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Path Planning for Motion Dependent State Estimation
on Micro Aerial Vehicles

Markus W. Achtelik, Stephan Weiss, Margarita Chli and Roland Siegwart

Abstract— With navigation algorithms reaching a certain
maturity in the field of mobile robots, the community now
focuses on more advanced tasks like path planning towards
increased autonomy. While the goal is to efficiently compute a
path to a target destination, the uncertainty in the robot’s per-
ception cannot be ignored if a realistic path is to be computed.
With most state of the art navigation systems providing the
uncertainty in motion estimation, here we propose to exploit
this information. This leads to a system that can plan safe
avoidance of obstacles, and more importantly, it can actively aid
navigation by choosing a path that minimizes the uncertainty
in the monitored states. Our proposed approach is applicable
to systems requiring certain excitations in order to render all
their states observable, such as a MAV with visual-inertial based
localization. In this work, we propose an approach which takes
into account this necessary motion during path planning: by
employing Rapidly exploring Random Belief Trees (RRBT), the
proposed approach chooses a path to a goal which allows for
best estimation of the robot’s states, while inherently avoiding
motion in unobservable modes. We discuss our findings within
the scenario of vision-based aerial navigation as one of the most
challenging navigation problem, requiring sufficient excitation
to reach full observability.

I. INTRODUCTION

Driven by the growing demand for more autonomous mo-
bile robots, the research in system control and path planning
has been advancing rapidly over the last few years. Before
either of these problems can be successfully addressed, it is
crucial that the states of the robotic platform are accurately
estimated during the whole mission. How can a Micro Aerial
Vehicle (MAV) compute a realistic path through the disaster
area [1] if its estimated position is very uncertain? In the
past, the focus of accurate state estimation has been on the
controlled states such as 6DoF (Degrees of Freedom) pose
and 3DoF velocity of the vehicle. However, with the recent
emergence of self-calibrating power-on-and-go-systems ([2],
[3], [4], [1]), it becomes more and more important to ensure
fast state convergence at the beginning of the vehicle’s task
(or after re-initialization during the mission). Moreover, for
self-calibrating systems it is crucial to continuously excite
the system in such a way that the calibrating states (IMU
biases, visual scale or the transformation between sensors)
are accurately estimated throughout the whole mission.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7) under grant
agreement n.266470 (myCopter). Markus Achtelik is currently PhD student,
Margarita Chli is senior researcher and Roland Siegwart is full professor at
the ETH Zurich and head of the Autonomous Systems Lab. Stephan Weiss
is Technologist II in the Computer Vision Group of the NASA Jet Propul-
sion Laboratory. (email: {markus.achtelik, margarita.chli}@mavt.ethz.ch,
stephan.m.weiss@jpl.nasa.gov, r.siegwart@ieee.org).

Fig. 1: The path computed by our proposed method for a distance of 10 m
from start (on the right) to the goal (left). With the goal of minimizing the
covariance of the whole system (for simplicity, visualized only for the x, y
components of the position as 2D ellipses), the planner studies a multitude
of candidate intermediate positions along the path before arriving to the final
path promising the biggest reduction in uncertainty. Interestingly, flying on
a direct path instead, would not reach the goal with the desired confidence
in the state estimates, as not all states would experience enough excitation.

The studies in [1], [5], [6] on MAV navigation provide ap-
proaches which allow for localization of the vehicle through
continuous observation of visual landmarks. Thus, in such
scenarios, all regions are equally preferred during planning in
terms of availability of measurements. The sparsity and avial-
ability of landmarks has given rise to special planning algo-
rithms favoring areas with more reliable landmarks between
start and goal position [7], [8], [9], [10]. However, power-
on-and-go systems usually have two additional requirements.
Firstly, as shown in [2], [3], these systems need excitation
in linear acceleration and angular velocity before all states
become observable. This is particularly true for systems that
estimate their inter-sensor calibration, in addition to the pure
vehicle pose used for control. In hovering mode or while
flying on a straight path, MAVs tend to be in an unobservable
mode preventing correct estimation of all their system states.
Secondly, for single-camera systems, if a visual map-loss
occurs (which cannot be ruled out during a real mission)
re-initialization of the system has to be performed. After
such a re-initialization procedure, the metric scale has to be
re-estimated quickly to allow continuous and robust vehicle
control1. With the aim of providing robustness against such
cases where typical planners would fail to produce a feasible
path, we seek to find not only a short path to the destination,
but a path where the states monitored in our system are best
observable at all times. Fig. 1 illustrates an example path
generated by our method, which aims at reducing the position
uncertainty of the vehicle at the goal location, and where we
reach the target within some given confidence area.

1monocular systems measure the 3D position only up to an arbitrary scale.



In this work, we essentially study the problem of not
just acquiring any measurement, but in fact aquiring an
informative measurement, such that the vehicle always re-
mains in a fully observable mode. In order to accomplish
this task we employ the Rapidly Exploring Random Belief
Tree (RRBT) algorithm, developed by Bry and Roy [11].
This system can cope with non-holonomic constraints of a
vehicle, while it plans a collision-free path (avoiding static
obstacles) incorporating the uncertainty of the state estimate
and the vehicle’s controller dynamics. In this paper we
incorporate our MAV navigation framework within RRBT,
as one of the most challenging navigation scenarios given
the high agility of the MAV, and the significance of prompt
and sound state estimates in order to avoid crashes. This
navigation framework has been discussed theoretically in [3]
and evaluated quantitatively in [4]. Exploring the power of
the RRBT framework in this scenario, we demonstrate how
effective path planning can improve not only the error of
the state estimates, but also allow for faster convergence of
badly initialized states, steering the MAV to the goal position
within a confidence region. Studying this particularly chal-
lenging navigation scenario, we aim to highlight the influence
of path planning in the overall robustness of navigation, when
used in the loop of the estimation process.

The remainder of the paper is organized as follows: In
Section II, we introduce our state estimation system and the
dynamic model of the MAV used in this work. In Section III,
we briefly sketch the RRBT algorithm and describe how we
realized all its subtasks for this complex system. Section IV
finally shows the results of our proposed approach.

II. SYSTEM DESCRIPTION

In this section we describe the properties of our systems
applied to the path planning algorithm. Care has to be taken
about the term state. We have three different kinds of state:

• filter state xf : refers to the state used in the Extended
Kalman Filter (EKF) based estimation described in
Section II-A. It contains the vehicle pose used for
control and the (inter-) sensor calibration-parameters.
One of the contributions of this work is to find the
shortest path to a goal, while avoiding unobservable
modes for all states in xf at any time.

• system state xd: refers to the states used to describe
the system dynamics. There, the system’s pose and
its derivatives are of interest in order to grant smooth
motion. (c.f. Section II-B)

• sampling state xs: state in the space which we sample
from when generating paths to new state vertices in the
RRBT graph structure (cf. Section III-C).

A. Visual-Inertial State Estimation for a MAV

In the following we consider the case of vision based
navigation for MAVs, using a single camera and an IMU
as only sensors. For the system state estimation we use
an Extended Kalman Filter (EKF) approach according to
our previous work in [3], [4]. For completeness we briefly
summarize the essentials.
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Fig. 2: Setup depicting the robot body with its sensors w.r.t. a world
reference frame. The system’s state is xf = {piw viw qiw bω ba λ psi q

s
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whereas psw and qsw denote the robot’s sensor measurements in (a possibly
scaled) position and attitude respectively in a world frame.

The state of the filter is composed of the position of
the IMU piw in the world frame, its velocity viw and its
attitude quaternion qiw describing a rotation from the world
to the IMU frame. We also add the gyro and acceleration
biases bω and ba, as well as the scale factor λ of the
visual measurements. The calibration states are the rotation
from the IMU frame to the camera sensor frame qsi and the
distance between these two sensors psi . How these states
relate to each other can be seen in Fig. 2. This yields a
24-element filter state vector xf :

xf =
[
pi

T

w vi
T

w qi
T

w bTω bTa λ psi q
s
i

]T
(1)

The following differential equations govern the state:

ṗiw = viw (2)
v̇iw = CT(qiw)(am − ba − na)− g (3)

q̇iw =
1

2
Ω(ωm − bω − nω)qiw (4)

ḃω = nbω ḃa = nba λ̇ = 0 ṗsi = 0 q̇si = 0 (5)

With g as the gravity vector in the world frame and Ω(ω)
as the quaternion multiplication matrix of ω. We assume the
scale drifts spatially and not temporally, thus λ̇ = 0.

For the possibly scaled camera position measurement psw
obtained from the visual algorithm, we have the following
measurement model with C(qiw) as the IMU’s attitude in the
world frame.

zp = psw = (piw + CT(qiw)p
s
i )λ+ np (6)

For the rotation measurement we apply the notion of an
error quaternion. The vision algorithm yields the rotation
from the vision frame to the camera frame qsw. We can model
this as

zq = qsw = qsi ⊗ qiw (7)

A non-linear observability analysis, as suggested in [12]
and done in [2], reveals that all states are observable includ-
ing the inter-sensor calibration states psi (distance from the
IMU to the sensor) and qsi (rotation from the IMU to the
sensor). This is true as long as the vehicle excites the IMU’s
accelerometer and gyroscopes in at least two axes as proved
in [2], [13].



B. Helicopter Model

For our goal of motion planning for a MAV, while ensuring
that all states of the aforementioned state estimation filter
stay observable, we will have to execute this filter along
candidates of optimized paths. We aim to keep the helicopter
model generic for quad- or in general multicopter MAVs,
such as the hexacopter we used for the experiments in [4].
Therefore we define the thrust in terms of acceleration in
the z axis of the helicopter, and the body fixed angular
velocity ωB as control inputs for the multicopter system.
We assume that there exists a low level controller that maps
the individual rotor speeds to angular velocities. Thus we
do not have to care about vehicle specific details, such as
rotor count/alignment or moments of inertia. Since there is
an underlying controller for ωB , we require a demanded
control input to be continuous and differentiable.

For the aim of path planning, we need paths that can
be followed by the helicopter given the aforementioned
constraints. The findings by Mellinger and Kumar [14],
about the differentially flat outputs [x y z ψ] (i.e. position
and yaw) for a quadrotor, can be applied to that problem:
given a function for the position of the center of mass of
the helicopter and its orientation (yaw), that are sufficiently
differentiable, we can always compute the remaining states
we need for the helicopter (attitude i.e. roll/pitch), and the
required control inputs angular velocity ωB and thrust |t|.
The latter is simply a function of the attitude and rotor
speeds. According to [14], the full attitude q can be computed
as follows:

zB =
t

|t|
; t = a +

[
0 0 g

]T
(8)

yB =
zB × xC
|zB × xC |

; xC =
[
cos(ψ) sin(ψ) 0

]T
(9)

xB = yB × zB (10)

⇒ q = q(WRB); WRB =
[
xB yB zB

]
(11)

a denotes the acceleration and ψ the yaw angle of the
helicopter. The thrust vector t defines the direction of the unit
vector zB of a body fixed coordinate system

[
xB yB zB

]
.

This can also be seen as the rotation matrix WRB that
describes the orientation of the helicopter w.r.t. the world
coordinate system. For computing ωB , we need to compute
an intermediate vector hω:

hω = ‖t‖−1 · (j − (zB · j) · zB) (12)

ωB,x = −hTω · yB (13)

ωB,y = hTω · xB (14)

ωB,z = ψ̇ · zTW · zB (15)

Where j denotes the jerk, i.e. the first derivative of the
acceleration.

Since we require ωB , to be continuous and differentiable,
we need to ensure that the derivatives of the jerk j and
angular rate ψ̇ (i.e. snap s and ψ̈) are continuous. We define
the vehicle state xv as follows:

xv =
[
pT vT aT jT sT ψ ωψ ω̇ψ

]T
(16)

This state is needed for the local path planning in Section III-
B. To summarize, p ,v ,a , j , s ∈ R3×1 denote the position
and its 4 derivatives velocity, acceleration, jerk and snap
respectively. ψ , ωψ , ω̇ψ ∈ R denote the yaw angle, the
angular rate and angular acceleration.

III. PATH PLANNING TOWARDS OPTIMIZED STATE
ESTIMATION

In the following we discuss the main properties of the
RRBT algorithm as presented in [11], and describe how it
can be employed in our challenging visual-inertial MAV state
estimation framework.

A. The RRBT Approach

The basic idea of RRBT is to interleave graph construction
and search over the graph. Similarly to known planners, such
as Rapidly Exploring random Graphs (RRG), the algorithm
operates on a set of state vertices V connected by edges
E, defining a graph in state space. In Addition to the state
v.x, each state vertex v ∈ V owns a set N of so-called
belief nodes n ∈ N . Each belief node contains properties
such as: state estimate covariance Σ, a distribution over state
Λ estimates, and a cost c. Furthermore, it has pointers to
its owning vertex v and to a parent belief node: From a
current vertex vc, following each of its belief nodes to their
respective preceding parent belief nodes and their owning
state vertices, describes unique paths through the graph from
vstart to vc with the properties Σ, Λ and c. Multiple belief
nodes at one state vertex are possible since there could be
multiple candidates for optimized paths to that vertex, e.g.
one with smaller cost c and another with better Σ.

A RRBT iteration starts similarly to a RRG iteration. After
sampling a new state vnew vertex, an approximate connection
is made to the nearest state vertex vnearest. In addition, given
a successful (collision free) connection, if there exists one
belief at vnearest that can be propagated without collision
along the newly created edge enew, vnew gets added to V .
Propagate means that a state estimation filter, such as the
EKF in Section II-A, is initialized with the state at a starting
vertex and the properties of a belief node (Σ)2. This filter
is executed along enew, and a collision check is performed
that takes the covariance along that edge into account. On
success, exact connections are made forth and back to a set of
near vertices within a certain radius [11], [15], which also get
propagated. After successful propagation, a new belief node
is added to the corresponding vertex, if it is not dominated by
a existing belief node at that vertex. Finally, a search queue
keeps track of all belief nodes involved in the previous steps,
and updates, expands or removes them from the graph.

This approach not only allows us to set a start and goal
state, but also the uncertainty of the system at the start state
and a maximum uncertainty region at the goal. The goal is
not reached until both state and uncertainty constraints are
met. By keeping track of the system uncertainty in the way
described above, the algorithm plans a safe path to the goal

2we omit Λ here since we assume sufficient measurements and the vehicle
stays close to the nominal trajectory.



region, where it can localize itself while providing sufficient
excitation to keep the system’s states observable.

B. Local Path Planning
In order to connect a newly sampled state vertex to

the nearest state vertex, and to the set of near vertices,
we need a local path planner. While for algorithms like
Rapidly Exploring Random Trees (RRT), an approximate
connection from vnearest to vnew is sufficient3, we need
to make exact connections between vnew and Vnear, and
back from vnew to vnearest. The main difficulty is that
multicopters are under-actuated systems, and we require the
fourth derivative of the position (snap) to be continuous (c.f.
Section II-B). Furthermore, we want to be able to include
actuator constraints (snap), but also constraints as maximum
velocity and acceleration. During graph construction, many
of those connections need to be created, thus we cannot
afford sophisticated optimization techniques.

A simple and fast solution was proposed by Webb and
Berg [16], but it requires linearization of the dynamics
around the hovering point, and motion constraints other than
actuator limitations are not easy to set. To enforce motion
constraints, it sounds tempting to ignore those during local
planning and to treat a violation simply as collision. The
result would be “no connection” and the next sample would
be taken. This may work for simpler approaches as RRT
and just results in more samples, but for RRG or RRBT
this would lead to missed exact connections between existing
state vertices which are actually collision free.

We decided to adapt the minimum snap trajectory ap-
proach by Mellinger and Kumar [14] to our needs. This
approach uses N th order polynomials with more degrees
of freedom than initial- and final (equality) constraints, and
leaves the remaining constraints to a solver, optimizing a
quadratic cost function and inequality constraints. Since we
need to enforce continuity to the fourth derivative of position
(c.f. Section II-B), we need at least 10 parameters (9th order
polynomials) plus some degrees of freedom for the optimizer.
Unlike in [14], we chose to optimize over the integral of
the squared norm of the acceleration instead of snap. The
motivation of this choice was to make the helicopter as
energy efficient as possible. Compared to snap, acceleration
directly translates into permanent additional thrust that all
the motors have to provide, while snap just causes particular
motors to spin up/down quickly. This results in the following
optimization problem:

f(t) = t · c ; t =
[
1 t t2 . . . tN−1

]
(17)

min
∫ T

t0

∥∥∥d2f(t)

dt2

∥∥∥ s.t. (18)

dnf(t0)

dtn
=
dn(vstart.x)

dtn
; n = 0 . . . 4 (19)

f(T ) = (vend.x.p) (20)
dnf(T )

dtn
=
dn(vend.x)

dtn
or free; n = 1 . . . 4 (21)

3in this case, vnew only serves as direction to grow the tree towards, so
it can simply be set to the state where we were actually able to steer to

Where f(t) is a N th order polynomial with coefficients
c0 . . . cN of the position, and pstart, pend the position at the
starting and ending state vertex respectively. A simplification
is that we only need to connect two states, i.e. we do not
have any intermediate points and thus we can keep t0 = 0,
while T is the time needed to fly through the local path.
We apply the same methodology for yaw. We optimize the
integral over the angular rate, while enforcing continuity up
to the second derivative of yaw. For a discussion when to
keep the constraints in Eq. (21) fixed or leave them free, see
Section III-C.

A nice property of the above optimization problem is that
there are no inequality constraints, which makes it solvable
with a closed form solution. However, this still depends
on a fixed time T to travel along the trajectory. Nonlinear
optimization with the time as additional parameter and in-
equality constraints are costly (and numerically problematic),
therefore we were seeking for a simple and fast solution.
We solve the aforementioned problem with a conservative
estimate for T , compare this to pre-defined maximum values
and then scale the path time by the constraint that is closest
to its motion constraint, i.e.:

c(n) = abs((
dnf(t)

dtn
)/cn,max); n = 1 . . . 4 (22)

Tnew = max(c(n)) · T (1/argmax(c(n))) (23)

We then recompute the optimization problem with the new
path time Tnew, which is fast since we do not have inequality
constraints in the optimization problem. Note that the time-
scaling as proposed in [14] does not work in our case, since
it also scales the boundary conditions which are non-zero in
our case.

C. Sampling of State Vertices

We decided to sample in the space of the differentially
flat outputs position and yaw angle as defined in [14]. The
sampling state becomes:

xs =
[
x y z ψ

]
(24)

This choice is first motivated by reducing the complexity
of the sampling space. Second, the states of the vehicle
are tightly coupled and we want to sample in a way that
is physically reasonable. As an example, it is questionable
to sample a state in +x direction w.r.t. a current state,
while sampling a negative velocity. Therefore, to create a
connection from the nearest (in the sense of position and
yaw) state vertex vnearest to the newly sampled state vertex,
vnew is created by applying the method from Section III-B
while leaving the derivatives of position in the final condition
from Eq. (21) free. After optimization of the local path, these
free variables result from the optimization and thus define the
full state at vnew. Since we optimize over the acceleration,
the optimizer will not decelerate the vehicle towards the end
of a local path, thus we implicitly sample the velocity and
its derivatives in the direction of motion.



D. Covariance Comparison

From the ordering of partial paths represented by belief
nodes, a belief node na dominates (is “better”) a node nb,
as described in [11], if:

na < nb ⇔ na.c < nb.c ∧ na.Σ < nb.Σ ∧ na.Λ < nb.Λ
(25)

where n.c, n.Σ and n.Λ are the properties of a belief node
(Section III-A). Within an RRBT iteration, a new belief node
nb is only added to the set of belief nodes v.N if it is not
dominated by any existing belief node na ∈ v.N of its state
vertex v. In other words, a new belief node is added to v.N ,
if at least one of its properties (n.c, n.Σ, n.Λ) is better than
in any of the existing belief nodes. After nb being added to
v.N , another check is performed if nb dominates any existing
belief node at v, and can therefore prune it. In that case, nb
has to be better in all properties.

An important issue is how to compare two covariance ma-
trices, i.e. how to judge if one is better than the other. While
this may be intuitive for systems with 2 or 3 dimensions in
position, it becomes difficult for our system with 24 states:
Not only because of the dimensionality, but also because the
states are “incompatible”: To give an example, how could
an improvement of covariance in position be compared with
the gyro biases? A a very conservative measure for na.Σ
dominating nb.Σ would be:

na.Σ < nb.Σ⇔ min(eig(nb.Σ− na.Σ)) > 0 (26)

This in return means that any new belief node nb, whose
covariance is better in only one dimension, would be added to
v.N . This results in many belief nodes being added, having
to be propagated and requiring additional computational
resources. Especially in our high dimensional case, it is
questionable if for instance a slight improvement in gyro
biases justifies adding a new belief node, while position
uncertainty has grown. Other options are comparing the
determinants, which could be thought of the volume of the
covariance ellipsoid, or the trace. However, both cannot make
a distinction between ellipsoids with high or low ratio of their
axes. Furthermore, since our states are incompatible, states
with a smaller order of magnitude would dominate using the
determinant method, and vice versa using the trace method.

We decided to use the Kullback-Leibler divergence [17]
with respect to a reference covariance matrix Σref as a
performance measure for comparing belief nodes. That is,
we want to find out how similar to Σref the other covariance
matrix is. In our case, the KL-divergence for a normal
distribution with zero mean computes as:

DKL =
1

2

(
trace(Σ−1

ref · n.Σ)− ln

(
det(n.Σ)

det(Σref )

)
−N

)
(27)

Where N is the dimension of our filter (error) state, which
is 22 in our case (see Section II-A). For Σref , we chose a
diagonal matrix with entries in the order of magnitude from a
covariance matrix of a fully converged state estimation filter
that we obtained from simulation. The motivation for this
choice is to normalize the different orders of magnitudes of

the filter state variables, while preferring round covariance
ellipsoids over those with high axes ratio. Another advantage
of this method is that the KL-divergence can be computed
at creation time of its belief nodes rather than in Eq. (26)
at every belief comparison, which occur a lot during each
RRBT iteration.

As stated in [11], applying Eq. (25) whenever a new
belief is added would result in a robot infinitely circling
in information rich environments, since that would always
improve uncertainty slightly. Therefore, Bry and Roy propose
to use a small tolerance factor ε to block these useless paths:

na . nb ⇔ (na.c < nb.c)∧
(na.Σ + εI < nb.Σ) ∧ (na.Λ < nb.Λ + εI) (28)

E. RRBT for MAVs with Motion Dependent State Estimation

In this section, we summarize our findings and show how
these are applied within the RRBT framework for a MAV. At
the beginning of each iteration we sample a new state vertex
vnew for position and yaw (Eq. (24)) of the helicopter from
a uniform distribution. An approximate connection from the
nearest (position and yaw) state vertex vnearest to vnew is cre-
ated by applying the method from Section III-C. The result of
this approximate connection defines the full state (Eq. (16))
at vnew. This corresponds to the CONNECT(vnearest.x, xv,rand)
function in [11].

Having a collision free connection, i.e. an edge enew, there
needs to be at least one belief n ∈ vnearest.N that can be
propagated without collision along enew. This is done by
applying our state estimation filter from Section II-A on the
measurements, and system inputs (c.f. Section II-B) that were
generated while creating enew. The initial state xf,init of the
filter is set to:

xf, init = [vnearest.x.p
T , vnearest.x.v

T , . . .

. . . q(vnearest.a, vnearest.ψ), bTω , b
T
a , λ, p

s
i , q

s
i ]
T (29)

Position and velocity can be directly obtained from vnearest.x
while the attitude quaternion q is a function from the accel-
eration and yaw angle at vnearest, as explained in Section II-B.
The remaining states can be set constant4. This works since
we are only interested in the evolution of the state covariance
during filter execution along the new edge5. The initial state
covariance for the filter is simply n.Σ. During propagation
along enew, the path is also checked for possible collisions
by taking the state covariance into account. This corresponds
to the PROPAGATE(e, n) function in [11].

We define the cost for flying along an edge e as
∫
‖a‖,

minimizing the energy necessary to reach the goal (c.f.
Section III-B). This seems to contradict with the need of
excitation of the vehicle for its states to stay observable.
However, this is a trade-off between excitation reducing the

4This would be states like inter sensor calibration or sensor biases and
do not change with the vehicle’s dynamic

5A known issue of the EKF covariance estimate is that the estimated
value may not reflect a correct uncertainty due to linearization, as discussed
in [18]. For the sake of simplicity, we neglect this issue in this paper.



uncertainty of the vehicle’s states and energy efficiency. That
is, the vehicle gets just as much excited as necessary to reach
the goal within the defined uncertainty region.

On success of the previous propagation step, new edges
are created from vnew to vnearest, from vnew to Vnear and from
Vnear to vnew. This time exact connections are created by
fixing all constraints in Eq. (21). Whenever an outgoing
edge is added to an existing vertex, all its belief nodes are
added to a search queue which is then exhaustively searched.
Its APPENDBELIEF() function (c.f. [11]) uses the methods
discussed in Section III-D to decide if a belief is added to a
state vertex (Eq. (28)) and if it dominates and thus can prune
existing beliefs (Eq. (25)).

Similarly to the approach in [16], we want to reach the
goal state exactly and centered in the goal region. This is due
to the region also defining the maximum uncertainty at the
goal. Therefore, as long as there exist no edges to or from
the goal state, we explicitly add the goal state to the set of
near vertices Vnear at each iteration of the RRBT algorithm.

We explicitly tried to keep the (tuning) parameter space
small. In fact, most parameters are system parameters, such
as maximum velocity or acceleration, which are easy to
figure out depending on the system at hand. The search
radius r around vnew for near vertices is determined by
r = (log(n)/n)(1/d) according to [11], [15], where n is the
number of state vertices and d the dimension of the sampled
state xs. ε in Eq. (28) is probably the most interesting
and only tuning parameter. It determines how many (almost
similar) belief nodes are considered in the planning process.
We set this value to a small percentage of the reference
ellipsoid’s measure (c.f. Section III-D).

IV. RESULTS

In the following, we pick a few representative states
of our state estimation filter and show how our proposed
method improves its estimates in simulation. The setup is the
following: we want to fly the MAV from a starting location
along the x-axis to a goal in 10 m distance. This direct path
and the resulting path from our method can be seen in Fig. 3.

Fig. 3: The direct path and the path computed by our proposed method for
a distance of 10 m from the start with the position uncertainty visualized
(blue) to the goal region (orange)

We set an initial state covariance that we obtained during
real experiments with our framework described in [4]. We
simulate the system inputs (acceleration, angular velocity)
and measurements of our state estimation framework (Sec-
tion II-A) with the values computed in Section II-B along
the partial paths. Measurements in 3DoF position and 3DoF
attitude are simulated, assuming a constant measurement

uncertainty here for simplicity. Since the presented approach
is a sampling based technique, different measurement uncer-
tainties could be incorporated.
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Fig. 4: Comparison of the evolution of uncertainty of the visual scale over
time for the direct path (red) and the optimized path (blue).

Fig. 4 shows the evolution of the uncertainty of the visual
scale along the direct path and the optimized path. The
uncertainty is not only significantly lower for the optimized
path, but also converges faster. The visual scale directly influ-
ences the uncertainty and the quality of the position estimate.
This is important when the vehicle moves away from its
origin, since the visual scale influences the position estimate
multiplicative (c.f. Eq. (6)). As a result, even if the position
was measured correct, and without any drift, the position
uncertainty grows with increasing distance if the visual scale
is uncertain. This is shown in Fig. 5: in the top left, the
uncertainty of the position in the x-axis for the optimized
path (blue) px decreases until t = 5 s, which corresponds to
the improvement of the visual scale uncertainty in Fig. 4 due
to excitation of the system. After t = 5 s, the visual scale has
converged and since the system moves away from the origin
(Fig. 5,bottom left), the uncertainty for px starts growing
again. The same applies to the direct path (red). Due to the
lack of excitation, the described behaviour happens notably
faster. Since the trajectories for py (bottom right) stay close
to 0 on the right side of Fig. 5, both the uncertainty (top
right) for the direct and the optimized path decrease, while
the optimized path is performing remarkably better.

Fig. 5: Behaviour of the uncertainty for the direct path (red) and the
optimized path (blue) in position for the x-axis (left) and the y-axis (right).
Since the visual scale error is multiplicative, the uncertainty of the position
grows after the initialization phase with increasing distance to the origin.
The trajectory in the y axis stays close to zero, why uncertainty decreases.

The inter sensor calibration state qsi plays another impor-
tant role. Errors in this state would cause IMU readings to
be misaligned with pose measurements, and thus affect the
accuracy of other states. Also for this state, the optimized
path outperforms the direct path in terms of uncertainty and
convergence speed. The different times of the optimized and
direct path result from actuator limitations that we set.



Fig. 6: Comparison of the inter sensor calibration state qsi . The optimized
path also outperforms the direct path in terms of uncertainty and con-
vergence speed. This state is of major importance since it rotates pose
measurements into the IMU reference frame

Fig. 7 shows the evolution of the cost and the path length
over the iterations of the algorithm. Note that the small
number of iterations denotes the number of updates of the
optimized path. During the simulation, 150 state vertices
were sampled in a volume around the direct path, having 750
belief nodes. The cost decreases (top) as expected while the
path length (bottom) occasionally increases. This is natural,
since we chose the integral of the squared norm of the
acceleration as cost. This graph shows that we obtain major
improvements in the quality of the state estimation, with
only a slightly longer path (≈ 0.6 m). In fact, the direct
path would have never reached the goal with its covariance
ellipsoid within the uncertainty region around the goal.
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Fig. 7: Cost and path length over the number of optimized path updates.
During the simulation, 150 state vertices were sampled, resulting in 750
belief nodes. Finally, a path slightly longer than the direct path yields
remarkably better results for our state estimation filter.

Computational complexity with respect to the number of
belief nodes is discussed in [11]. The main cost in our
approach is due to the propagation of the covariances. Future
work will focus on effective model reduction and an efficient
search through the belief nodes, reducing complexity for real
time operation and deployment on real flights.

V. CONCLUSIONS

In this work, we showed how to combine a state of the
art path planning framework with a complex state estimation
framework for self-calibrating systems. As such power-on-
and-go systems need excitation to render all their states
observable, we demonstrated how effective path planning
can improve not only the error of the state estimates, but
also allow for faster convergence after (re-)initialization.
Our approach can cope with non-holonomic constraints of
a vehicle, while it plans a collision-free path (avoiding static
obstacles) incorporating the uncertainty of the state estimate

and the vehicle’s dynamics. We showed in simulations that
our approach significantly reduces state convergence time,
while avoiding navigation in unobservable modes. The cost
of which is only a slightly longer path than the most direct
path between start and goal.
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