256 research outputs found

    An object oriented Bayesian network approach for unsafe driving maneuvers prevention system

    Full text link
    © 2017 IEEE. As the main contributor to the traffic accidents, unsafe driving maneuvers have taken attentions from automobile industries. Although driving feedback systems have been developed in effort of dangerous driving reduction, it lacks of drivers awareness development. Therefore, those systems are not preventive in nature. To cover this weakness, this paper presents an approach to develop drivers awareness to prevent dangerous driving maneuvers. The approach uses Object-Oriented Bayesian Network to model hazardous situations. The result of the model can truthfully reflect a driving environment based upon situation analysis, data generated from sensors, and maneuvers detectors. In addition, it also alerts drivers when a driving situation that has high probability to cause unsafe maneuver to be detected. This model then is used to design a system, which can raise drivers awareness and prevent unsafe driving maneuvers

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Harnessing Big Data for Characterizing Driving Volatility in Instantaneous Driving Decisions – Implications for Intelligent Transportation Systems

    Get PDF
    This dissertation focuses on combining connected vehicles data, naturalistic driving sensor and telematics data, and traditional transportation data to prospect opportunities for engineering smart and proactive transportation systems.The key idea behind the dissertation is to understand (and where possible reduce) “driving volatility” in instantaneous driving decisions and increase driving and locational stability. As a new measure of micro driving behaviors, the concept of “driving volatility” captures the extent of variations in driving, especially hard accelerations/braking, jerky maneuvers, and frequent switching between different driving regimes. The key motivation behind analyzing driving volatility is to help predict what drivers will do in the short term. Consequently, this dissertation develops a “volatility matrix” which takes a systems approach to operationalizing driving volatility at different levels, trip-based volatility, location-based volatility, event-based volatility, and driver-based volatility. At the trip-level, the dynamics of driving regimes extracted from Basic Safety Messages transmitted between connected vehicles are analyzed at a microscopic level, and where the interactions between microscopic driving decisions and ecosystem of mapped local traffic states in close proximity surrounding the host vehicle are characterized. Another new idea relates to extending driving volatility to specific network locations, termed as “location-based volatility”. A new methodology is proposed for combining emerging connected vehicles data with traditional transportation data (crash, traffic, road geometrics data, etc.) to identify roadway locations where traffic crashes are waiting to happen. The idea of event-based and driver-based volatility introduces the notion that volatility in longitudinal and lateral directions prior to involvement in safety critical events (crashes/near-crashes) can be a leading indicator of proactive safety.Overall, by studying driving volatility from different lenses, the dissertation contributes to the scientific analysis of real-world connected vehicles data, and to generate actionable knowledge relevant to the design of smart and intelligent transportation systems. The concept of driving volatility matrix provides a systems framework for characterizing the health of three fundamental elements of a transportation system: health of driver, environment, and the vehicle. The implications of the findings and potential applications to proactive network level screening, customized driver assist and control systems, driving performance monitoring are discussed in detail

    Developing Predictive Models of Driver Behaviour for the Design of Advanced Driving Assistance Systems

    Get PDF
    World-wide injuries in vehicle accidents have been on the rise in recent years, mainly due to driver error. The main objective of this research is to develop a predictive system for driving maneuvers by analyzing the cognitive behavior (cephalo-ocular) and the driving behavior of the driver (how the vehicle is being driven). Advanced Driving Assistance Systems (ADAS) include different driving functions, such as vehicle parking, lane departure warning, blind spot detection, and so on. While much research has been performed on developing automated co-driver systems, little attention has been paid to the fact that the driver plays an important role in driving events. Therefore, it is crucial to monitor events and factors that directly concern the driver. As a goal, we perform a quantitative and qualitative analysis of driver behavior to find its relationship with driver intentionality and driving-related actions. We have designed and developed an instrumented vehicle (RoadLAB) that is able to record several synchronized streams of data, including the surrounding environment of the driver, vehicle functions and driver cephalo-ocular behavior, such as gaze/head information. We subsequently analyze and study the behavior of several drivers to find out if there is a meaningful relation between driver behavior and the next driving maneuver

    Short-term crash risk prediction considering proactive, reactive, and driver behavior factors

    Get PDF
    Providing a safe and efficient transportation system is the primary goal of transportation engineering and planning. Highway crashes are among the most significant challenges to achieving this goal. They result in significant societal toll reflected in numerous fatalities, personal injuries, property damage, and traffic congestion. To that end, much attention has been given to predictive models of crash occurrence and severity. Most of these models are reactive: they use the data about crashes that have occurred in the past to identify the significant crash factors, crash hot-spots and crash-prone roadway locations, analyze and select the most effective countermeasures for reducing the number and severity of crashes. More recently, the advancements have been made in developing proactive crash risk models to assess short-term crash risks in near-real time. Such models could be applied as part of traffic management strategies to prevent and mitigate the crashes. The driver behavior is found to be the leading cause of highway crashes. Nevertheless, due to data unavailability, limited studies have explored and quantified the role of driver behavior in crashes. The Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) offers an unprecedented opportunity to perform an in-depth analysis of the impacts of driver behavior on crashes events. The research presented in this dissertation is divided into three parts, corresponding to the research objectives. The first part investigates the application of advanced data modeling methods for proactive crash risk analysis. Several proactive models for segment level crash risk and severity assessment are developed and tested, considering the proactive data available to most transportation agencies in real time at a regional network scale. The data include roadway geometry characteristics, traffic flow characteristics, and weather condition data. The analysis methods include Random-effect Bayesian Logistics Regression, Random Forest, Gradient Boosting Machine, K-Nearest Neighbor, Gaussian Naive Bayes (GNB), and Multi-layer Feedforward Deep Neural Network (MLFDNN). The random oversampling technique is applied to deal with the problem of data imbalance associated with the injury severity analysis. The model training and testing are completed using a dataset containing records of 10,155 crashes that occurred on two interstate highways in New Jersey over a period of two years. The second part of the study analyzes the potential improvement in the prediction abilities of the proposed models by adding reactive data (such as vehicle characteristics and driver characteristics) to the analysis. Commonly, the reactive data is only available (known) after the crash occurs. In the proposed research, the crash analysis is performed by classifying crashes in multiple groupings (instead of a single group), constructed based on the age of drivers and vehicles to account for the impact of reactive data on driver injury severity outcomes. The results of the second part of the study show that while the simultaneous use of reactive and proactive data can improve the prediction performance of the models, the absolute crash probability values must be further improved for operational crash risk prediction. To this end, in the third part of the study, the Naturalistic Driving Study data is used to calibrate the crash risk models, including the driver behavior risk factors. The findings show significant improvement in crash prediction accuracy with the inclusion of driver behavior risk factors, which confirms the driver behavior to be the most critical risk factor affecting the crash likelihood and the associated injury severity

    Drivers overtaking cyclists and pedestrians: Modeling road-user behavior for traffic safety

    Get PDF
    In a world aiming to shift to more sustainable modes of transportation, vulnerable road users (VRUs) like cyclists and pedestrians are still confronted with significant barriers to safety, particularly on rural roads where overtaking maneuvers represent a frequent and dangerous interaction with motorized traffic. If drivers misjudge their kinematics, even near-crashes without physical contact can harm the perceived safety of the VRU, which may decrease the willingness to continue cycling or walking on these roads. Crash risks when overtaking VRUs exist in different overtaking phases: when approaching the VRU, steering out, passing, and eventually returning. To make overtaking VRUs safer, improvements to policymaking, infrastructure, and vehicles are needed. However, these improvements need models that can describe or predict road-user behavior in overtaking, which was the objective of this thesis. Based on data sets obtained from a test-track experiment, field-test studies, and naturalistic studies, this thesis developed behavioral models for both objective and perceived safety of drivers and VRUs in different overtaking phases. The results indicate that drivers’ and VRUs’ behavior is mainly influenced by their highest crash or injury risk. The descriptive models showed that a close oncoming vehicle could reduce a driver’s safety margins to the VRU in all phases. Furthermore, the VRU behavior may affect the driver’s behavior; for instance, through lane positioning and, for pedestrians, walking direction. Infrastructure design and policymaking should focus on preventing overtaking in areas where oncoming vehicles are hard to estimate and enforcing sufficient clearances to the cyclist, stratified by speed. The predictive models can help vehicle safety systems adapt to drivers to become more acceptable, for instance, when assisting drivers in the decision to overtake or not. They may further help optimize road networks’ objective and perceived safety

    Driver Behavior Analysis Based on Real On-Road Driving Data in the Design of Advanced Driving Assistance Systems

    Get PDF
    The number of vehicles on the roads increases every day. According to the National Highway Traffic Safety Administration (NHTSA), the overwhelming majority of serious crashes (over 94 percent) are caused by human error. The broad aim of this research is to develop a driver behavior model using real on-road data in the design of Advanced Driving Assistance Systems (ADASs). For several decades, these systems have been a focus of many researchers and vehicle manufacturers in order to increase vehicle and road safety and assist drivers in different driving situations. Some studies have concentrated on drivers as the main actor in most driving circumstances. The way a driver monitors the traffic environment partially indicates the level of driver awareness. As an objective, we carry out a quantitative and qualitative analysis of driver behavior to identify the relationship between a driver’s intention and his/her actions. The RoadLAB project developed an instrumented vehicle equipped with On-Board Diagnostic systems (OBD-II), a stereo imaging system, and a non-contact eye tracker system to record some synchronized driving data of the driver cephalo-ocular behavior, the vehicle itself, and traffic environment. We analyze several behavioral features of the drivers to realize the potential relevant relationship between driver behavior and the anticipation of the next driver maneuver as well as to reach a better understanding of driver behavior while in the act of driving. Moreover, we detect and classify road lanes in the urban and suburban areas as they provide contextual information. Our experimental results show that our proposed models reached the F1 score of 84% and the accuracy of 94% for driver maneuver prediction and lane type classification respectively

    Risk analysis of autonomous vehicle and its safety impact on mixed traffic stream

    Get PDF
    In 2016, more than 35,000 people died in traffic crashes, and human error was the reason for 94% of these deaths. Researchers and automobile companies are testing autonomous vehicles in mixed traffic streams to eliminate human error by removing the human driver behind the steering wheel. However, recent autonomous vehicle crashes while testing indicate the necessity for a more thorough risk analysis. The objectives of this study were (1) to perform a risk analysis of autonomous vehicles and (2) to evaluate the safety impact of these vehicles in a mixed traffic stream. The overall research was divided into two phases: (1) risk analysis and (2) simulation of autonomous vehicles. Risk analysis of autonomous vehicles was conducted using the fault tree method. Based on failure probabilities of system components, two fault tree models were developed and combined to predict overall system reliability. It was found that an autonomous vehicle system could fail 158 times per one-million miles of travel due to either malfunction in vehicular components or disruption from infrastructure components. The second phase of this research was the simulation of an autonomous vehicle, where change in crash frequency after autonomous vehicle deployment in a mixed traffic stream was assessed. It was found that average travel time could be reduced by about 50%, and 74% of conflicts, i.e., traffic crashes, could be avoided by replacing 90% of the human drivers with autonomous vehicles

    Predictive Model of Driver\u27s Eye Fixation for Maneuver Prediction in the Design of Advanced Driving Assistance Systems

    Get PDF
    Over the last few years, Advanced Driver Assistance Systems (ADAS) have been shown to significantly reduce the number of vehicle accidents. Accord- ing to the National Highway Traffic Safety Administration (NHTSA), driver errors contribute to 94% of road collisions. This research aims to develop a predictive model of driver eye fixation by analyzing the driver eye and head information (cephalo-ocular) for maneuver prediction in an Advanced Driving Assistance System (ADAS). Several ADASs have been developed to help drivers to perform driving tasks in complex environments and many studies were conducted on improving automated systems. Some research has relied on the fact that the driver plays a crucial role in most driving scenarios, recognizing the driver’s role as the central element in ADASs. The way in which a driver monitors the surrounding environment is at least partially descriptive of the driver’s situation awareness. This thesis’s primary goal is the quantitative and qualitative analysis of driver behavior to determine the relationship between driver intent and actions. The RoadLab initiative provided an instrumented vehicle equipped with an on-board diagnostic system, an eye-gaze tracker, and a stereo vision system for the extraction of relevant features from the driver, the vehicle, and the environment. Several driver behavioral features are investigated to determine whether there is a relevant relation between the driver’s eye fixations and the prediction of driving maneuvers

    AI-based framework for automatically extracting high-low features from NDS data to understand driver behavior

    Get PDF
    Our ability to detect and characterize unsafe driving behaviors in naturalistic driving environments and associate them with road crashes will be a significant step toward developing effective crash countermeasures. Due to some limitations, researchers have not yet fully achieved the stated goal of characterizing unsafe driving behaviors. These limitations include, but are not limited to, the high cost of data collection and the manual processes required to extract information from NDS data. In light of this limitations, the primary objective of this study is to develop an artificial intelligence (AI) framework for automatically extracting high-low features from the NDS dataset to explain driver behavior using a low-cost data collection method. The author proposed three novel objectives for achieving the study's objective in light of the identified research gaps. Initially, the study develops a low-cost data acquisition system for gathering data on naturalistic driving. Second, the study develops a framework that automatically extracts high- to low-level features, such as vehicle density, turning movements, and lane changes, from the data collected by the developed data acquisition system. Thirdly, the study extracted information from the NDS data to gain a better understanding of people's car-following behavior and other driving behaviors in order to develop countermeasures for traffic safety through data collection and analysis. The first objective of this study is to develop a multifunctional smartphone application for collecting NDS data. Three major modules comprised the designed app: a front-end user interface module, a sensor module, and a backend module. The front-end, which is also the application's user interface, was created to provide a streamlined view that exposed the application's key features via a tab bar controller. This allows us to compartmentalize the application's critical components into separate views. The backend module provides computational resources that can be used to accelerate front-end query responses. Google Firebase powered the backend of the developed application. The sensor modules included CoreMotion, CoreLocation, and AVKit. CoreMotion collects motion and environmental data from the onboard hardware of iOS devices, including accelerometers, gyroscopes, pedometers, magnetometers, and barometers. In contrast, CoreLocation determines the altitude, orientation, and geographical location of a device, as well as its position relative to an adjacent iBeacon device. The AVKit finally provides a high-level interface for video content playback. To achieve objective two, we formulated the problem as both a classification and time-series segmentation problem. This is due to the fact that the majority of existing driver maneuver detection methods formulate the problem as a pure classification problem, assuming a discretized input signal with known start and end locations for each event or segment. In practice, however, vehicle telemetry data used for detecting driver maneuvers are continuous; thus, a fully automated driver maneuver detection system should incorporate solutions for both time series segmentation and classification. The five stages of our proposed methodology are as follows: 1) data preprocessing, 2) segmentation of events, 3) machine learning classification, 4) heuristics classification, and 5) frame-by-frame video annotation. The result of the study indicates that the gyroscope reading is an exceptional parameter for extracting driving events, as its accuracy was consistent across all four models developed. The study reveals that the Energy Maximization Algorithm's accuracy ranges from 56.80 percent (left lane change) to 85.20 percent (right lane change) (lane-keeping) All four models developed had comparable accuracies to studies that used similar models. The 1D-CNN model had the highest accuracy (98.99 percent), followed by the LSTM model (97.75 percent), the RF model (97.71 percent), and the SVM model (97.65 percent). To serve as a ground truth, continuous signal data was annotated. In addition, the proposed method outperformed the fixed time window approach. The study analyzed the overall pipeline's accuracy by penalizing the F1 scores of the ML models with the EMA's duration score. The pipeline's accuracy ranged between 56.8 percent and 85.0 percent overall. The ultimate goal of this study was to extract variables from naturalistic driving videos that would facilitate an understanding of driver behavior in a naturalistic driving environment. To achieve this objective, three sub-goals were established. First, we developed a framework for extracting features pertinent to comprehending the behavior of natural-environment drivers. Using the extracted features, we then analyzed the car-following behaviors of various demographic groups. Thirdly, using a machine learning algorithm, we modeled the acceleration of both the ego-vehicle and the leading vehicle. Younger drivers are more likely to be aggressive, according to the findings of this study. In addition, the study revealed that drivers tend to accelerate when the distance between them and the vehicle in front of them is substantial. Lastly, compared to younger drivers, elderly motorists maintain a significantly larger following distance. This study's results have numerous safety implications. First, the analysis of the driving behavior of different demographic groups will enable safety engineers to develop the most effective crash countermeasures by enhancing their understanding of the driving styles of different demographic groups and the causes of collisions. Second, the models developed to predict the acceleration of both the ego-vehicle and the leading vehicle will provide enough information to explain the behavior of the ego-driver.Includes bibliographical references
    • …
    corecore