to the bias.

two consecutive poses and velocities. The pre- integrated
delta components are initialized as Apli,, = 0,Av),, =
0, ARb _,,=L By taking b; as the reference frame, successive

appllcatlon of (7) between t = ¢ and ¢ = j yields

j—1
Apt =" [Av;At + AR" (a;)At? (8a)
t=i
Vit Z ARy (a (8b)
_]71
ARZZ_” = H (exp (‘:Jt - bg)xAt) ) (8¢c)
t=i
where ¢ is the discrete sample of one IMU measurement
within ¢ = [4,j], and At is the time interval between two

IMU measurements ¢ and ¢ + 1.

Note that (8) is now independent of the estimated states
which prevents re-calculation whenever pose and velocity
estimates change, except for the bias. To avoid repeating
the same equations in our paper, please find the 1st order
Taylor expansion presented in [25] for the recursive im-
plementations when the bias estimate changes. We remark
that adapting the pre-integration strategy [25] in tackling
asynchrony sensor modalities is conceptually superior over
[30]-[32].

ITI. MEASUREMENT RESIDUAL TERMS

In this section, we introduce our residual error terms of
IMU, GPS, bias and magnetometer measurements.

A. Preintegrated IMU Factor

Given the pre-integrated measurement model in (8), we
can further rewrite (7), which yields:

) . 1
AP?;J- = R (wPj — wPi — wVildtyj — 38 At;;?)
(9a)
Avl_)j = (Rw) (wVj — wVi — 8 Aty5) (9b)
ARbH, = (Ry)"Ry, (9¢)

where At;; = 7_. At.
We express the residual error rivu(zmmuimj, X;) =
T 9 e
[eApiH]WeAviﬂj’eARi*)j] € R” as:

1
€ap, ., = (Rﬁ)T(ij—wPi—wViAtij—gg At3;) (10a)
- Ap?;j
eav,.,; = (RW)T(wvj — wVi — g At;;) — Av?f'_)j (10b)
ear..,= a ( Ry (Ry)TAR] ), (100)

where the notation q,(R) € R3 denotes the vector part of
the quaternion representation of R € SO(3) [5], [40].

B. GPS measurement residual

GPS measurements, namely ., v, and ,,p; received at time
t =1 have direct relationship with the estimated states. Hence,
we can construct the algebraic equation for the residual error
raps(zops, X:) = [ev,,ep,]” € RC att =i as:

€vi =wVi —wVi, €p;, = wPi ~ wP;- (11)



C. Bias model

Since we assume the gyro measurement in the IMU is
corrupted with a slow time-varying bias, this unknown bias
must be estimated and compensated to achieve asymptoti-
cally accurate estimation [2], [5]. Here, we model the bias
as a "random walk", resulting from the integration of the
white noise.

by = b9, (12)

By integrating (12) over successive discrete time samples ¢ =
[, 7], we can form the bias residual error term, rg(zg, X;) =
ep; € R? as:

= b? - bY. (13)

D. Magnetometer measurement residual

Given the magnetometer model presented in (1), we can
naturally form the residual error of magnetometer measure-
ment at time ¢ = ¢ as:

I'Mag (ZMag, X¢) = €M, = pI; — (Rii)TwI(flu (14)

where ey, € R3.

E. Incorporating intermediate magnetometer measurements

In Sec. II-C, we assume that the sampling rate of mag-
netometer is the same as the sampling rate of GPS, such
that fyvae = fops. Nevertheless, in most practical scenarios,
we have fumae > fops. In this section, we generalize our
proposed optimization framework to allow fmae > fops.
Inspired by the recursive predictor theory proposed by [2,
Chapter 4] that compensates delays and sampling effects in
pose estimation, we propose an approach that allows the
incorporation of sensory data with various sampling rates
into the least-squares optimization.

Assume that two consecutive GPS measurements are
received at time ¢ = ¢ and ¢t = j, and a magnetometer
measurement pmy is received at the time ¢t = k where
i < k < j. The nodes X, and X; exist in the optimization,
but the node x;, does not exist because no GPS measurement
is received at time k. Hence, it is not possible to use the
magnetometer residual as proposed by (14). Instead, we,
use (9c) to obtain R“’ = R“’ ARb o where ARb . is
the pre-integrated orlentatlon wh1ch can be computed using
gyro measurements from ¢t = ¢ to ¢ = k according to (8c).
Replacing for ;mj = Rg;fwncik and using (14), we obtain

k— (Rg;)Twn(ik
T [e]
bmk - (ARb ) (Rii)Twmk.

It is now possible to implement the residual term (15) in the
least-squares to incorporate the intermittent magnetometer
measurements ;my;. Note that the residual error (15) relies
on the available state ; rather than the unavailable state
X - A similar methodology to the approach presented above
has been proposed in [41] to mitigate asynchrony between
IMU and LIDAR measurements, albeit in a different problem
setup to the present paper. We remark that this concept can
be employed to tackle GPS measurement delay problem. For

emM,; = bfl’l

15)

bisk

slower GPS measurement rate, one can also consider to apply
associated concept to perform the state estimation at a higher
sampling rate to achieve real-time compliant applications.

IV. HANDLING OUTLIERS

In practice, sensor measurements are often corrupted by
outliers. From statistical point of view, an outlier is a mea-
surement which significantly deviates from other candidates
of the distribution in which it is sampled. Realistically,
outliers are often derived from unmodeled factors or bizarre
causes, such as temporary sensor failure, erroneous measure-
ments or transient environment disturbance.

Generally, least square function is highly vulnerable to
these outliers as a single outlier can drastically pull the
estimation arbitrarily far away from the true solution [42].
This is of particular crucial importance for the INS/GPS
fusion since high amplitude GPS glitches can often occur in
practice, e.g. due to blockage of signals or multi-path. Also,
sudden magnetic disturbance may occur in aerial vehicles,
e.g. while passing from the proximity of power lines, causing
temporary outliers in the magnetometer readings.

Since we are targeting a setting where we have a sequence
of time-dependent variables (pose, velocity, bias) to estimate,
the interaction and evolution of the variables across time
are vital aspects of the problem. Therefore, our approach
determine the outliers by exploring the M-estimator to im-
plicitly alleviate the influence of a sequence of potentially
erroneous GPS and magnetometer measurements. Instead of
minimizing the sum of squared residual, we, hence, propose
the use of robust norm function p(.) in our non-linear
optimization problem. Examples of such robust p(.) are Iy,
Huber and Cauchy norm [42]. Note that we robustify our
non-linear optimization problem using Cauchy norm (16)
which leads to (17).

p(z)

We propose the following robust non-linear least squares
function that fuse IMU, GPS and magnetometer which arrive
at different rates:

=log (1 + z). (16)

1 = o 12
minz E ey (Zivue—e+1, Xo) [ 75,
Xt

t=T—N

+ (Ivcrs (zoes. %15, ) + lIra(za, %) *5, (17

£ 5 (Il 2)1Py,) ).

pMy EA

where N indexes all nodes in the window and A denotes the
set of magnetometer measurement received.

To achieve real time processing time, the proposed method
optimizes over a bounded N size sliding window of recent
states. Note that each term of (17) is weighed by the sensor’s
noise covariances matrices 3. 2

Also, note that the optimization problem (17) can be
solved via generic least square solvers [26]-[28]. In Section

2In the case of IMU, readers can find the derivation of the pre-integrated
covariance in [25].



V, we demonstrate that the above mentioned robustification
successfully removes GPS outliers in real scenarios.

V. EXPERIMENTAL RESULTS

This section presents a number of experimental results
to compare our proposed robust state estimation approach
against a popular EKF implementation for Unmanned Aerial
Vehicles (UAV), namely Autopilot [43], as the baseline. Ow-
ing to the fact that Autopilot has a large community of users
including researchers, ordinary and commercial consumers,
we regard this baseline as the current industrial state-of-the-
art. The Autopilot EKF is designed with a threshold based
outlier rejection. The strategy in the EKF is to use the ratio
of the norm of the EKF innovation term to the observation
variance to determine if the candidate observation is within
a predefined confidence interval.

Besides that, we also regard [30]-[32] as the baseline
methods. Since none of these works have considered sce-
narios involving measurement anomalies, we examine the
sensitivity of their approaches (i.e., standard non-linear least
squares) towards outliers. Also, as explained in Section I,
their strategies in handling sensor asynchrony have fun-
damental weaknesses (vulnerable to wrong interpolation, a
much larger set of variables to optimize), therefore, this
aspect of their work is not tested in our experiments.

Since there is no openly available dataset that contains
both an accurate (independently measured) ground truth
information and all the sensory data that we require, i.e.
IMU, magnetometer, and GPS, we provide two sets of
experiments each aiming at illustrating different aspects of
the comparison.

The first set of experiment is performed on the EuRoC
Dataset [44]. The dataset is recorded indoor with a Micro
Aerial Vehicle equipped with a low cost MEMS IMU. Cor-
responding 6D ground truth poses are provided by a Vicon
system. Large IMU biases are observed in these datasets. The
purpose of this experiment is to compare the performance of
our proposed approach with the existing filtering method in
a controlled environment where ground truth is available.
The disadvantage of this dataset is that it does not con-
tain real magnetometer (presumably, due to high magnetic
disturbances indoor) and GPS measurements. To address
this problem, we synthetically generate magnetometer and
GPS measurements corresponding to the datasets, using the
available data.

The second set of experiment is performed on real flight
data using onboard sensory data log of actual autonomous
flights performed outdoor. This dataset contains all of the
required sensory data, including the magnetometer, but does
not include an independently measured ground truth infor-
mation (as it is outdoor). Despite the lack of ground truth to
evaluate absolute accuracy, this dataset permits a qualitative
comparison. Levenberg-Marquadt algorithm is applied to
solve the nonlinear optimization problem (17). In all of our
experiments, we use Ceres Solver [28].

A. Initialisation

For our proposed method, we assume no prior information
is available about the states and we initialise every new state
to the origin, i.e. Ry =1, ,vo = [0,0, 017, »po = [0,0,0]7
and b = [0,0,0]”. A more sophisticated initialisation could
be employed, but, we try to consider the worst case scenario
for our method. For the EKF, however, we initialise the
pose and velocity to the ground truth, but we initialise the
unknown bias to zero. Even though such setting gives an
advantage to the EKF, this has been chosen intentionally
to prevent EKF from divergence. Also, this highlights that
our least squares approach is far more robust and does not
necessarily require accurate initialization.

B. Size of window

We employ N = 40 in all of our experiments. It has been
tuned carefully to achieve an optimum trade-off between the
accuracy and the test time.

C. EuRoC Dataset Simulation

IMU measurements, pw and pa, are sampled at 200Hz
and perturbed by an additive noise of 0.0024rad/s and
0.0283m/s? respectively in each axis. Raw GPS/barometer
and magnetometer measurements log are not available in this
dataset. To generate barometer and GPS data, we corrupt
the ground truth velocity and position measurements with
Gaussian noise. We consider zero mean Gaussian noise with
a standard deviation of 0.01m, and a sampling rate of 5Hz
for barometer altitude. The noise signal with a standard
deviation of 0.1m/s is selected for GPS velocity and 0.1m
for position NE, and they are sampled at 5Hz. To simulate
magnetometer measurements, we consider the normalized
reference direction y(t) = [1,0,0]Z. We use (1) to generate
ideal vector measurements, which are sampled at 100Hz.
Zero mean Gaussian noise with a standard deviation of 0.01
is added to each axis of the resulting vector measurement. We
evaluate the results on three sequences of the EuRoC dataset;
V2_01_Easy, V2_02_Med, MH_03_Med. Two experiments
are conducted, i.e., one without while another with outliers.

1) Scenario without outliers: Fig. 1 depicts the pose, ve-
locity and bias estimates as well as their corresponding errors
of our proposed algorithm compared with EKF in sequence
MH_03_Med. The translation, velocity and bias estimation
errors are simply the Euclidean norm of the error between
the ground truth and the corresponding estimate. The attitude
estimation error corresponds to the angle of rotation of the
error R(t)R(t)7, where R is the estimated orientation and

TABLE I: RMS Error of the proposed approach and the
EKF [43] on three different EuRoC Sequences

Sequence RMSE of Attitude Translation Velocity Bias
(deg) (m) (m/s) (rad/s)

V2_01_Easy | EKF 1.0729 0.3438 0.1577 0.0435
Proposed 0.5770 0.0859 0.1249  0.0024

V2_02_Med | EKF 0.9594 0.1753 0.1267 0.0476
Proposed 0.6976 0.0891 0.1155 0.0028
MH_03_Med | EKF 1.3631 0.1639 0.1339 0.0406
Proposed 0.4579 0.0567 0.0707  0.0017




0.6 T T

E — EKF—Proposed

= 0.4r B
L

2

s 0.2 B
=

o / Y A .
[0} 20 40 60 80 100 120
time(s)

(a) Translation Error.

— EKF—Proposed

0.4

Vel Est Err (m/s)
o
N

[0} 20 40 60 80 100 120
time(s)

(b) Velocity Estimation Error.

@6 . !
> — EKF—Proposed
=
=4 7
5
@2 B
wl
®
S
o
[¢] 20 40 60 80 100 120
time(s)
(c) Bias Estimation Error.
e
= — EKF—Proposed
&
ko
w
D
=]
=2
=

time(s)

(d) Attitude Estimation Error.

Fig. 1: MH_03_Med - Comparison between our proposed
approach and the EKF.
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(b) Left: 3D view of the trajectory. Right: Translation Error.

Fig. 2: Seq MH_03_Med - Ground truth position XYZ
vs their estimates via the EKF, the proposed method with
p (tho) function disabled and the proposed method when
measurement outliers occur from ¢t = 70s to 76s.

R is its corresponding ground truth orientation. * The error
plots show that our approach produces significantly lower
errors than EKF. This is also confirmed by the rms error
of the proposed approach versus EKF presented in Table I,
which shows that the non-linear optimization function may
offer better advantages in providing more accurate solution
as computing the estimates at every iteration has the benefit
of gaining insight from a sequence of "raw" data quality that
is not possible in filtering approach.

2) Scenario with outliers: Fig. 2 compares the proposed
approach (denoted by the blue line) with EKF when GPS
position measurements are corrupted with outliers (denoted
by the black line) from t = 70s to t = 76s. Throughout
the flight of a total trajectory of 130.9m, it is observed
that during the period when measurement outliers occur, our
method tracks the true trajectory more accurately than EKF.
In fact, the outlier identification method of EKF fails to
isolate some of the outliers and the EKF incorrectly fuses
them, as is evident by the fact that EKF position estimate
(denoted by the red line) follows the black line as seen in Fig.
2a. This explains the slowly varying translation error of EKF.
Also, this causes an adverse effect on EKF estimates even
after t=76s when there is no more outlier. The EKF wrongly
rejects healthy GPS measurements after (t=76s onwards) and
relies mostly on dead reckoning, which leads to a significant
deviation from the ground truth. In this experiment, we
also assess the sensitivity of approach in [30]-[32] towards
outliers by implementing (3) (denoted by the magenta line).
Fig. 2 also presents a notable evidence that the resulting
position estimates are distinctly biased to the measurement
outliers without incorporating the robust norm function in
the nonlinear least squares. Nevertheless, they still track
the true pose closely once the GPS measurements become
trustworthy again.

We also perform a Monte Carlo analysis with 50 simula-
tion runs, each with randomised outlier insertion to the GPS
position measurement. Fig. 3 presents a substantial evidence
on the robustness of our approach as the r.m.s error averaged
over 50 runs is lower compared to the EKF.

3) Timing: The experiment is implemented on a standard
laptop (Macbook Pro, Intel i5, 2.3GHz) and is running on
single core. As shown in Fig. 4, the average CPU time per
window for the proposed approach over 50 Monte Carlo

w

(m)

Proposed =— = EKF‘

%2, ’I__—,-\.',
= -
Cqt =T ,
g -
n_o Z — o
0 100 200 300 400 500 600
Nodes

Fig. 3: Root-mean-squared error of the position estimation
averaged over 50 Monte Carlo experiments with randomised
outlier insertion.

3This angle is related to the Frobenius norm ||I3 — RR” 1% = tr((1—
RRT)T(I— RRT)) and is given by 0(t) = 8% x acos(1 — 0251 —
RORM®)T ().
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Fig. 4: Histogram plot of average CPU time per window for
the proposed approach over 50 Monte Carlo runs.
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Fig. 5: Real flight dataset-The estimation results via the
proposed method and EKF.

runs is approximately 60ms, which matches the real-time
constraints in our problem setup.

D. PX4 flight data

The second experiment is performed on the real flight
data. The dataset is recorded with a F450-Pixhawk4 that
is equipped with an IMU, a magnetometer, a GPS unit
and a barometer. The IMU is sampled at 250Hz while
the magnetometer and GPS/barometer measurements are
sampled at 50Hz and 5Hz, respectively. Again, we consider
two scenarios for the real flight data as discussed in Sec.
V-D.1 and V-D.2.

1) Scenario without outliers: As depicted in Fig. 5, the
resulting state estimates of our proposed approach match
very well with those of EKF. Note that there is no ground
truth available in this dataset. As there is no outlier, we
believe that the EKF estimates are reliable in Fig. 5.

2) Scenario with outliers: Fig. 6a illustrates the estimates
of the proposed approach compared with EKF and (outlier-
free) GPS measurements when GPS sensor fault occurs from
t = 213s to 220s. Incorrect fusion of the measurement outliers
(denoted by the black line) even for only a very short period
of time has led to a very severe long term effect on EKF’s
performance. Contrarily, the resulting UAV’s trajectory of
our proposed approach still matches the trajectory path of
(outlier-free) GPS measurements in the inset figure. There-
fore, we highlight that our method demonstrate excellent

4The dataset is available at: https://logs.px4.io/plot_app?log=114d429c-
d4f6-43e6-b3b4-740bab900d2a.

robustness and performance in mitigating outliers compared
with EKF. Fig. 6b compares the resulting position estimates
under scenario with and without robust p(.). We emphasise
that incorporating robust norm in the nonlinear least squares
for the state estimation is practically important to ensure long
term autonomous navigation in a large scale environment.

VI. CONCLUSION

Aiming to offer a fresh insight to address the long standing
pose estimation problem in INS/GPS fusion, we present
a novel non-linear optimization framework to solve the
equivalent problem. We extend the pre-integration technique
to fuse different sensory inputs that arrive at different rates in
a non-linear least squares optimisation framework. We also
present a robust estimation framework to effectively mitigate
the effects of practically important outlier measurements.
Our experimental results demonstrate the superior accuracy
and robustness of our approach over filtering methods. This
further illustrate the huge potential of non-linear optimization
approach in long term autonomous INS/GPS navigation.
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