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ABSTRACT 

SHORT-TERM CRASH RISK PREDICTION CONSIDERING PROACTIVE, 

REACTIVE, AND DRIVER BEHAVIOR FACTORS 

 

by 

Sina Darban Khales 

 

Providing a safe and efficient transportation system is the primary goal of transportation 

engineering and planning. Highway crashes are among the most significant challenges to 

achieving this goal. They result in significant societal toll reflected in numerous fatalities, 

personal injuries, property damage, and traffic congestion. To that end, much attention has 

been given to predictive models of crash occurrence and severity. Most of these models are 

reactive: they use the data about crashes that have occurred in the past to identify the 

significant crash factors, crash hot-spots and crash-prone roadway locations, analyze and 

select the most effective countermeasures for reducing the number and severity of crashes. 

More recently, the advancements have been made in developing proactive crash risk 

models to assess short-term crash risks in near-real time. Such models could be applied as 

part of traffic management strategies to prevent and mitigate the crashes. The driver 

behavior is found to be the leading cause of highway crashes. Nevertheless, due to data 

unavailability, limited studies have explored and quantified the role of driver behavior in 

crashes. The Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 

NDS) offers an unprecedented opportunity to perform an in-depth analysis of the impacts 

of driver behavior on crashes events. 

The research presented in this dissertation is divided into three parts, corresponding 

to the research objectives. The first part investigates the application of advanced data 

modeling methods for proactive crash risk analysis. Several proactive models for segment 

level crash risk and severity assessment are developed and tested, considering the proactive 

data available to most transportation agencies in real time at a regional network scale. The 

data include roadway geometry characteristics, traffic flow characteristics, and weather 

condition data. The analysis methods include Random-effect Bayesian Logistics 

Regression, Random Forest, Gradient Boosting Machine, K-Nearest Neighbor, Gaussian 



 

Naïve Bayes (GNB), and Multi-layer Feedforward Deep Neural Network (MLFDNN). The 

random oversampling technique is applied to deal with the problem of data imbalance 

associated with the injury severity analysis. The model training and testing are completed 

using a dataset containing records of 10,155 crashes that occurred on two interstate 

highways in New Jersey over a period of two years. The second part of the study analyzes 

the potential improvement in the prediction abilities of the proposed models by adding 

reactive data (such as vehicle characteristics and driver characteristics) to the analysis. 

Commonly, the reactive data is only available (known) after the crash occurs. In the 

proposed research, the crash analysis is performed by classifying crashes in multiple 

groupings (instead of a single group), constructed based on the age of drivers and vehicles 

to account for the impact of reactive data on driver injury severity outcomes. The results 

of the second part of the study show that while the simultaneous use of reactive and 

proactive data can improve the prediction performance of the models, the absolute crash 

probability values must be further improved for operational crash risk prediction. To this 

end, in the third part of the study, the Naturalistic Driving Study data is used to calibrate 

the crash risk models, including the driver behavior risk factors. The findings show 

significant improvement in crash prediction accuracy with the inclusion of driver behavior 

risk factors, which confirms the driver behavior to be the most critical risk factor affecting 

the crash likelihood and the associated injury severity. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Problem Background 

The primary goal and purpose of highway transportation agencies is to provide a safe and 

efficient highway transportation system. Highway crashes are the most significant 

challenge to this goal. They result in significant societal toll reflected in numerous 

fatalities, personal injuries, and property damage. According to the National Highway 

Traffic Safety Administration, over 6.78 million people were involved in reported highway 

crashes in the United States in 2019. Among these, there were 36,096 fatalities, and over 

2.74 million people were injured, some sustaining incapacitating injuries  (National Center 

for Statistics and Analysis, 2020). Highway crashes are also a major cause of traffic 

congestion, accounting for about 25% of non-recurring delays. More severe crashes, 

especially those occurring during peak commuting hours or in adverse weather conditions, 

may result in prolonged roadway closures and excessive traffic backups, thus affecting the 

ability of highway operating agencies to efficiently respond to and manage the clearance 

of crashes. Ability to predict when and where the crashes would occur (or are likely to 

occur) would enable the highway authorities to implement proactive traffic management 

strategies that anticipate and preempt incidents, rather than react to them.  

Besides the crash occurrence location and time, understanding the anticipated 

severity of crashes beforehand can also be beneficial. The traffic impact and disruption 

resulting from a crash are directly proportional to the crash severity, and so is the associated 

road-user and societal cost. A recent crash costs analysis published by the Federal Highway 
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Administration (FHWA) (Harmon, Bahar, & Gross, 2018) found that crash costs vary 

mainly based on their severity. According to the report, the recommended national 

comprehensive crash unit cost to be used in the FHWA benefit cost analysis is $11,900 for 

property damage only (PDO) crashes, $11,295,400 for fatal crashes, and it ranges between 

$125,600 and $655,000 for injury crashes, in 2016 dollars. Having an accurate injury 

severity prediction can help the hospitals and emergency health care providers to prepare 

adequate medical care resources and supplies in advance. The insurance companies also 

have an interest in accurate prediction of crash frequency and severity to properly assess 

their cost and be able to translate the cost of crashes to insurance premiums.  

The common interest among all these stakeholders is to improve highway safety 

and reduce the frequency and severity of crashes. The key to reducing frequency and 

severity of highway crashes is in better understanding of how, why, when, and where the 

highway crashes occur. With this knowledge, one can ascertain the necessary actions and 

strategies for reducing the probability of crash occurrence and reducing their severity. The 

problem of highway crash mitigation has been a subject of numerous research studies 

resulting in a variety of crash risk assessment and cash prediction models. Most of these 

efforts and models are taking a reactive approach to the crash analysis: they analyze the 

data about crashes that have already occurred and were reported with a sufficient level of 

detail. The main goal of such analysis is to identify the significant crash factors, identify 

crash hot-spots or crash-prone roadway locations, and to evaluate and select the most 

effective countermeasures for reducing the frequency and severity of crashes.  

More recently, there has been a great level of interest in proactive crash modeling, 

which utilizes the data collected in near-real time to assess the short-term crash risks and 
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severity risk of crashes. The goal of these models is to identify the roadways with higher 

crash risk and assist in selecting the traffic management strategies to prevent the occurrence 

of highway crashes and mitigate their negative effects on the overall traffic safety and 

mobility. The analytics resulting from such models can help the highway agencies to 

strategically plan the deployment of assets dedicated to traffic incident management and 

take preemptive traffic management actions targeting the locations with elevated crash risk. 

The underlying assumption of these models is that the roadway geometry, real-time traffic, 

environmental and weather conditions can characterize crash risks at any roadway segment 

over time. These models are focused on identifying crash precursors that are likely to lead 

to crash occurrence in dynamic traffic environment using high-resolution traffic data (such 

as traffic volume, speed, and density data for 5–10 min intervals), real-time and forecasted 

weather data, and roadway geometry data. The methods and techniques employed in 

analyzing dynamic crash risk include regression analysis models, Bayesian network 

models, data envelop analysis, and more recently the machine learning modeling 

approaches, such as supervised and deep learning modeling.  

Different modeling techniques have different advantages and shortcomings. One 

common shortcoming of the proactive crash modeling analysis is the lack of consideration 

of driver-specific and vehicle-specific characteristics, which have been shown to be among 

the most significant crash factors (Darban Khales, Kunt, & Dimitrijevic; Guo et al., 2017). 

This research will address these shortcomings by analyzing the potential improvement in 

the prediction abilities of the proposed models by the simultaneous use of proactive and 

reactive data. Similar shortcoming is associated with the reactive crash injury severity 

studies, where the proactive traffic-related parameters were mostly neglected, and the 
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models were developed based on the police-reported crash databases, which do not reflect 

the traffic condition at the time of the crash. Having an understanding of the impact of 

proactive traffic conditions on the severity of crashes can help the decision makers to 

design more effective countermeasures to reduce the severity of crashes.  

This research also takes into account advantages and disadvantages of various data 

modeling methods. Based on the performance of different statistical and machine learning 

models applied in the dissertation research, it is possible to identify the models that yield 

the best results in terms of predictive power. This research presented in this dissertation 

also includes an application of an effective sampling methodology to deal with the data 

imbalance problem associated with the crash likelihood and crash injury severity analysis.  

 

1.2 Research Problem Statement 

Despite the recent advancement in operational (near-real-time) analysis of highway crash 

risks, there are serious shortcomings pertaining to the previous studies: 

1. All the existing studies dealing with the real-time crash risk prediction are based 

on the real-time traffic counts and density collected from Automatic Vehicle 

Identification (AVI) and real-time weather data collected from nearby weather 

stations. However, this kind of data is mostly available for a relatively small, 

well-instrumented roadways, without a coverage of a larger regional scope. 

Application of models on a limited local scale where such data is available, 

even if they were highly accurate, would present a challenge in making regional 

operations decisions and achieving the main objective of dynamically 

monitoring the crash risk (in terms of crash likelihood and severity) at a network 

level. 

2. All the existing proactive crash risk assessment strategies ignore the impact of 

reactive data, such as driver characteristics and vehicle characteristics, in 

predicting the injury severity associated with crashes. This identifies a need for 

a model that would consider the importance of incorporating the reactive data, 

as well as the proactive data, in the analysis.  

 



 

5 

 

3. Considering the wide range of different methodological approaches in the field 

of crash risk analysis, there is a need for comparing different models to identify 

those that demonstrate the best performance in terms of accuracy and reliability 

of the cash risk and severity prediction.  

4. Considering the problem of low frequency of killed/injured cases in the crash 

severity models, it is necessary to apply an appropriate method for dealing with 

the highly imbalanced datasets.  

The research questions that constitute the problem statement for this dissertation are the 

following: 

• What modeling framework should be applied that would enable a dynamic 

categorization of roadway segments in a network based on their associated 

crash risk, considering both crash reactive and crash proactive data? 

 

• Which modelling approach yields the best result for the short-term crash risk 

prediction, considering the available data, including both proactive and reactive 

data? 

 

• What data processing steps must be taken to prepare the data for crash risk 

analysis, including the appropriate methods for dealing with the imbalanced 

input data? 

 

• How can the proposed modeling approach be implemented for traffic 

management and operations purposes? 

The impetus and motivation for the proposed research is the interest in developing 

and evaluating effectiveness of a crash risk prediction model for a regional highway 

network, which would quantify the crash risks at a highway segment level. Such a model 

would be useful to regional and State transportation agencies by providing intelligence for 

a proactive decision making related to traffic incident management and law enforcement, 

especially at the outset of specific conditions with adverse effects on highway traffic safety, 

such as adverse weather conditions during peak commute hours. 

  



 

6 

 

1.3 Dissertation Research Objectives and Scope 

The dissertation research has three specific objectives: 

1. Develop a framework for segment-level crash risk assessment using proactive 

data, available for the real-time crash risk analysis. The parameters considered 

in the analysis include roadway geometry characteristics and dynamic 

parameters affecting the crash risk, including temporal characteristic (e.g., 

season, day of the week, time of day), traffic flow characteristics (e.g., vehicle 

volume, average speed, deviation of speed from speed limit), and weather 

conditions (e.g., precipitation and visibility). 

 

2. Develop a modeling framework and evaluate the effectiveness of simultaneous 

use of proactive and reactive data (such as driver and vehicle characteristics) in 

predicting the crash risk and injury severity. Assess any improvements achieved 

due to inclusion of the reactive data in the crash prediction models. 

 

3. In developing the modeling frameworks for crash likelihood and crash severity 

prediction, evaluate the statistical and machine learning modeling methods and 

select the one or a combination of methods that yield the best performance in 

terms of accuracy of prediction. In doing so, select the most effective sampling 

methodology that minimizes the effects of data imbalance associated with the 

crash likelihood and crash severity analysis.  

In developing the modeling framework, the historical crash data from selected 

roadways in in a regional highway network were analyzed to identify important patterns 

and statistical significance of various contributing factors. The data considered in this part 

of the analysis was limited to information currently available to transportation agencies in 

real time, at the roadway segment level, and with network-wide coverage for major 

regional roadways. This was done purposely, aiming to include the data that could be used 

for dynamic short-term crash prediction on a regional scale. The proposed modeling 

framework was implemented and tested using the dataset for selected regional roadways 

in the State of New Jersey. Different modeling methods (or techniques) were considered 

and evaluated, aiming to select the one or a combination of techniques that yield the best 

crash risk assessment results. Ultimately, the aim of the study is to utilize the findings in 

advancing the development of analytical models and tools to predict relative crash risk and 
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their severity for a given roadway segment under the given traffic and weather conditions 

or provide a ranking of roadway segments based on their relative crash risk under a given 

set of conditions. The crash risk ranking, or other safety performance measures, could then 

be used to select and prioritize crash and crash-related congestion mitigation strategies and 

actions by the highway operations agencies. 

This study also demonstrated the effectiveness of simultaneous use of reactive and 

proactive data in predicting the crash injury severity in conjunction with crash risk analysis. 

This has not been reported in the literature so far (to the best of the author’s knowledge). 

To this end, the utility of different analytical models was investigated, comparing the model 

results under two different conditions: 1) using proactive data only; and 2) using the 

combination of reactive and proactive data. The results of this comparison can help to 

acquire better knowledge of the optimal set of input data for analyzing and predicting the 

crash frequency and crash injury severity on highways. This will ultimately allow the 

transportation agencies and decision makers to make more precise and effective decisions, 

as well as design appropriate countermeasures aimed at reducing the frequency and 

severity of crashes (Yahaya et al., 2020). The findings of this study can also be used to 

perform a more accurate crash risk assessment of the roadways at the roadway segment 

level. The same traffic safety modeling can be used by the insurance companies to improve 

their Usage-Based Insurance (UBI) system, which uses vehicle telemetry data to determine 

the risk level of individual drivers.  

Both in analyzing crash risk and crash severity, the input data is highly imbalanced, 

contrasting crashes to non-crash outcomes, or severe crashes (with injuries or fatalities) to 

property-damage-only (PDO) crashes. In both cases, the crashes and severe crash outcomes 
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represent rare events, or vastly underrepresented minority classes in the analysis sample. 

This makes it critical to adopt an effective sampling method to overcome the sample 

disbalance in predicting these rare events. To overcome the data imbalance problem, this 

study applied a transformation technique that generates new artificial instances from the 

original classes to achieve a more balanced dataset. The results of the analysis showed an 

improvement in the prediction performance of the models for the minority classes after 

alleviating the data imbalance problem. 

 

1.4 Dissertation Organization 

The dissertation is presented in six chapters. The first chapter provides a brief introduction 

of the research problem background and defines the research problem, research questions, 

objectives of the dissertation, and it outlines the research scope for addressing the stated 

research problem. Chapter 2 provides the literature review followed by a summary of 

literature review findings. Chapter 3 presents the research approach and methodology for 

implementing advanced data modeling for crash likelihood and severity prediction using 

both real-time traffic and weather data, and the recorded data from the naturalistic driving 

study. The case studies that demonstrate implementations of the proposed models are 

presented in Chapter 4. Chapter 5 discusses the model results and provides a summary of 

the practical implications of demonstrated models. Lastly, the research conclusions along 

with a summary of the research contributions and future studies are discussed in Chapter 

6.  
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CHAPTER 2 

LITERATURE REVIEW 

 

The most important aspects of analyzing the crash risk are the crash likelihood and crash 

injury severity. Conceptually, the crash likelihood and severity are influenced by a set of 

factors related to driver performance, roadway characteristics, vehicle characteristics, and 

environmental factors. The data describing the crash factors and circumstances are 

commonly collected and documented by the law enforcement officers after the crash 

occurrence as part of crash investigation and reporting. Advances in Intelligent 

Transportation Systems (ITS) and data collection technologies have vastly improved the 

ability of transportation agencies to collect and analyze traffic and road performance data 

in real time, such as segment-level travel time, speed, volume, occupancy, and road-

weather data. Nevertheless, the challenges in this respect remain as the data collection is 

often focused on specific sections of major roadways, with a limited coverage of the reginal 

transportation network. At the same time, numerous studies have been conducted with the 

goal of analyzing the data collected in real-time to assess the likelihood of crashes and their 

severity, which provides an excellent basis for development of crash prediction models 

with a regional scope in mind.  

 

2.1 Crash Likelihood Analysis 

The great majority of the previous studies define crash likelihood analysis as a binary 

classification problem, differentiating between crash and non-crash outcomes. Previous 

studies applied a variety of statistical models to analyze the crash likelihood , among which 
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the Bayesian logistic regression (Ahmed, Abdel-Aty, Lee, & Yu, 2014; Ahmed, Abdel-

Aty, & Yu, 2012; Ahmed & Abdel-Aty, 2011; Wang, Shi, & Abdel-Aty, 2015) and 

conditional logistic regression (Kwak & Kho, 2016; Yuan & Abdel-Aty, 2018) are the 

models most commonly used. 

Ahmed and Abdel-Aty (2011) performed a matched case-control binary logistic 

regression analysis to examine the crash precursors. Two datasets were used in this study: 

speed data collected by AVI systems and the corresponding crash data from the crash 

database maintained by the Florida Department of Transportation for year 2008. The 

parameters considered in the model were average speeds, standard deviations of the speed, 

and the logarithm of the coefficient of variation in speed, all aggregated into 5-minute 

intervals. In addition to the crash location segment, the speed data were also obtained for 

three upstream and three downstream segments closest to the crash segment. The findings 

of the study showed that the speed parameters obtained from AVI systems within 1.5 mile 

of the crash location were statistically significant, while the speed parameters obtained 

from devices that were more than 3 miles far from the crash location were statistically 

insignificant to model the likelihood of crash.  

Xu, Liu, Yang, and Wang (2016) developed a random-effect logit model to predict 

the secondary crashes on freeways. The study area included a 35-mile section on the I-880 

freeway in the State of California. The section is equipped with 134 loop detectors, which 

provided high resolution traffic data including count, speed, and detector occupancy for 

each lane every 30 seconds. Crash data was also obtained from the Statewide Integrated 

Traffic Records System (SWITRS), which is maintained by the California Department of 

Transportation (Caltrans). The real-time traffic data was further aggregated into 5-minute 
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intervals and the data for the 5-10 minute prior to the crash was used to represent the traffic 

condition at the time of the crash occurrence. The reason for selecting this time frame was 

to account for the potential inaccuracies in the reported crash time. A comparative analysis 

was performed for the models with and without the traffic variables. Two likelihood ratio 

tests were conducted to assess the effect of including the traffic variables and the random-

effect parameter on the performance of the models. The results showed that the inclusion 

of both the traffic variables and the random-effect parameter improved the performance of 

the models. Finally, AUC value was used to evaluate the predictive performance of the 

models. The model with both the traffic variables and the random-effect parameter 

provided an AUC value of 0.83, which was 7% higher than the value obtained for the model 

without the traffic variables and random-effect parameter.  

Wang et al. (2015) conducted a study to predict crashes on expressway ramps. 

Three expressways in Central Florida were included in the study area: SR-408 (14.2 mi), 

SR-417 (26.9 mi), and SR-528 (7.6 mi). The crash prediction was based on the data 

recorded from July 2013 through March 2014. The data used in the study included: (1) 

crash data from the Florida DOT statewide crash database, (2) traffic flow data provided 

by the Central Florida Expressway Authority, (3) roadway geometry data derived from the 

roadway Geographic Information System (GIS), and (4) weather data from the National 

Climate Data Center. To reduce the noise in data, the traffic data was aggregated into 5-

minute intervals, and the period of 5-to-10 minutes prior to the time of crash was selected 

to represent the traffic conditions. Compared with the traffic data within the 5-minutes 

period before the crash, it was discovered that the period of 5-10 minutes prior to the time 

of crash provided better model performance and was also sufficient enough to disseminate 
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warning information to the drivers. The non-crash cases for the model calibration were 

generated by randomly selecting 0.05% of the 11,270,808 5-minute intervals (12 intervals 

per hour * 24 hours * 276 days * 141 ramps). The final dataset was further divided into 

two parts based on the crash type (single vehicle vs. multi-vehicle). The dataset for each 

crash type was also split into training and validation datasets with a ratio of 70:30. The 

Pearson correlation test was performed before the model development to detect potential 

correlations between the explanatory variables. The Bayesian logistic regression was used 

to establish the prediction models for a single vehicle (SV) and multi-vehicle (MV) crashes. 

Five variables were found to be significant in the SV crash prediction model: logarithm of 

the vehicle count in 5-minute intervals, speed, ramp configuration, road surface condition, 

and visibility. The AUC for the training and validation were also found to be 0.9346 and 

0.9710, respectively. In addition, the overall accuracy was 0.89 for the training set and 

0.904 for the validation set. All the significant variables in the SV model, except the speed, 

were found to be significant in the MV model as well. The AUCs for the training and 

validation were 0.7644 and 0.76, respectively, and the overall accuracy was 0.643 for the 

training set and 0.764 for the validation set.   

Xu, Tarko, Wang, and Liu (2013) developed a model to predict the crash likelihood 

at three different severity levels. The study area covered a 29-mile segment on the I-88 

freeway in San Francisco. The model inputs included 22 traffic flow variables derived from 

the vehicle count, occupancy, and speed data collected 30-second intervals from the 

adjacent data collection stations upstream and downstream from of the crash site. The data 

was obtained from the Highway Performance Measurement System (PeMS). The traffic 

data was aggregated into 5-minute intervals. The data for the period 5-10 minutes prior to 
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crash at the upstream and downstream detectors was used as representative of the traffic 

condition at the time of crash. In addition, the data for nine roadway-geometry variables 

were also included in the dataset, such as width of the roadway, number of lanes, and the 

roadway type. The weather condition data (clear vs. adverse) was obtained from the 

National Climate Data Center (NCDC). For each crash case, 20 non-crash cases were 

randomly selected. Traffic data, roadway geometry data, and weather data were assigned 

to all crash cases and non-crash cases in model development. A three-stage sequential 

binary logit model was used to assess the likelihood of crashes at each severity level. The 

20-fold cross-validation was also performed to evaluate the model’s performance. The 

findings of the study showed that the traffic flow characteristics contributing to crash 

likelihood were substantially different at each severity level.  

Yu and Abdel-Aty (2013) studied the real-time crash risk by analyzing a 15-mile 

mountainous freeway section of I-70 in Colorado. The datasets used in the study included: 

(1) crash data provided by Colorado DOT, and (2) real-time traffic data collected from the 

Remote Traffic Microwave Sensor (RTMS) radars. The RTMS data included speed, 

volume, and occupancy recorded in 30-second intervals. This data was further aggregated 

into 5-minute intervals and assigned to each crash from the nearest downstream detector. 

Similar to the Xu et al. (2013), the data aggregated for the period 5-10 minutes prior to the 

time of crash was selected to represent the traffic condition at the time of the crash. For 

each crash case, the average and standard deviation of the upstream and downstream 

speeds, traffic volume, and occupancy were calculated. This makes for the total number of 

18 traffic-related explanatory variables associated with each observation. Furthermore, for 

each crash case, four non-crash cases were identified and matched for the same location, 
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day of the week, and time of day, two weeks before and two weeks after the crash 

occurrence. For the modeling part, firstly, a classification and regression tree (CART) was 

developed to estimate the significant variables to be used as inputs for the crash likelihood 

models. The selected variables included: downstream average speed, crash location 

average speed, crash location standard deviation of occupancy, and crash location standard 

deviation of volume. The correlation matrix was also calculated to find potential 

correlations between the identified variables. The dataset was then split into a training set 

(70%), and three testing sets with varying sample sizes (30%, 20%, and 10%). Three 

Bayesian logistic regression models were applied using the training set: (1) Bayesian fixed-

parameter logistic regression, (2) Bayesian random-parameter logistic regression 

considering seasonal variation, and (3) Bayesian random-effect logistic regression 

considering the segment level heterogeneity. Comparing the DIC values for the three 

models demonstrated that the Bayesian fixed-parameter model had better performance than 

the other two models. Next, two SVM models, one with linear kernel and one with RBF 

kernel, were employed and tested using different testing sets. The results were compared 

to the results produced by the Bayesian logistic regression, using the Area under the ROC 

curve (AUC). The findings of the study showed that the SVM with RBF kernel models was 

superior, and therefore, concluded that some non-linear relationships existed between the 

dependent variable and independent variables in the real-time crash risk model. 

 

2.2 Crash Severity Analysis 

Similar to crash-likelihood studies, much research has been done analyzing the injury 

severity of crashes. The most frequently adopted approach to exploring the crash injury 
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severity employed discrete choice modeling. Discrete choice statistical models can be 

classified into fixed-parameter models and random-parameter models. Despite the 

extensive use of fixed-parameter models such as ordered probit (OP) and multinomial logit 

(MNL) in the past, random-parameter models started gaining more traction mostly due to 

their capability to account for the unobserved heterogeneity among observations (Milton, 

Shankar, & Mannering, 2008). A comparative study by Darban Khales, Kunt, and 

Dimitrijevic (2019) showed that random-parameter ordered probit model outperformed the 

fixed-parameter ordered probit model in studying the driver injury severity for teenage and 

older drivers. Similar conclusion was reached in the findings of Kim, Ulfarsson, Kim, and 

Shankar (2013) which showed that the mixed logit model outperformed the multinomial 

logit model.  Haleem and Gan (2013) also concluded that mixed logit model is superior to 

the standard logit model in terms of the parameters’ interpretation and goodness of fit by 

studying the effect of driver’s age and side of impact on crash injury severity on urban 

freeways.  

With the help of the recent technological advancements, studying the real-time 

crash injury severity has also gained lots of attention among researchers. The normal logit 

models and Bayesian logit models have been among the most popular modelling 

techniques for analyzing the severity of crashes in (near)real-time. Yu and Abdel-Aty 

(2014b) applied Bayesian models to classify and compare the non-severe crashes and 

severe crashes on two high-speed facilities: I-70 freeway in Colorado and State Road 408 

(SR-408) in Orlando, Florida. Four datasets were utilized to study the severity of crashes 

on I-70: (1) crash data for I-70 provided by Colorado DOT, (2) roadway segment geometry 

data from the roadway characteristics inventory, (3) real-time weather data from six 
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weather stations located along the study area, and (4) real-time traffic data collected by the 

automated vehicle identification (AVI) detectors. The real-time traffic data was aggregated 

into 6-minute intervals. The mean, standard deviation, and coefficient of variation of the 

speeds for 6-12 minutes prior to each crash were calculated to represent the traffic 

conditions before the crashes happened. The visibility conditions recorded at the closest 

weather station prior to the time of crash was also assigned to each crash to represent the 

weather conditions at the time crash. Other explanatory variables in the I-70 model 

included: two binary indicator variables (snow season vs. dry season and longitudinal grade 

≥ 4% vs. longitudinal grade < 4%), one real-time traffic variable (standard deviation of 

speed), and two joint variables (visibility * snow season and visibility * dry season). To 

analyze the severity of crashes on SR-408, crash data from the crash analysis reporting 

(CAR) system, and real-time AVI data from the Orange County Expressway Authority 

(OOCEA) were used. The same approach as in the I-70 model was implemented to 

aggregate and assign the traffic data for each crash. Three binary indicator variables 

(passenger car vs. non-passenger car, daytime vs. nighttime, and whether the impact point 

is the driver side), one roadway geometry variable (shoulder width), and one real-time 

traffic variable (standard deviation of speed) were defined as the explanatory variables in 

the crash severity models for SR-408. Four different models were used to analyze the crash 

injury severities for the two studied roadways: regular binary probit (BP) with maximum 

likelihood estimation, Bayesian BP, segment level random-effect hierarchical Bayesian 

BP, and crash-level random-effect Bayesian BP. The Bayesian models were compared 

based on the deviance information criterion (DIC). First, the results of the BP model were 

compared to the Bayesian BP, showing that for both roadways the Bayesian BP model 
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outperformed the regular BP model in terms of the number of significant variables. Second, 

the Bayesian BP model was compared to the segment level random-effect hierarchical 

Bayesian BP model: the lower value of DIC in random-effect Bayesian models indicated 

that they were superior as they better accounted for the unobserved heterogeneity in the 

data that was not captured in the Bayesian BP model. Finally, the comparison between the 

two hierarchical Bayesian BP models showed that the model performance can be improved 

by the crash level random effect model as it allowed for a more flexible error term.  

In another study, Yu and Abdel-Aty (2014a) used similar data sources to develop 

crash injury severity models for the I-70 freeway. First, Random Forest (RF) algorithm was 

used to rank the variables by significance: the steep grade indicator, speed standard 

deviation, temperature, and snow season indicators were found to be the most important 

factors. Then, a Bayesian fixed-parameter binary logit model was developed to model the 

injury severity (severe vs. non-severe). The results of the model showed that the 

temperature was not statistically significant. To account for the potential non-linearity 

between the injury severity levels and independent explanatory variables, a Support Vector 

Machine (SVM) model with radial basic function (RBF) kernel was performed. The effect 

of the explanatory variables was also quantified through the sensitivity analyses. Next, a 

random parameter logit model with an unrestricted variance-covariance matrix was used 

to model the injury severities by considering the unobserved heterogeneities and 

correlation between the input variables. Finally, the three models were compared based on 

the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC values). The 

results indicated that the SVM model and the Bayesian logit model with random parameters 

provided better results than the binary logit model with fixed parameters. 
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2.3 Combined Studies 

Several recent studies presented the models combining the prediction of both crash 

likelihood and their associated injury severity based on real-time data inputs. In one such 

study, Theofilatos (2017) investigated crash likelihood and severity by incorporating real-

time traffic and weather data for urban arterials in Athens, Greece. To build the dataset, 

traffic data from the nearest upstream loop detector and weather data from the closest 

weather station were matched to each archived crash. The traffic and weather data were 

aggregated into 1-hour intervals and used for model training. For every crash case, two 

non-crash cases were generated for the same location and same time of day one week 

before and one week after the crash occurrence. The traffic and weather data were assigned 

to non-crash cases using a similar method as for the crash cases. For the crash likelihood 

modeling, a random forest (RF) method was used to select the significant variables. Five 

variables were found to be significant and were included in the final model: 1-hour 

coefficient of variation of the upstream traffic flow, 1-hour standard deviation of the 

upstream occupancy, 1-hour standard deviation of the upstream speed, 1-hour coefficient 

of variation of the upstream speed, and 1-hour coefficient of variation of the upstream 

occupancy. Next, a correlation matrix was built to assess the correlation between the 

significant variables to avoid multicollinearity problem. Lastly, a Bayesian logistic 

regression was used to model the likelihood of crashes. The model outputs showed that the 

standard deviation of occupancy and the coefficient of variation of traffic flow had the 

highest impact on the likelihood of crashes. A similar approach was undertaken for the 

crash severity modeling, where an RF model identified the following significant variables: 

1-hour average traffic flow upstream, crash type, 1-hour coefficient of variation of the 
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upstream traffic flow, 1-hour average upstream speed, as well as 1-hour coefficient of 

variation of the upstream speed. The correlation matrix was also generated to find the 

possible correlations between these variables. Two different methods were utilized to 

model the crash severity: (1) a finite mixture logit (latent class) model, and (2) a mixed 

effect logit model. The results revealed that the finite mixture model showed a better fit 

and superior performance as the latent classes are optimally chosen by the model based on 

the Bayesian Information Criterion (BIC). 

 

2.4 Application of Machine Learning in Analyzing the Real-Time Crash Risk 

The interpretation of the outputs in statistical models is straightforward and fairly easy. 

The statistics associated with coefficients for each explanatory variable quantify the 

strength and “direction” of the relationship between the explanatory and dependent 

variables, such as crash likelihood and/or crash injury severity. However, the statistical 

models also suffer from serious limitations. One, they require assumptions about the 

distribution of the data. In addition, they assume a linear relationship between the 

explanatory variables and the dependent variable. To overcome these shortcomings of the 

statistical models, machine learning (ML) models have been applied as an alternative by 

the researchers. The ML models do not have any pre-assumptions about the nature of the 

relationship between the explanatory and dependent variables and are also reported to 

provide better fitting than the statistical models in traffic crash analysis.  

Theofilatos, Chen, and Antoniou (2019) compared the performance of machine 

learning (ML) and deep learning (DL) methods in predicting crash occurrence. The models 

were demonstrated using a case study of an urban motorway in Greece (Attica Tollway). 
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For the analysis purposes, real-time traffic data and weather data were obtained and 

matched to the crash and non-crash cases. A 1:2 ratio of crash cases to non-crash cases was 

selected for this study. In addition, the raw data were aggregated to obtain the average, 

standard deviation, and coefficient of variation of traffic-related parameters. To develop 

the models, the data was first split into a training set (75%), and a validation set (25%), and 

various ML methods were employed to predict the crash likelihood using the training set. 

The ML models considered in the study included: k-nearest neighbor, Naïve Bayes, 

decision tree (DT), RF, SVM, and shallow neural network. These models were compared 

based on the performance metrics, including accuracy, sensitivity, specificity, and AUC. 

An RF model was first applied to identify important variables. Afterward, a binary logistic 

regression model was generated with the input variables to check and confirm the degree 

of significance for each of them. The result of the binary logistic model indicated that the 

standard deviation of speed 0-15 minutes before the crash time, and the total amount of 

rainfall were the only significant variables, and they were used as inputs for the ML and 

DL models. The results of the study showed that the DL model outperformed the ML 

models as it provided a relatively balanced performance among all metrics. 

Iranitalab and Khattak (2017) compared the performance of four statistical and ML 

models in predicting the crash injury severity: MNL, Nearest Neighbor classification 

(NNC), SVM, and RF. The study found the MNL to have the weakest performance among 

all models, while the NNC outperformed the other models in terms of overall accuracy. 

Similar conclusions were reached by Zhang, Li, Pu, and Xu (2018) who compared the 

ability of two statistical models, OP and MNL, with four popular ML methods: KNN, DT, 

RF, and SVM, to correctly predict the crash injury severity outcomes. The results of the 
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study showed that the RF model had the best prediction performance. It was also found 

that the ML methods had higher accuracy than the statistical methods in general.  

 

2.5 Nature of the Input Data for Crash Analysis 

Besides the selection of the most appropriate and the best performing modeling method, 

other important considerations in developing the real-time crash models are related to the 

source and temporal aspect of the data used in model calibration. Most of the previous 

injury severity studies are based on reactive data, i.e., the data related to a crash collected 

after the crash occurrence (Abdelwahab & Abdel-Aty, 2001; Chen, Zhang, Qian, Tarefder, 

& Tian, 2016; Chen, Zhang, Yang, & Milton, 2016; Delen, Sharda, & Bessonov, 2006; 

Iranitalab & Khattak, 2017; Zeng & Huang, 2014). Despite the wide application of reactive 

data in injury severity analyses, there are serious shortcomings of such approach. Reactive 

data requires a long period of observation to achieve a reasonable statistical significance 

(A. Chang, Saunier, & Laureshyn, 2017). Also, in the “reactive” injury severity analyses 

the injury had already occurred, which makes it difficult for the decision makers to identify 

and understand the operational (real-time) impact of the contributing factors on the injury 

severity of crashes, which ultimately could help with preventing (or mitigating) crashes in 

real-time. Thus, the need emerged for proactive methods for roadway safety analyses that 

do not rely solely on the data describing the crashes that have already occurred (Saunier & 

Sayed, 2010). 

Unlike the reactive data, the proactive data is collected before the crash occurrence. 

As mentioned before, until recent years, historical reactive data had been the universal 

metric for crash severity analyses. Nevertheless, due to the recent technological 
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advancement, traffic management authorities are becoming more interested in proactive 

traffic management strategies. These strategies are mainly focused on identifying crash 

precursors that are likely to lead to crash occurrence in dynamic traffic environment using 

proactive high-resolution traffic data collected from loop detectors, and weather 

characteristics collected from weather stations. Using proactive data enables the decision-

makers to observe the progression of factors leading to different severity levels in real-

time. In that context, a predictive data analysis can help identify the warning signs for the 

decision makers to first prevent the crashes occurrence, and next, to take proper actions to 

reduce the severity of potential crashes.  

Recently, there has been a handful of studies applying statistical and ML models 

using proactive data for crash injury severity prediction. Some examples are provided in 

Section 3.2. Even though these studies have confirmed the important impact of the dynamic 

traffic and weather variables in predicting the crash injury severity outcomes, there is a 

common limitation associated with these proactive strategies. Namely, all the existing 

studies in the real-time crash risk prediction field are based on the real-time traffic counts 

and density collected from Automatic Vehicle Identification (AVI) and real-time weather 

data collected from weather stations. However, this kind of data is mostly available on 

specific, well-equipped roadway segments, without a coverage of a larger regional scope. 

Application of models on a limited local scale where such data is available, even if they 

were highly accurate, would present a challenge in making regional operations decisions 

and achieving the main objective of dynamically monitoring the crash risk (in terms of 

likelihood and severity). Besides, looking at the findings of the previous studies using 

proactive data, one cannot ignore the important influence of reactive variables on 
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predicting the crash injury severity. Therefore, as remarked by Reiman & Pietikäinen 

(2012), using both reactive and proactive data can be more useful for the organizations and 

decision makers. This is also confirmed in a study by Sarkar, Pramanik, Maiti, & Reniers 

(2020), which showed the effectiveness of using a combination of active data and proactive 

data in predicting the injury severity of accidents in workplaces.   

 

2.6 Driver Behavior and Naturalistic Driving Study 

The literature review revealed an important role of a factor which cannot be either grouped 

as proactive or reactive. Driver behavior, on which the data is not commonly collected 

either before or after the crash occurrence, has been found to have a key influence on the 

probability of crash risk. The research by Treat et al. (1979) has indicated that human errors 

are the main cause of 93% of crashes. The same study found that environmental 

characteristics and vehicle characteristics account for only 12-34% and 4-13% of crashes, 

respectively. This was confirmed by another study conducted by the National Motor 

Vehicle Crash Causation Survey (NMVCCS), which found that the critical reason, which 

is defined as the last event of the crash causal chain, was assigned to the drivers in about 

94% of crashes (Singh, 2018). This number is as small as 2% for both the vehicle 

component failure and the environmental characteristics (e.g., slick roads, weather, etc.). 

The same report also found that the driver recognition errors such as inattention, internal 

and external distractions, and inadequate surveillance were the most frequently assigned 

driver-related reasons for crash (41%). In addition, it was found that about 33% of crashes 

with driver-related causation could be attributed to driver decision errors, such as driving 

too fast given the environmental conditions or roadway geometry (e.g., in sharp horizontal 
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curves), false assumption of other drivers’ actions, or illegal maneuvers and misjudgment 

of the gap between the vehicles given their speeds.  

The majority of the previous studies of short-term crash risk focused on the role of 

traffic conditions (speed, volume, etc.), roadway geometry characteristics, and 

environmental characteristics as the contributing or crash risk factors. Thus, more attention 

needs to be given to consideration of driver-related factors, including driver behavior, 

which have not been well addressed due to the difficulty of data collection. Since the 

conventional sources of crash data (e.g., crash reports filed by the law enforcement) do not 

provide the detailed driver behavior information, alternative data collection techniques 

have been used to obtain this information. Driving behavior questionnaire, on-road data 

collections, and driving simulation are the most commonly used methods to this end 

(Bärgman, 2016). All three methods are relatively inexpensive and require short collection 

time. However, there are serious limitations associated with each one of them. The validity 

of driving behavior questionnaires is challenged by many researchers (Agramunt, 2018). 

The data collected on-road does not provide a rigorous understanding of driver behavior 

(van Schagen & Sagberg, 2012), and it was found that the actual driver behavior differs 

from what was observed in a simulated environment (Zöller, Abendroth, & Bruder, 2019) 

The recent advancements in information technologies and data collection 

techniques have enabled driver monitoring in natural driving conditions and recording of 

the microscopic driver behavior and vehicle performance prior to safety critical events. 

This new capability provided a great opportunity for traffic safety researchers to perform 

an in-depth analysis of crash/near-crash (CNC) contributing factors. One example of 

collecting such data is the naturalistic driving study (NDS), in which the vehicles are 
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instrumented with on-board data acquisition systems such as cameras, sensors, and radars 

that automatically and continuously collect driver’s and vehicle’s parameters.  In general, 

NDS data has made five main improvements over police-reported crash records, which has 

long been the main source of data in the crash risk studies:  

1. NDS data has minimized the human error in data entry and processing, which 

is a common shortcoming associated with police-reported crash records.  

 

2. NDS data includes information on near-crash events as well as crash events, 

which helps to alleviate the challenge of imbalance between the non-crash 

events and comparatively small number of reported crash events. 

 

3. NDS data includes baseline events, which enables the comparison of the 

influence of different factors associated with crash and non-crash events in the 

crash likelihood models. 

 

4. NDS data provides detailed information on driver behavior, which is usually 

lacking in police-reported crash records. 

 

5. Unlike police reported crashes, the detailed data extracted for each event in 

NDS are video recorded and can be repeatedly verified and analyzed. This 

makes the NDS data more reliable than police-reported data. 

   

Considering the above, NDS data has been used in a number of recent studies for 

crash risk analysis. Arvin and Khattak (2020) studied the impact on the CNC probability 

of the driver distraction caused by performing secondary tasks 0-15 seconds prior to a crash 

or non-crash event. The study also investigated the association of impaired driving with 

the CNC risk. The dataset used in the study contained the data from 9,239 trips taken by 

1,546 drivers, with 7,396 baseline (non-crash) events, 1,228 near-crashes, and 617 crashes. 

Four combinations of fixed and random-parameter logistic regression models were 

developed in the study: cellphone-oriented distraction duration model, object-oriented 

distraction duration model, activity-oriented distraction duration model, and impaired 

driving model. Along with the duration of distraction and impaired driving, the traffic 
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density and vehicular movement were also considered in the model development as control 

factors.  The results of the study showed a significant relationship between the duration of 

distraction and impaired driving and the increased chance of CNC involvement.   

Bakhit, Guo, and Ishak (2018) also studied the risk associated with CNC events 

when drivers are distracted by a secondary task. To this end, they first showed a significant 

correlation between the engagement in a secondary task and CNC risk by using a bivariate 

probit model. Next, they developed two different models to quantify the increased risk 

associated with each secondary task: a multinomial logit model and an association analysis. 

The results from both models revealed that reading while driving and reaching for an object 

are the most significant contributors to a crash/near-crash occurrence.  

Wu and Xu (2018) used the NDS data to analyze the impact of familiarity with the 

traveled road on the secondary task engagement. The data used in the study comprised of 

557 trips including 501 trips on familiar roads and 56 trips on unfamiliar roads. All trips 

were completed by a group of 155 drivers during daytime and under fine weather 

conditions. The impact of unfamiliarity was explored by comparing the frequency and 

duration time of different distracted driving activities on familiar and unfamiliar roads. The 

findings of the study showed the higher chance of involvement in secondary tasks while 

driving on familiar roads. In addition, duration of distracted driving was also found to be 

higher on familiar roads compared to unfamiliar roads.   

Bharadwaj, Edara, and Sun (2019) developed a logistic regression model to 

estimate crash risk in work zones based on NDS data. The risk factors investigated in the 

model encompassed duration of secondary task, driving behavior, traffic density, locality, 

traffic control, and lighting condition. The logistic regression model was found to have an 
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acceptable goodness of fit (Chi-squared = 7.69, and p-value = 0.46) and a good predictive 

performance (AUC = 0.8897). A matched case-control model along with the odd ratios 

were used to quantify the risk of different factors. According to the model results, the driver 

behavior is the most critical risk factor in work zone crashes. More specifically, the driver 

inattention was found to be the most significant among the driver behaviors that increase 

the risk of crash/near-crash events in work zones.  

Mousa, Bakhit, and Ishak (2019) compared the performance power of four machine 

learning models in predicting the CNC events: extreme gradient boosting (XGB), gradient 

boosting (GB), bagging average (BANN), and deep-learning neural network (DNN). The 

study used two distinct sets of data from NDS database: driver characteristics records and 

event records. The driver characteristics records included the following driver attributes:  

age, gender, employment status, marital status, years of driving, average annual miles 

traveled, education level, household income, and State. The event records included both 

the CNC and baseline events, each with the following attributes: environmental conditions, 

road conditions, and driving behavior associated with them. In addition, the oversampling 

technique was used to alleviate the data imbalanced problem. A total of 22 variables was 

employed to train the models. The results of the study showed that XGB outperformed all 

other models with a classification accuracy of 84.9%. Also, it was demonstrated that driver 

behavior and intersection influence had the highest impact on CNC occurrence, accounting 

for 53.80% and 20.39% of the detection accuracy of the model, respectively. 

Y. Chang, Bharadwaj, Edara, and Sun (2020) used NDS data to: (1) evaluate the 

risk of CNC events by employing a large set of driver characteristics and event 

characteristics using logistic regression models, and (2) Predict and classify CNC events 
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using three distinct machine learning methods: RF, DNN, multilayer feedforward neural 

network (MFNN), and t-distributed stochastic neighbor embedding (t-SNE). The focus of 

the study was on the CNC events that occurred around work zones. The logistic regression 

models were developed for both work zone (WZ) and non-work zone (NWZ) datasets to 

predict CNC against baseline events. The results of the models indicated that driving 

behavior, secondary task duration, maneuver judgement, and traffic density were the most 

significant contributing factors of CNC events, both in the WZ and NWZ areas. The 

calculated odds ratios demonstrated that odds of CNC events for different risk factors 

followed similar trends for both WZ and NWZ. However, the duration of secondary task 

and traffic density resulted in increased risk of involvement in a CNC event in WZ 

compared to NWZ. The AUC values for the WZ and NWZ models were 0.8414 and 0.8564 

respectively, indicating the satisfying prediction ability of the models. In addition, two 

scenarios were considered in this study for event classification: in Case I, the events were 

classified into safety critical events (crash or non-crash) and baseline events; in Case II, the 

classification was between crash and near crash events. In both cases, 11 driver indicator 

variables were utilized to develop the models. In addition, 30 other pre-incident variables 

were considered in developing the model for Case I, and 61 other pre-incident variables in 

Case II. For WZ events, the RF model was found to have the best predictive performance 

with successfully predicting 86.3% of events in Case I and 91.2% of events in Case II. 

However, the DNN model outperformed the other three models in predicting crash and 

near-crash events in NWZ. 

Osman, Hajij, Bakhit, and Ishak (2019) performed a comparative analysis for 

predicting the near-crash events from NDS vehicle kinematics data (speed, longitudinal 



 

29 

 

acceleration, lateral acceleration, yaw rate, and pedal position) using several machine 

learning methods: KNN, RF, SVM, DT, GNB, and AdaBoost. The hypothesis of this study 

was that vehicles experience a change in their kinematic pattern before a near-crash 

occurrence. The dataset used in the study contained 250 near-crashes and 250 baseline 

events. The findings of the study showed that AdaBoost outperformed all other models 

with the recall value of 100%, precision of 98%, and F1-score of 99%. 

In conclusion, most of the aforementioned studies have confirmed driver behavior 

to be a leading indicator of crashes.  

 

2.7 Summary of the Literature Review Findings 

The summaries of selected crash likelihood and crash severity analysis studies reviewed as 

part of the literature search are provided in Table 2.1 and Table 2.2, respectively. 
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Table 2.1 Summary of the Selected Crash Likelihood Prediction Studies 

Article Data Sources Modeling Method* 
Top Performing Model 

Metric(s) 

Ahmed and 

Abdel-Aty 

(2011) 

• Speed data from AVI 

systems  

• Crash data from FDOT 

• Binary logistic regression • Avg. Sensitivity: 0.68   

• Avg. Specificity: 0.53 

Xu, Liu, Yang, 

and Wang 

(2016) 

• High resolution traffic 

data (count, speed, 

occupancy)   

• Crash data from Caltrans 

• Fixed-effect logistic 

regression  

• Random-effect logistic 

regression 

• AUC: 0.83 

Wang et al. 

(2015) 
• Traffic data from MVDS  

• Roadway geometry data  

• Weather data from 

NCDC  

• Crash data from FDOT 

• Bayesian logistic regression • SV crashes model: 

AUC: 0.97; Overall 

accuracy: 0.9  

• MV crash model: AUC: 

0.76; Overall accuracy: 

0.76 

Xu, Tarko, 

Wang, and Liu 

(2013) 

• Traffic data from loop 

detectors  

• Roadway geometry data 

from PeMS  

• Weather data from 

NCDC  

• Crash data from Caltrans 

• Sequential binary logit 

model 

• PDO crashes: Overall 

accuracy: 0.75  

• Non-incapacitating and 

possible injury (BC) 

crashes: Overall 

accuracy: 0.67   

• Fatal and incapacitating 

injury (KA) crashes: 

Overall accuracy: 0.76 

Yu and Abdel-

Aty (2013) 
• Traffic data from RTMS  

• Crash data from CDOT 

• Bayesian fixed-parameter 

logistic regression  

• Bayesian random-parameter 

logistic regression  

• Bayesian random-effect 

logistic regression  

• SVM with linear kernel 

function  

• SVM with RB kernel 

function 

• AUC: 0.77 

Theofilatos et 

al. (2019) 
• Traffic data from 

inductive loop detectors 

• Weather data from the 

Hydrological 

Observatory of Athens 

website 

• Crash data from Greek 

crash database 

• KNN 

• NB 

• DTs 

• RF 

• SVM 

• SNN–Shallow Learning 

• DFNN 

• Overall accuracy: 0.68 

• Sensitivity: 0.52 

• Specificity: 0.77 

• AUC: 0.64 

* The top performing modeling method is shown in bold font. 
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Table 2.2 Summary of the Selected Crash Severity Prediction Studies 

Article Data Sources Modeling Method* 
Top Performing Model 

Metric(s) 

Yu and Abdel-

Aty (2014b) 
• Traffic data from AVI 

detectors  

• Roadway Geometry 

data from RCI  

• Weather data from 

weather stations  

• Crash data from CDOT 

and CAR 

• Regular BP model  

• Bayesian BP model  

• Random-effect hierarchical 

Bayesian BP model  

• Random-effect Bayesian BP  

- 

Yu and Abdel-

Aty (2014a) 
• Traffic data from AVI 

detectors Roadway  

• Geometry data from 

RCI  

• Weather data from 

weather stations  

• Crash data from CDOT 

• Bayesian fixed-parameter 

binary logit model  

• SVM with RB kernel 

function  

• Random-parameter logit 

model with unrestricted 

variance-covariance matrix 

AUC: 0.83 

Zhang, Li, Pu, 

and Xu (2018) 

Crash data from FDOT • OP  

• MNL  

• KNN  

• DT  

• RF  

• SVM 

Overall accuracy: 0.53  

* The top performing modeling method is shown in bold font. 

 

Similarly, the summary of selected crash risk analysis studies based on the NDS 

data is provided in Table 2.3. 
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Table 2.3 Summary of the Selected Crash Risk Studies Based on the NDS Data 

Article Modeling Method* Significant factors 
Top Performing 

Model Metric(s) 

Arvin and 

Khattak (2020) 
• Fixed-parameter logistic regression • Duration of 

distraction 

• Impaired driving 

 

McFadden’s R-

Squared: 0.159 
• Random-parameter logistic 

regression 

Bakhit, Guo, 

and Ishak 

(2018) 

• MNL  

• Association analysis 

 

• Secondary task 

engagement 

• Geometry data 

from RCI  

 

Bharadwaj, 

Edara, and Sun 

(2019) 

• Logistic regression • Driver behavior AUC: 0.88 

Mousa, Bakhit, 

and Ishak 

(2019) 

• XGB 

• GBM 

• BANN  

• DNN 

• Driver behavior 

• Intersection 

influence 

 

Overall accuracy: 

84.9% 

* The top performing modeling technique is shown in bold font. 
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CHAPTER 3 

METHODOLOGY 

 

This chapter introduces the analysis methods, model performance criteria, and data sources 

employed in the dissertation research study. The data preparation techniques for the real-

time crash risk analysis are also discussed in this chapter. These techniques include 

generating non-crash cases for the crash likelihood modeling, determining the significant 

variables, and dealing with the data imbalance problem. 

 

3.1 General Modeling Methodology 

Two separate methodologies are introduced in this dissertation for crash risk modeling: 

first, the short-term (near-real-time) crash likelihood and crash severity prediction models 

were developed using generally available input data; second, the crash likelihood and crash 

severity prediction models were developed using NDS data to ascertain the impact of driver 

behavior in such models and discuss practical implications of using crash modeling in 

traffic management. The flowchart of the overall data analysis and modeling methodology 

for the real-time crash risk and NDS analysis are shown in Figure 3.1 and 3.2, respectively.  

As illustrated in Figure 3.1, the model development methodology for real-time 

crash risk and severity using the commonly available data includes seven main steps: 

1. In the first step, data are extracted from different data sources to create the 

input dataset. 

  

2. In the second step, two data preprocessing methods are applied to prepare 

the data for the analysis: (a) intercorrelation analysis to find the potential 

correlation between the explanatory variables, and (b) random forest (RF) 

variable importance analysis to determine the significant variables. 
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3. In the third step, the data is split into training and testing sets and the 

random oversampling examples (ROSE) method is applied on the training 

set to deal with the data imbalance problem in the crash severity dataset. 

  

4. In the fourth step, the selected modeling methods are applied and tuned to 

predict crash risk at a road segment level, based on the training set. 

  

5. Next, in the fifth step, the testing set is used to evaluate the models’ 

performance and calculate the model performance metrics. 

  

6. In the sixth step, the best model is identified based on the calculated 

performance metrics. 

 

7. Lastly, the candidate model is proposed for real-world application. 

 

 

Figure 3.1 Flowchart represinting real-time crash risk analysis. 
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The modeling methodology for the NDS analysis is very similar to the real-time 

crash risk analysis using generally available data, with minor differences.  Unlike real-time 

crash risk analysis, NDS analysis does not require extracting data from different data 

sources. Also, the preprocessing step is not part of the NDS methodology. Figure 3.2 

illustrates the steps in the model development using NDS data:  

1. In the first step, before the model training, the NDS input data is partitioned 

into training and testing sets.  

 

2. In step two, the models are developed (tuned) using the training data.  

 

3. In the third step, the model performance is assessed using the test data to 

find the best model in terms of predictive performance.  

 

4. In the fifth step, the best model is identified based on the calculated 

performance metrics. 

 

5. Lastly, the candidate model is proposed for real-world application. 
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Figure 3.2 Flowchart representing NDS analysis. 

 

3.2 Crash Analysis Modeling Methods 

Based on the literature review, a number of modeling methods was considered, including 

regression models and machine learning models. Considering the objectives and the scope 

of this study, as well as findings of the previous studies documented in literature, the 

following methods were selected for the analysis and prediction of crash likelihood and 

severity: Random Effects Bayesian Logistics Regression (BLR), Decision Tree (DT), 

Random Forest (RF), Gradient Boosting Machine (GBM), K-Nearest Neighbor (KNN), 
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Gaussian Naïve Bayes (GNB), and Multi-layer Feedforward Deep Neural Network 

(MLFDNN). Each method is briefly explained in the following subsections. 

3.2.1 Random Effects Bayesian Logistic Regression 

This study applied the random effects Bayesian logistic regression model to predict the 

crash risk. The main difference between the standard logistic regression models and 

Bayesian models is that in the former models the regression coefficients are fixed, while 

the Bayesian models assume that the coefficients follow a probability distribution. The 

other advantage of Bayesian models over the standard models is their capability of avoiding 

the odds ratio overestimation problem. 

In general, the prior distributions of coefficients can be categorized into two main 

groups based on the availability of prior information about the possible values of the 

coefficients: informative priors and non-informative priors. While informative priors are 

used when the possible values of the coefficients are known, non-informative priors are 

used when little or nothing is known about the values of the coefficients.    

In the crash models considered in this study, the binary outcomes are 𝑦𝑖 = 1 and 

𝑦𝑖 = 0: in the crash likelihood model, “1” represents a crash and “0” represents a non-crash 

case; in the crash severity model, “1” represents an injury/fatal crash, and “0” represents a 

property-damage-only (PDO) crash. The probabilities associated with the binary events are 

𝑝𝑖 and 1 − 𝑝𝑖, respectively. Thus, applying the Bayes theorem, the random effects Bayesian 

logistic regression is built as follows: 

𝑦𝑖~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) (3.1) 
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logit(𝑝)  =  log (
𝑝𝑖

1 − 𝑝𝑖
) = 𝑋𝛽 +  𝑢𝑗(𝑖) (3.2) 

where the probability of each observation (𝑦𝑖) is assumed to follow a Bernoulli 

distribution, 𝑋 is the vector of explanatory variables, and 𝛽 is the vector of coefficients 

associated with them. The 𝑢𝑗  is the random effect variables which accounts for the 

unobserved heterogeneity in the input data, e.g., associated with the geometric 

characteristics of road segments not considered in the model, such as grades, work zones, 

and pavement condition of a road segment.  

3.2.2 Random Forest (RF) 

Random Forest (RF) is an ensemble learning method that can be defined as the combination 

of Breiman’s bagging idea, (Breiman, Friedman, Stone, & Olshen, 1984) and random 

feature selection. The basic idea behind RF is to build a collection of decision trees by 

bootstrapping the sample and use a random subset of input factors for splitting at each 

node. Thus, an RF consists of multiple decision trees where each of them presents a model 

(e.g., classification) with a subset of features. The RF outputs are generated as the averages 

of all decision trees in the forest, which is referred to as voting. The RF models often 

outperform the traditional classification and regression trees (CART) in terms of accuracy 

and capability of providing unbiased error. The other advantage of RF over CART is that 

it obviates the need for a separate cross-validation dataset. The RF is a common method 

used in different crash likelihood studies (Theofilatos, 2017; Theofilatos et al., 2019).  

During the training procedure, about one-third of the training data is held out and 

is not used in model development. These cases are referred to as the out-of-bag (OOB) data 

(Breiman, 2000). The main objective of RF is to tune the primary model by selecting the 
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optimal values of hyperparameters that minimize the OOB error. For example, reducing 

the number of randomly sampled variables available for splitting at each tree node (mtry), 

reduces both the correlation and the strength. Therefore, an important step in model 

development is to find the optimal number of mtrys. OOB error is a function of the 

correlation between each pair of trees in the forest and the strength of each individual tree. 

There is a positive relationship between the inter-tree correlation and OOB error, while the 

relationship between the strength of the individual trees and OOB error is negative.  

The OOB data can further be used to quantify the variable importance. The 

importance of a variable can be explained by examining the change in the prediction error 

when that variable is permutated or excluded in the OOB data, while all the other variables 

remained unchanged. After obtaining the new OOB error, the variable importance can be 

determined by calculating Mean Decrease Accuracy (MDA) as an average difference in 

the new error and the initial error over all trees in the random forest (Nicodemus, 2011). 

Higher values of MDA indicate greater relative importance of a variable. Another variable 

importance measure is Mean Decrease Gini, which is defined as the average across the 

forest of the decrease in Gini impurity indicator for a factor (Nicodemus, 2011). While 

both methods have been used in the literature, MDA was chosen for variable ranking in 

this study. 

3.2.3 Gradient Boosting Machine (GBM) 

Gradient Boosting Machine (GBM) is a powerful ML method, proposed by Friedman 

(2001). Like RF, GBM is also an ensemble method, using decision trees as the base 

modeling approach. However, unlike RF, which creates large trees, GBM grows a 

sequence of small trees such that each tree tries to capture those parts of the training set 
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which were missed in the preceding tree (Hastie, Tibshirani, & Friedman, 2009). To this 

end, GBM identifies the missing parts using the gradient of some differentiable loss 

function on random subsamples of the training set with different sizes. In this study the 

multinomial deviance is used as the loss function.  

3.2.4 K-Nearest Neighbor (KNN) 

KNN is a machine learning method that classifies observations of interest based on the 

labels of its k-th nearest neighbors, identified based on some measure of multi-dimensional 

distance. As all the K neighboring observations do not normally belong to the same class, 

the class label of the majority of them is selected as the class label of the unclassified 

observation (Bishop, 2006). Two decisions need to be made with regards to KNN: the value 

of K and the distance function. Normally, the best value of K is achieved through an 

iterative process in which different values are examined and the one that results in the best 

model performance in terms of the selected performance metric is chosen. Small values of 

K may create weak models unable to properly classify the features in the model, while large 

values of K can lead to overfitting. In addition, as a rule of thumb, when there are only two 

classes, which is the case in our study, K should be an odd integer to avoid ties (Cigdem & 

Ozden, 2018). With respect to the distance function, Euclidean distance, weighted 

Euclidean distance, and cosine method are the most commonly used in KNN models. In 

this study, the Euclidean distance was used as the distance function. Euclidean distance can 

be formulated as: 

𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) = √∑(𝑥𝑖𝑘 −  𝑥𝑗𝑘)2

𝑝

𝑘=1

 (3.3) 
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where 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) denotes the distance between observation i and j, and 𝑥𝑖𝑘 and 

𝑥𝑗𝑘 are the value of the Kth factor for i and j, respectively.   

3.2.5 Gaussian Naïve Bayes (GNB) 

The Naïve Bayes (NB) algorithm is one of the probabilistic classification methods based 

on Bayes’ theorem, which assumes that the features are strongly independent of each other. 

This method has been used in various road safety studies (Shanthi & Ramani, 2011; 

Theofilatos et al., 2019). Using the Bayes theorem, the posterior probability of a class target 

𝑦 occurs given the attribute vector 𝑋, 𝑥𝑖 ∈ 𝑋 , 1 ≤ 𝑖 ≤ 𝑛, which is calculated as follows: 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
=

𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛
𝑖=1

𝑃(𝑋)
 (3.4) 

where  𝑃(𝑦|𝑋) denotes the posterior probability that class 𝑦 occurs given feature 

𝑥, and 𝑃(𝑋|𝑦) denotes the likelihood probability of 𝑥 given class 𝑦. The 𝑃(𝑦) and 𝑃(𝑋) 

represent the prior probabilities of class 𝑦 and 𝑋 respectively, which occur independently. 

In this study, the Gaussian Naïve Bayes (GNB) method uses the Gaussian likelihood 

function for posterior probabilities: 

𝑃(𝑥𝑖|𝑦) =  
1

√2𝜋𝜎𝑦
2

exp(−
(𝑥𝑖 − 𝜇𝑦)

2

2𝜋𝜎𝑦
2

) (3.5) 

where the parameters 𝜎𝑦, and 𝜇𝑦 are estimated using maximum likelihood.  

3.2.6 Multi-layer Feedforward Deep Neural Network (MLFDNN) 

The Multi-layer Feedforward (MLF) neural network consists of model neurons, that are 

ordered into three main groups of layers: one input layer, one output layer, and one or more 
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hidden layers (Figure 3.3). The neurons receive information from a user-provided input. 

Hidden layers are where the majority of learning takes place, and the role of output layer 

is to project the results. The MLF neural networks can generally be classified into two 

groups: shallow neural networks with a single hidden layer, and deep neural networks with 

a structure that consists of multiple hidden layers. Incorporating multiple hidden layers 

allows for a more sophisticated buildup from simple elements to more complex ones and 

enables the analysis of high-dimensional data. The Multi-layer Feedforward Deep Neural 

networks (MLFDNNs) are densely connected layers in which the inputs influence each 

successive hidden layer with different connection weights. These weights are calculated 

and adjusted based on different learning rules, such as back propagation (Svozil, 

Kvasnicka, & Pospichal, 1997).  

This study employs MLFDNN to train a function that maps a set of input variables 

𝑋 (including the explanatory variables of the crash and non-crash events) to an output 

variable 𝑦 (crash outcome or crash severity) with gradient descent, using back propagation.  

 

 

Figure 3.3 Multilayer feedforward neural network. 
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3.3 Model Performance Criteria 

The quality of the predictions provided by different models considered in this study was 

evaluated based on the confusion matrices and their related performance measures: overall 

accuracy, sensitivity, specificity, precision, F1-score, as well as the AUC value. 

Calculating these metrics requires obtaining the true positive (TP), the true negative (TN), 

the false positive (FP), and the false negative (FN) predictions first. The definitions of these 

values are provided as follows:  

• TP: True positive value is defined as the number of crash cases (injury/fatality 

cases in the injury severity model) that are correctly predicted as crash cases 

(injury/fatality cases).  

• TN: True negative value is defined as the number of non-crash cases (PDO cases 

in the injury severity models) that are correctly predicted as non-crash cases 

(PDO cases).  

• FP: False positive value is defined as the number non-crash cases (PDO cases) 

that are falsely predicted as crash cases (injury/fatal cases).  

• FN: False negative value is defined as the number of crash cases (injury/fatality 

cases) that are falsely predicted as non-crash cases (PDO cases).  

Having TP, TN, FP, and FN, the performance measures are formulated as:  

Overall accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ𝑒𝑠
 (3.6) 

Sensitivity (True Positive Rate, Recall) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.7) 

Specificity (True Negative Rate) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.8) 
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Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3.9) 

F1-score =
2∗ 𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3.10) 

Calculating TP, TN, FP, and FN requires the consideration of a threshold for 

determining whether the outcome is positive or negative (or 1 vs. 0. Changing this 

threshold, which is normally selected as 0.5, would change the value of the calculated 

overall accuracy, sensitivity, and specificity. In that sense, a performance metric, which is 

independent of the threshold’s value is desired. Receiver operating characteristic (ROC) 

curve (Figure 3.4) is a probability curve that plots sensitivity versus 1-specificity over a 

wide range of possible threshold values (Fawcett, 2006). The Area Under the ROC Curve 

(AUC) is a collective measure of the model’s ability in correctly distinguishing between 

classes and is used as a summary of the ROC curve. In this study, AUC, which is an 

evaluation metric for binary classification problems, is used as another measure to 

summarize the model’s performance.   
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Figure 3.4 Receiver operating characteristic (ROC) curve. 
Source: (Dei, 2019) 

 

The closer the values of each of these measures is to 1, the better the prediction. 

However, very often the prediction models would provide better performance relative to 

one of these measures, and comparably worse performance relative to the other measure(s). 

Understanding the implications of the balance (or rather imbalance) of these measures in 

the model output is one of the critical aspects of interpreting the modeling results.  

 

3.4 Real-time Crash Risk Analysis 

3.4.1 Data Sources 

The initial model development and analysis were conducted using the data commonly 

available to transportation agencies for planning and operational analysis, which can be 

applied in near-real time for a short-term analysis. In this study the data was obtained for a 
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sample of roadways in the State of New Jersey. In identifying the data sources and datasets 

to be collected and used in the analysis, the following types of data were of interest: 

• Historical crash records – needed to obtain a record of crashes and their severity 

as the outcomes to be predicted by the crash likelihood and crash severity 

models. 

 

• Roadway characteristics dataset – providing roadway geometry data. 

 

• Traffic condition datasets – providing real-time data on speeds, travel times, 

and vehicle volume at a roadway segment level. 

 

• Weather conditions data – providing real-time weather information, such as 

temperature, precipitation, visibility, wind, etc. 

Following the detailed search and review of the datasets available for the major 

highway facilities managed by the New Jersey Department of Transportation, the following 

were selected as the data source for the crash prediction model development and testing:   

1. NJDOT Crash Records Database, which contains records of all crashes reported 

by the Police Departments in the State of New Jersey using the NJTR-1 

Accident Report Form. The data provides detailed information about the crash 

characteristics, roadway condition, environmental (ambient) conditions, 

vehicle characteristics, as well as the condition and characteristics of all 

participants in a crash. The crash data for the period January 2017 through 

December 2018 were acquired from the NJDOT website and used in the 

analysis.  

2. NJDOT Congestion Management System (NJCMS), a dataset that provides 

estimated, synthesized hourly volume and congestion levels (expressed in terms 

of average speed and volume-to-capacity ratio) at a roadway segment level for 

all highways in NJDOT jurisdiction. This dataset also provides the basic 

roadway geometry data, such as number of lanes, median types, and shoulder, 

which were also acquired and used in developing the analysis dataset for this 

study. The datasets with 2012 and 2016 vehicle volume data were used as the 

baseline for calculating 2017 and 2018 hourly volumes for all roadway 

segments in this study. Moreover, the seasonal traffic factors were applied to 

calculate vehicle volumes specific to each month of the year.    

3. Probe-vehicle mobility data at roadway segment level, which provides the 

actual prevailing vehicle speeds and travel times aggregated from the probe 

vehicles and recorded in 1-minute increments. The data was obtained from the 

RITIS system for the sample of roadway segments and the time periods 

analyzed in the study. In spatial terms the speeds and travel times are aggregated 
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and reported in RITIS for traffic management channel (TMC) links. The limits 

of TMC links do not coincide with the roadway segments defined in the NJCMS 

dataset, and therefore it was necessary to match and conflate the speed records 

from the RITIS dataset to the roadway segments defined in the NJCMS dataset 

for the roadways included in the analysis.  

4. Historical weather data from the National Weather Service (NWS) dataset. The 

historical weather observation data was obtained from the NWS dataset for the 

locations of reported crashes and time intervals prior to the reported crash time 

(e.g., 15-30-minute interval). This data provides additional insight into ambient 

conditions at the time of crash and non-crash cases included in the model 

dataset. The Local Climatological Data (LCD) was identified as the most complete 

and reliable dataset that provides local weather information from permanent 

weather stations in 15-minute increments. The data record for each location and 

time stamp contains the ambient temperature, air pressure, visibility, hourly 

precipitation, hourly visibility, and average wind speed. LCD data were obtained 

from the National Oceanic and Atmospheric Administration (NOAA). Hourly 

visibility and hourly precipitation are considered as the most prominent weather 
variables affecting the crash likelihood and severity.  

In the next step the data from the above listed data sources was reviewed and key 

explanatory variables were identified for inclusion in the crash likelihood and crash 

severity models. 

3.4.2 Explanatory Variables 

The explanatory variables that were identified as the most critical and informative for crash 

likelihood and crash severity analysis are listed in Table 3.1.  In this study, the proactive 

data are defined as the type of data that comply with the following conditions: 1) data 

should be available in real-time and can be collected before the crash occurrence; and 2) 

data should be available for all sections of the major roadways in the State of New Jersey. 

In that sense, the traffic characteristics, roadway characteristics, and weather characteristics 

can be grouped as proactive data. The reactive data on the other hand, are the type of data 

that are generally available after the crash occurrence and will be used for the crash injury 
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severity analysis only. Driver characteristics and vehicle characteristics were classified as 

reactive data. All reactive data were extracted from the NJDOT Crash Records Database. 

 

Table 3.1 Definition of the Explanatory Variables Used in the Real-time Crash Risk 

Study 

Variable Type Class Source Description 

LANES Categorical Proactive NJCMS Number of lanes {2, 3, 4, or 5} 

Hour Categorical Proactive NJCMS Time of the crash or non-crash [hour] 

Month Categorical Proactive NJCR Time of the crash or non-crash event 

[month] 

MEDIAN_TY Binary Proactive NJCR Median type {protected or non-

protected} 

Weekend Binary Proactive NJCR Time of the crash or non-crash 

{weekend or weekday} 

Sun glare Binary Proactive NJCMS The effect of sun glare {0: no effect and 

1: Sun glare existed} 

CAPLINK Continuous Proactive NJCMS Link capacity [vehicles/hour] 

VC_RATIO Continuous Proactive NJCMS Volume-to-capacity ratio at the highway 

section during a given hour of the day 

and month [unitless] 

Vol16_Tr Continuous Proactive NJCMS Hourly Truck volume ratio [unitless] 

HourlyPrecipitation Continuous Proactive NWS Hourly precipitation at the highway 

section during the hour of the crash or 

non-crash event obtained from the 

weather records for the closest weather 

station [inches/hour] 

HourlyVisibility Continuous Proactive NWS Hourly visibility at the highway section 

during the hour of the crash or non-crash 

event obtained from the weather records 

for the closest weather station [miles] 

speed_avg_1015 Continuous Proactive RITIS Average speed on the highway section 

[miles/hour]. It is calculated for each 

crash and non-crash event as an average 

of 1-minute prevailing speeds for the 

pertinent highway section over a 10-

minute period (5-15 minute prior to the 

crash) preceding the crash or non-crash 

event. 

speed_sd_1015 Continuous Proactive RITIS Standard deviation of speed on the cash 

location highway section [miles/hour]. It 

is calculated as a standard deviation of 1-

minute prevailing speeds for the 

pertinent highway section over a 10-

minute period (5-15 minute prior to the 

crash) preceding the crash or non-crash 

event. 
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Table 3.2 Definition of the Explanatory Variables Used in the Real-time Crash Risk 

Study (Continued) 

Variable Type Class Source Description 
 

speedup_sd_1015 Continuous Proactive RITIS Standard deviation of speed on the 

upstream highway section [miles/hour]. 

It is calculated as a standard deviation of 

1-minute prevailing speeds for the 

pertinent highway section over a 10-

minute period (5-15 minute prior to the 

crash) preceding the crash or non-crash 

event. 

speeddown_sd_1015 Continuous Proactive RITIS Standard deviation of speed on the 

downstream highway section 

[miles/hour]. It is calculated as a 

standard deviation of 1-minute 

prevailing speeds for the pertinent 

highway section over a 10-minute period 

(5-15 minute prior to the crash) 

preceding the crash or non-crash event. 

speedup_dif_1015 Continuous Proactive RITIS Speed deviation from the speed limit 

[miles/hour]. Calculated as the 

difference between the average speed 

(speed_avg) and the speed limit 

(obtained for the upstream roadway 

segment from the NJCMS dataset) for 

each crash and non-crash event at the 

given highway section. 

speeddown_dif_1015 Continuous Proactive RITIS Speed deviation from the speed limit 

[miles/hour]. Calculated as the 

difference between the average speed 

(speed_avg) and the speed limit 

(obtained for the downstream roadway 

segment from the NJCMS dataset). 

Shape_Leng Continuous Proactive RITIS Length of the segment 

Age Categorical Reactive NJCR Driver’s age {age≤25, 25<age≤60, or 

age>60} 

Veh_age Categorical Reactive NJCR Driver’s age {0<age≤5, 5<age≤10, or 

age>10} 

 

3.4.3 Generating Non-crash Cases for the Crash Likelihood Modeling 

This study employed a matched case–control methodology in developing the dataset of 

crash and non-crash cases for the crash likelihood modeling. In the matched case-control 

methodology, non-crash cases are introduced in the analysis to match the crash cases in 

terms of crash characteristics such as location and time. To that end, for every crash case, 
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four non-crash cases were generated for the same location, day of the week and time of 

day, including one each in the week before, two weeks before, a week after, and two weeks 

after the crash occurrence. The 1:4 ratio of crash cases to non-crash cases was 

recommended by Ahmed and Abdel-Aty (2011) who found this value to provide slightly 

better results when compared to other crash to non-crash case ratios. In addition, according 

to the finding of another study by S. Kuhn, Egert, Neumann, and Steinbeck (2008), 

negligible improvement can be achieved by adding non-crash cases beyond 1:3 ratio. It 

should be noted that the matched case–control methodology employed in this study only 

accounted for the location (roadway) and time as the crash factors; the other factors, such 

as vehicle, driver, and environmental characteristics were not considered in the case-

control matching. 

3.4.4 Determination of Significant Variables 

In this study, Random Forest (RF) model was used to determine relative importance of 

variables to be used in the crash likelihood and crash severity models. This allows to only 

include the significant variables in models such as KNN, which can produce misleading 

results in high-dimensional space. In both the crash likelihood and crash severity model 

datasets, the Mean Decrease in Accuracy (MDA) was used as the criterion in determining 

the relative variable importance. The mean decrease in accuracy for a variable is calculated 

based on the out of bag (OOB) error. The importance of a variable can be explained by 

examining the change in the prediction error when that variable is permutated or excluded 

in the OOB data, while all the other variables remained unchanged. After obtaining the 

new OOB error, the variable importance can be determined by calculating MDA as an 

average difference in the new error and the initial error over all trees in the random forest 
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(Nicodemus, 2011). Higher values of MDA indicate greater relative importance of a 

variable. 

3.4.5 Dealing with the Data Imbalance Problem 

To overcome the problem of a low frequency of fatal crashes, the fatality class was initially 

combined with the instances in the injury class. However, even after undertaking this 

action, 79% of the cases were non-injury crashes (8,016 PDO crashes out of the total of 

10,155 crashes in the dataset) and 21% of crashes (total of 2,139) were crashes with an 

injury or a fatal outcome. In the case of training the model with a skewed distribution of 

classes, the traditional accuracy maximizer techniques are not adequate and normally tend 

to perform better in favor of the prevalent class. Therefore, it is advantageous to transform 

the dataset so as to achieve a more balanced training dataset.  

Random oversampling examples (ROSE) is a random bootstrapped-based 

technique, introduced by Menardi and Torelli (2014), which can alleviate the data 

imbalance issue in the binary classification problems. ROSE combines random 

oversampling and random undersampling by generating new artificial instances from the 

original classes based on a smoothed bootstrapped approach (Tibshirani & Efron, 1993).  

Consider a training set of size n, consisting of a binary response variable 𝑦, with 

class labels 𝑌𝑗 and a set of input data for each class, 𝑥𝑖𝑗 , 𝑖 = 1, … , 𝑛𝑗, where 𝑛𝑗 < 𝑛 is the 

number of cases in class j. For each x belonging to the class 𝑌𝑗, ROSE generates samples 

from a multivariate kernel density estimate of 𝑓(𝑥 | 𝑦 =  𝑌𝑗) as follows:  

𝑓(̂𝑥 | 𝑦 =  𝑌𝑗) =  ∑ 𝑝𝑖 Pr(𝑥 | 𝑥𝑖𝑗) = 
𝑛𝑗

𝑖=1
∑

1

𝑛𝑗
 𝐾𝐻𝑗

(𝑥 −  𝑥𝑖𝑗)
𝑛𝑗

𝑖=1
 (3.11) 
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where 𝐾𝐻𝑗
 denotes an estimated kernel function and its smoothing matrix 𝐻𝑗 is: 

𝐻𝑗 = 𝑑𝑖𝑎𝑔(ℎ1
(𝑗)

, … , ℎ𝑑
(𝑗)

) (3.12) 

 where d is the number of explanatory variables and  

ℎ𝑞
(𝑗)

= (
4

(𝑑 + 2)𝑛
)1/(𝑑+4)�̂�𝑞

(𝑗)
, 𝑞 = 1, … , 𝑑 (3.13) 

 where �̂�𝑞
(𝑗)

 is the estimated standard deviation of the 𝑞𝑡ℎ variable. 

According to Bowman and Azzalini (1997), the smoothing matrix minimizes the 

Asymptotic Mean Integrated Squared Error under the assumption that the true conditional 

densities underlying the data follow a Normal distribution. 

The practical implementation of ROSE encompasses the following steps: 

1. select 𝑦∗ =   𝑌𝑗  with probability 𝜋𝑗;  

2. select x such that 𝑦𝑘 =  𝑦∗, 𝑘 = 1, … , 𝑛 with probability 
1

𝑛𝑗
 ;  

3. sample 𝑥∗ from the estimated kernel function.  

Repeating steps 1 to 3 yields a newly generated training set of size m, with the 

probability of each class to be 𝜋𝑗.  

Implementing the newly created dataset using the ROSE method is expected to 

provide better results than using the original imbalanced dataset. In addition, the findings 

of a study by Menardi and Torelli (2014) showed that ROSE outperformed other well-

known oversampling methods, such as synthetic minority oversampling technique 

(SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002), by providing higher values of 

the area under ROC curve (AUC) in the logistic regression and classification tree models. 
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In this study, the ROSE method was applied to the training set for the crash severity models 

to generate synthetic training set. 

 

3.5 Crash Risk Modeling Using NDS Data 

3.5.1 Data Sources 

Recently, Naturalistic Driving Study (NDS) was performed under the second Strategic 

Highway Research Program (SHRP 2) of the National Academy of Science (NAS). The 

NDS has emerged as an alternative source of data for evaluating driving behavior. The 

advantage of NDS data over the traditional datasets is its ability to reflect the actual driver 

behavior. This identification is made by monitoring the driver’s actions in a natural setting 

via several on-board devices and for a relatively long period.  

The main objective of NDS is to answer the need for reducing the toll of motor 

vehicle crashes by filling the gaps of the previous studies, which investigated the driver 

reaction to different scenarios using driving simulators or test vehicles. Approximately 4 

petabytes of video and sensor data were collected and stored in the NDS dataset. The 

dataset is comprised of over 50 million miles of travel, 900,000 hours of in-vehicle time, 

and 5.5 million trips taken by instrumented vehicles of about 3,500 volunteer drivers in six 

states (Washington, New York, Pennsylvania, North Carolina, Florida, and Indiana). The 

following data categories were collected during NDS (Antin et al., 2019):  

• Videos and images. 

• Time-series data: Include vehicle kinematics (e.g., 3D acceleration and 

deceleration), forward Radio Detection and Ranging (RADAR), Global 

Positioning System (GPS) data, turn signal usage, seat belt usage, and presence 

of alcohol in the cabin.  
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• Crash/Near-crash (CNC) data:  Crashes are recorded whenever the vehicle hits 

another vehicle or object, and Near-crashes are recorded whenever a severe 

evasive maneuver is made to avoid a crash.  

 

• Driver assessments: All drivers were asked to participate in different 

assessments and questionnaires. Assessments addressed the driver’s cognitive, 

perceptive, and physical abilities, and questionnaires addressed their attitudes 

(e.g., health status and medication, perception of risk, and sensation seeking), 

driving history and knowledge of driving rules and regulations. 

 

• Vehicle features: Include information about make, model, condition, and 

onboard features (e.g., safety features, adaptive cruise control, navigation 

system, and voice recognition) of the participating vehicles. 

 

• Crash investigations: Contain two levels of crash investigations. Level I crash 

investigations provide as much information that can be obtained about a crash 

without visiting the crash site. This information may include police crash 

reports, photographs of the vehicle involved in the crash after being removed 

from the crash scene, Google Earth images of the crash location, and interview 

with the participant driver. Level II crash investigations provide all information 

included in Level I, as well as the information collected in a crash site visit. 

  

• Cell phone records: Collected from those drivers who consented to contribute 

the records of their cell phones. These records include call durations and the 

time spent for reading the text messages sent to or from the same phone. 

 

• Roadway information: Contained in the SHRP 2 Roadway Information 

Database (RID) and includes detailed information about roadway geometry 

(e.g., curves, medians, number of lanes, shoulder, locations of intersections), 

lighting condition, signs, and rumble strips for 12,000 miles of road travelled 

by the study participants. 

       

• Supplemental data: Also stored in RID and include other safety-related 

geospatial data collected mostly by transportation agencies. Such data include 

weather, work zones, and safety programs at the study locations.  

It should be noted that NDS and RID datasets can be linked through the GPS 

coordinates – latitude and longitude (McLaughlin & Hankey, 2015). 

3.5.2 Explanatory Variables 

In addition to crash and near-crash (CNC) events, the processed dataset provides more than 

19,991 baseline (non-crash) events selected using case-cohort and case-crossover random 



 

55 

 

sampling techniques, stratified by drivers and driving time (Hankey, Perez, & McClafferty, 

2016). Baseline events are critical for crash risk analysis as they provide information on 

normal driving and typical driver behavior. This dataset has the format similar to the CNC 

events dataset, and it is used in developing the crash risk models.  

For each event, data are available for 76 different variables that can be grouped in 

several categories. Two distinct datasets of the SHRP2-NDS data were merged and 

employed in this study:  

• Event characteristics dataset: Contains all the events (crash, near-crash, and 

baseline) and the associated severity level for crash events. In addition, 

environmental characteristics, roadway geometry characteristics, and driving 

behavior information are also provided as part of the event dataset. 

 

• Driver characteristics dataset: Contains the socioeconomic characteristics such 

as age, gender and education level of the drivers who participated in the program.   

Table 3.2 provides a list of the explanatory variables used in the model 

development. These variables include indicators for driver characteristics, vehicle 

characteristics, environmental characteristics, and roadway characteristics. Some variables 

listed in Table 3.2 require additional explanations are as follows: 

• Maneuver judgement: A vehicle kinematic measure-based variable that describes 

the legality and safety of a pre-incident maneuver.   

 

• Driver behavior: The drivers’ actions that cause or contribute to a crash or near-

crash event. These include the state or behavior of the driver either within seconds 

prior to a CNC event or those resulting from the context of the driving environment. 

In order to provide enough cases belonging to each behavior category, the driver 

behavior categories in this study were merged into eight larger groups, namely: 

normal driving, aggressive driving, avoiding other vehicles/pedestrians, 

distracted/drowsy/fatigued, inattention, sign/signal violation, speed violation, and 

unnecessary risky driving actions. 

  

• Driver impairment: The apparent reason for the observed driver behavior and 

judgment. In this study, driver impairment was classified into four categories: no 

impairment, drowsy/fatigued, emotional state, and alcohol or drug. 
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• Secondary task: Includes any observable driver engagement in a secondary task. 

This does not include tasks that are part of the driving task, such as speedometer 

checking, mirrors checking, blind spot checking, and gear shifting. For CNC events 

the secondary tasks begin at any point within 5 seconds prior to the precipitating 

event time and continue through the end of conflict. For baseline events, secondary 

tasks are coded for the last 6 seconds of the baseline epoch, which includes 5 

seconds prior to Event Start through one second after (to the end of the baseline). 
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Table 3.2 Definition of the Explanatory Variables Used in the NDS Crash Risk Study 

Variable Type Category 
Availability in 

real-time 
Description 

maneuverJudgment Categorical Driver 

characteristics 

Not available Maneuver 

Judgement  

Behavior Categorical Driver 

characteristics 

Not available Driver Behavior 

Impairment Categorical Driver 

characteristics 

Not available Driver Impairment 

SecondaryTask1 Categorical Driver 

characteristics 

Not available Secondary Task 

engagement 

SecondaryDur Continuous Driver 

characteristics 

 Not available Secondary task 

duration 

Seatbelt Binary Driver 

characteristics 

Not available Seatbelt Usage 

ageGroup Categorical Driver 

characteristics 

Not available Age 

educ Categorical Driver 

characteristics 

Not available Education 

Male Binary Driver 

characteristics 

Not available Gender 

lighting Categorical Environmental 

characteristics 

Available Lighting condition 

surfaceCondition Categorical Environmental 

characteristics 

Available Surface Condition 

traddicDensity Categorical Roadway 

characteristics 

Available Traffic Density 

intersectionInfluence Categorical Roadway 

characteristics 

Available Intersection 

Influence 

grade Categorical Roadway 

characteristics 

Available Roadway grade 

Curve Binary Roadway 

characteristics 

Available Roadway 

alignment 

WorkZone Binary Roadway 

characteristics 

Available Presence of work 

zone 

vehClass Categorical Vehicle 

characteristics 

Not available Vehicle 

classification 

Adv.Tech Binary Vehicle 

characteristics 

Not available Advanced vehicle 

technology 

Int.Cell Binary Vehicle 

characteristics 

Not available Vehicle integrated 

cellphone system 
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CHAPTER 4 

CASE STUDY MODEL IMPLEMENTATIONS 

 

4.1 Case Study of I-80 and I-287 in New Jersey 

The case study for developing the initial short-term (real-time) crash likelihood and crash 

severity prediction models focused on two interstate highways in New Jersey: I-80 and I-

287. The interstate I-80 has a west-to-east alignment, and the New Jersey section is 68.5 

miles long. The interstate I-287 has a south-to-north alignment and the New Jersey section 

is 67.5 miles long. Both roadways are located in the northern part of the State and had the 

highest number of crashes among the interstate highways in the State. The location of I-80 

and I-287 on the map of New Jersey is shown in Figure 4.1.  

 

 

Figure 4.1 The study area with the location of I-80, I-287, and weather stations. 
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The weather data was obtained from the LCD database from seven weather stations 

located in the proximity of I-80 and I-287. For each roadway segment the closest LCD 

station was identified based on the Euclidian distance. The locations of LCD weather 

stations that provided data for the study area are shown in Figure 4.1. All stations are 

located at the regional airports.  

4.1.1 Discussion of the Data Inputs 

The dataset included the total of 10,155 crashes that were recorded along interstate I-80 

and interstate I-287 during the period January 2017 – December 2018. Each crash was 

matched to a corresponding NJCMS record based on the unique road identifier (standard 

road identifier, or SRI) and milepost. The matching NJCMS record provided the segment-

level roadway data, such as speed limit, hourly vehicle volume, v/c ratio, number of lanes 

and type of median.  

The traffic speed data at the crash location prior to the time of crash was obtained 

from the RITIS dataset. The RITIS data was also matched to the NJCMS segment based 

on route name and milepost and added to the record of each crash. As previously indicated, 

the average speed for each segment in RITIS dataset is reported at a 1-minute interval. 

Nevertheless, to reduce the noise and the impact of human error in reporting the exact time 

of the crash, the speed data was extracted for a period of 10 minutes, between 5 and 15 

minutes prior to the crash occurrence, and then aggregated to calculate the average speed, 

the standard deviation of speed, the coefficient of variation of speed, and the deviation from 

the speed limit over the same 10-minute period. For each crash these speed indicators were 

used as model inputs.  
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In addition, the weather data was extracted from the LCD data recorded at the 

weather station closest to the crash location for the time interval matching the date and time 

of crash. The weather data extracted from the LCD dataset included hourly precipitation 

and hourly visibility observed during the hour of the crash.   

Lastly, the effect of sun glare on crash occurrence was also considered in this study. 

For this, the position of the sun (sun elevation θ and azimuth angle ∅) was estimated 

accurately based on the location (lat, long) and time (t) for each case (crash or non-crash) 

using Pysolar Python library (Stafford, 2018).  As can be seen in Figure 4.2, the horizontal 

angle between the Sun and the vehicle can be calculates as: 

ℎ𝑔𝑙𝑎𝑟𝑒 = |∅ −  𝜑| (4.1) 

where ∅ is the azimuth angle of the Sun. Similarly, the vertical angle between the 

Sun and the vehicle can be calculated using the following equation: 

𝑣𝑔𝑙𝑎𝑟𝑒 = |𝜃 − 𝜃′| (4.2) 

where 𝜃′ is the slope angle of driveway. The horizontal and vertical angle of the 

vehicle was estimated using the horizontal and vertical angle of the road segment where 

the vehicle was located at time t. Finally, after calculating the ℎ𝑔𝑙𝑎𝑟𝑒 and 𝑣𝑔𝑙𝑎𝑟𝑒, if both 

were below 25 degrees, sun was found to cause glare to the driver (Li et al., 2019).  
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Figure 4.2 The geometric model of the relative position of the Sun and the vehicle. 
Source: (Li, Cai, Qiu, Zhao, & Ratti, 2019) 

 

The descriptive characteristics of I-80 and I-287 roadway datasets relevant to this 

study are summarized in Table 4.1. The continuous explanatory variables used in crash 

likelihood and crash severity models for I-80 and I-287 are listed in Table 4.2 along with 

the basic statistics from the input data. Likewise, the categorical (binary) explanatory 

model variables and the corresponding descriptive statistics are summarized in Table 4.3. 
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Table 4.1 Summary of the Roadway Segment Characteristics (Including Crash Statistics) 

Characteristic I-287 I-80 Total 

Number of crashes (total) 1,267 8,888 10,155 

Number of injury/fatal crashes  236 1,903 2,139 

Number of PDO crashes  1,031 6,985 8,016 

Roadway length (in miles)  67.5 68.5 136 

Number of roadway segments (both ways)  116 164 280 

Minimum length of a roadway segment (in miles)  0.020 0.100 0.020 

Maximum length of a roadway segment (in miles)  5.140 4.020 5.140 

Average length of a roadway segment (in miles)  1.218 0.936 1.053 

 

Table 4.2 Summary of Basic Statistics for the Continuous Variables  

Variable Min Max Mean Median 

CAPLINK 3268 8570 6138 6856 

VC_RATIO 0.032 1.599 0.600 0.577 

Vol16_Tr 0.032 1.450 0.576 0.554 

HourlyPrecipitation 0.000 0.720 0.002 0.000 

HourlyVisibility 0.000 74.00 8.898 10.000 

speed_avg_1015 2.00 83.00 61.56 64.80 

speed_sd_1015 0.00 25.23 1.29 0.89 

speedup_dif_1015 0.00 63.00 8.72 6.20 

speeddown_dif_1015 0.00 63.00 8.23 5.80 
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Table 4.3 Summary of Basic Statistics for the Binary/Categorical Variables 

Variable Description n % 

LANES two-lane 679 6.69 

three-lane 4119 40.56 

four-lane 5245 51.65 

five-lane 111 1.09 

MEDIAN_TY protected 9442 92.98 

unprotected 713 7.02 

HOUR 0:00 9 0.09 

1:00 137 1.35 

2:00 148 1.46 

3:00 129 1.27 

4:00 139 1.37 

5:00 273 2.69 

6:00 522 5.14 

7:00 719 7.08 

8:00 804 7.92 

9:00 517 5.09 

10:00 401 3.95 

11:00 399 3.93 

12:00 438 4.31 

13:00 434 4.27 

14:00 546 5.38 

15:00 626 6.16 

16:00 780 7.68 

17:00 982 9.67 

18:00 769 7.57 

19:00 373 3.67 

20:00 280 2.76 

21:00 292 2.88 

22:00 226 2.23 

23:00 217 2.14 

MONTH Jan 761 7.49 

Feb 733 7.22 

Mar 803 7.91 

Apr 659 6.49 

May 812 8.00 

Jun 801 7.89 

Jul 856 8.43 

Aug 887 8.73 

Sep 839 8.26 

Oct 1083 10.66 

Nov 1044 10.28 

Dec 876 8.63 

Weekend Yes 1981 19.51 

No 8174 80.49 

Sunglare Yes 1078 10.62 

No 9077 89.38 
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4.1.2 Data Preprocessing 

As explained in Chapter 3, to balance the crash cases in the crash likelihood prediction 

model, non-crash cases were generated using the matched case-control method. After 

creating the non-crash cases, the same procedure that was applied to crashes was used to 

match the traffic flow, speed, and weather data to each non-crash case. After completing 

this step, the study dataset for the crash likelihood model had additional 40,620 records 

representing non-crash cases (four non-crash cases for each of the 10,155 crash records).  

Before selecting the explanatory variables that should enter the models, it is 

important to check for correlation between the explanatory variables in the analysis dataset. 

To that end, the correlation matrix was created using Pearson correlation coefficient to 

identify the correlated variables, as shown in Figure 4.3.  

It should be noted that while this method is unable to detect the non-linear 

dependencies among the variables, this does not present problems with developing the ML 

and DL models applied in this study for two reasons: first, due to the regularization 

parameters within the models, and second, the fact that neural networks and tree-based 

models are robust to multicollinear problem (Garg & Tai, 2012). 
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Figure 4.3 Correlation matrix for the crash likelihood analysis dataset. 

 

Based on the correlation matrix, it was decided to exclude from further 

consideration the highway capacity variable (CAPLINK) as it was correlated with the 

number of lanes (LANES), as well as hourly volume (VOL) since it was correlated with 

the v-c ratio (v_ratio). In addition, the average speeds for the upstream and downstream 

segments were also found to be highly correlated with the average speed of the segment 

where the crash happened and therefore were excluded from the model. 

An RF model for the crash likelihood analysis dataset was then used to determine 

the relative importance of the explanatory variables. The RF model had mtry = 2 (number 

of factors randomly sampled at each split), number of trees = 500, split.rule = Extra trees, 
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and node.size = 1 (minimum number of observations in each terminal node). The ranking 

of the relative variable importance in the crash likelihood model assessed using the RF 

model is illustrated in Figure 4.4. The vertical red line denotes a cordon between the 

significant variables that should be considered (on the right-hand side) and variables that 

should be excluded as insignificant (on the left-hand side of the cordon line). The line was 

placed where the gap between variables was relatively large in terms of MDA.  

 

 

Figure 4.4 RF variable importance plot for the crash likelihood model. 

 

As it can be observed, the variables HourlyPrecipitation, Weekend, Sunglare, 

SHOULDER, and Median_TY were not significant. Thus, the final list of decision 

variables to be used in modeling the crash likelihood included: Hour, Month, speed_sd_15, 

speeddown_dif_15, speedup_sd_15, speed_avg_15, speedup_dif_15, speeddown_sd_15, 

v_ratio, Shape_Leng, Vol16_Tr, HourlyVisibility, and Slope_Deg. 
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An RF model was also used to determine the relative importance of explanatory 

variables in the crash severity modeling dataset. The RF had mtry = 16 (number of factors 

randomly sampled at each split), number of trees = 500, split.rule = gini, and node.size = 

1 (minimum number of observations in each terminal node). The ranking of the relative 

variable importance in the crash severity dataset is illustrated in Figure 4.5. The red line 

marks the separation between the variables with high degree of importance (right-hand 

side) and variables with low or insignificant importance. (left-hand side). 

 

 

Figure 4.5 RF variable importance plot for the crash severity model. 

 

Thus, the final list of decision variables to be used in modeling the crash severity 

included: speeup_sd_1015, Month, Hour, speed_sd_1015, speedupdif_1015, 

speed_avg_1015, Slope_Deg, speeddowndif_1015, Vol16_Tr, v_ratio, 

speeddown_sd_1015, Shape_Leng, HourlyVisibility, and HourlyPrecipitation.  
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4.1.3 Preparation of the Training and the Testing Datasets 

For the analysis purposes, it was first necessary to split both the crash likelihood and the 

crash severity datasets into two subsets each: (a) training dataset, containing 75% of 

features (data records), and (b) testing dataset, containing 25% of features. A stratified 

sampling technique was used for splitting the datasets to ensure that there is the same 

proportion of output class labels in both the training set and testing set, as in the original 

data.  

As explained in Chapter 3, the ROSE transformation was applied to the training 

dataset for the crash severity model to address the imbalance between the severe crashes 

(with injuries and/or fatalities) and other (PDO) crashes. Following the ROSE 

methodology, different probability values for the minority classes in each dataset were 

evaluated (e.g., 0.2, 0.3, 0.4, 0.5, 0.6). The evaluation showed that the probability of 0.5 

yielded best results in terms of sensitivity and AUC in the crash injury severity training 

datasets. A visual representation of the dataset before and after applying ROSE is shown 

in Figure 4.6, displaying the example of the data reflecting the average speed vs. v/c ratio. 

The visual representation shows more balanced distribution of the severe (injury/fatal) vs. 

other (PDO) crashes. 
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Figure 4.6 Average speed vs. v/c ratio in the crash injury severity dataset: before ROSE 

(left) and after ROSE (right). 

 

The number of crash records (features) in the training dataset for each class before 

and after the ROSE transformation, as well as the size of each class in the testing dataset 

are summarized in Table 4.4.   

 

Table 4.3 Size of Input Datasets for the Crash Severity Models  

Models / Corresponding Classes 
Training Dataset 

Testing Dataset 
Before ROSE After ROSE 

Crash Severity Dataset 7616 12719 2359 

PDO Crashes 6009 6614   2003 

Injury/Fatal Crashes 1607 6105 536 
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4.1.4 Model Tuning and Application 

The random effect Bayesian Logistic Regression models were calibrated in WINBUGS 

statistical software. All fixed and random effect parameters are set to follow non-

informative priors. The fixed-effect variables are assumed to be normally distributed as 

𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.000001) where the first parameter is the mean and the second parameter 

is the precision (the reciprocal of the variance), so the variance is one million. The random 

effect variable is also set to have a normal distribution as 𝑢𝑗  ~ 𝑁(0, 𝑡), where the precision 

parameter 𝑡 has a gamma prior with Gamma distribution as 𝑡 ~ 𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) so 

that the mean is 1 and the variance is 1000. 

Full Bayesian inference was employed based on the Markov Chain Monte Carlo 

(MCMC) simulation. Unlike the previous crash risk analysis studies which did not give 

initial values to the variables, this study employs an ordinary logistic regression to assign 

the initial values to the variables. 20,000 iterations are set up and the first 5,000 samples 

are considered as burn-in. To consider the explanatory variable as significant, 95% 

Bayesian Credible Interval (BCI) should be reached (Gelman, 2003). The explanatory 

variable is statistically significant if zero is not included in the range of 95% credible 

interval of the coefficient (Lunn et al., 2012). To evaluate the Bayesian models, deviance 

information criteria (DIC) are one of the factors utilized for model complexity and fit. The 

DIC measures goodness-of-fit in the model corresponding to the negative likelihood of the 

model as well as a penalty term corresponding to the number of coefficients. DIC’s penalty 

term is measured by the deviation between the expected log-likelihood and the log-

likelihood at the posterior mean point. The Bayesian logistic model with smaller values of 

DIC is preferable. In this project, the random-effect Bayesian logistic regression models of 
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crash severity and crash likelihood are estimated separately. The models are fitted on the 

training datasets and were then evaluated on the test dataset to derive the performance 

metrics. 

The ML models were implemented in R statistical software using CARET package 

version 6.0-86 (M. Kuhn et al., 2020) and the DL model was executed in R using h2o 

package version 3.20.0.8 (LeDell et al., 2018). A 10-fold cross validation was performed 

for all models to evaluate their performance. In addition, the preprocessing step included 

centering and scaling of all the continuous variables used in the models.  

In developing and tuning the ML and DL models, several parameters (referred to 

as hyperparameters) are considered and calibrated for the RF, GBM, KNN, and MLFDNN 

models. The set of tuning parameters that were found to yield the highest AUC value for 

the RF, GBM, KNN, and MLFDNN models are summarized in Table 4.5.  

 

Table 4.5 Summary of the Hyperparameters for the RF, GBM, KNN, and MLFDNN 

Models 

 

Model Hyperparameters for the crash 

likelihood analysis 

Hyperparameters for the crash 

injury severity analysis 

RF 

mtry = 4 mtry = 16 

split.rule = gini split.rule = gini 

node.size = 1 node.size = 1 

sample.size = full training set sample.size = full training set 

GBM 

n.trees = 50 n.trees = 50 

interaction.depth = 1 interaction.depth = 1 

shrinkage = 0.1 shrinkage = 0.1 

n.minobsinnode = 10 n.minobsinnode = 10 

KNN K = 13 K = 5 

MLFDNN 
epochs = 15 epochs = 15 

hidden.layer1 = 50 hidden.layer1 = 50 

hidden.layer2 = 50 hidden.layer2 = 50 
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In the RF model, after preparing the training data, the OOB sample and 10-fold 

cross-validation based experimental design were used separately, to determine the optimal 

hyperparameters for the RF. Similar results were achieved through OOB error 

minimization and cross-validation. For the crash likelihood analysis, both approaches 

found that the combination of mtry = 4, split.rule = gini, node.size = 1, and sample.size = 

full training set, yield the model with the lowest OOB error and highest AUC value. Using 

a similar approach for the injury severity analysis, the parameters mtry = 16, split. rule = 

gini, node.size = 1, and sample.size = full training set, were found to yield the best result 

in terms of the AUC value.  

In the GBM model, an important factor is the selection of the number of trees. 

Finding the optimal number of trees (n.trees) is a challenging task: larger number of trees 

contributes to good learning, while it might also increase the risk of overfitting (Opitz & 

Maclin, 1999). The size of the trees is another parameter which is indicated by 

interaction.depth in the R model and accounts for the order of predictor-to-predictor 

interaction captured in the model (Hastie et al., 2009). The learning rate or shrinkage is 

another hyperparameter pertaining to GBM, which determines the effect of each tree on 

the output result and takes values between 0 and 1. Overall, lower learning rates provide 

better results by adding more trees to the iteration (Friedman, 2001). Finally, the parameter 

n.minobsinnode defines the minimum number of observations allowed per node. In 

general, larger values of n.minobsinnode generate smaller trees that are less impacted by 

noise. Using a 10-fold cross-validation, the set of parameters n.trees = 50, interaction.depth 

=  1, shrinkage = 0.1, and n.minobsinnode = 10 was found to yield the result with the 

highest AUC value for the crash likelihood analysis. In the crash injury severity model, the 
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set of parameters n.trees = 250, interaction.depth = 5, shrinkage = 0.1, and n.minobsinnode 

= 10 was found to return the best model in terms of the AUC value.  

To tune the KNN model, one should find the optimal number of neighbors (K). The 

10-fold cross-validation results showed that K= 13 and K= 5 produced the model with the 

highest AUC value in the crash likelihood and the crash injury severity analysis, 

respectively. 

Lastly, to tune MLFDNN, one should find the number of iterations (epochs), the 

number of hidden layers and the number of neurons at each hidden layer. Reducing the 

number of training epochs contributes to the mitigation of the overfitting problem (Panchal, 

Ganatra, Shah, & Panchal, 2011). There is no well-defined approach for choosing the 

number of hidden layers and the number of nodes within them. In general, adding more 

layers and nodes increases the opportunity for new features to be learned during model 

training. In this study, the result of the 10-fold cross-validation showed that epochs = 15, 

employing two hidden layers, hidden.layer 1 = 50, and hidden.layer 2 = 50, returns the 

best model in terms of AUC for the crash likelihood model. The same number of layers 

and nodes with epochs = 12 was found to give the best result in the crash severity analysis.   

 

4.2 Case Study of the NDS Dataset with Driver Behavior Explanatory Variables 

The SHRP2 NDS includes 3,500 driving participants from New York, Washington, 

Florida, Indiana, Pennsylvania, and North Carolina.  An NDS data subset resulted from a 

data reduction processed performed by the Virginia Tech Transportation Institute (VTTI) 

was used in this study. The VTTI, which is the custodian and publisher of the NDS dataset, 
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has developed reduced or aggregated files to provide easier access to the NDS data (Precht, 

Keinath, & Krems, 2017).  

4.2.1 Discussion of the Data Inputs 

Prior to model development, the dataset was reduced and cleaned to exclude any biases 

that might affect the crash risk estimates. The data cleaning included removing the records 

with missing or unknown values and merging the categories for some of the factors. Also, 

due to the limited number of crashes in the dataset, near crash events were combined with 

the crash events to create a single variable named “crash or near-crash event, or “CNC”. 

This classification resulted in 8,136 CNC event records and 18,909 baseline event records 

in the final dataset. It should be noted that using near-crashes as a surrogate measure and 

combining them with crash events has been adopted by many researchers in the literature.  

Similarly, to overcome the problem of low frequency of cases belonging to severe 

crash categories, the “most severe” crashes were combined with records in the “Police-

reportable” class to create a more balanced sample for the crash severity analysis. Table 

4.6 provides the events statistics along with crash events that were counted and classified 

in terms of severity.  

For each event, data were extracted for 19 different variables. Table 4.7 provides a 

summary of basic statistics for the binary/categorical variables used in the analysis. The 

only continuous variable in the analysis dataset is SecondaryDur (duration of the secondary 

task performed by driver).   
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Table 4.6 Summary of Response Variables for NDS Crash Risk Analysis 

Characteristic Total 

Number of crash events 1,724 

Number of near-crash events 6,412 

Number of baseline events 18,909 

Number of police-reportable crashes  260 

Number of minor crashes  1,464 

 

Table 4.7 Summary of Basic Statistics for the Binary/Categorical Variables 

Variable Description Number Percentage 

ManeuverJudgment Safe and legal 23,724 87.72 

Unsafe and illegal 1,809 6.69 

Unsafe but legal 781 2.89 

Safe but illegal 731 2.70 

Behavior Normal 21,446 79.30 

Distracted/Drowsy/Fatigued 2,115 7.82 

Risky driving 1,120 4.14 

Sign/Signal violation 1,037 3.83 

Speed violation 860 3.18 

Inattention 302 1.12 

Aggressive 90 0.33 

Avoiding 75 0.28 

Impairment No impairment 26,375 97.52 

Drowsy/Fatigued 426 1.58 

Emotional state 213 0.79 

Alcohol/Drug 31 0.11 

SecondaryTask1 None 12,254 45.31 

Activity oriented 8,152 30.14 

Object oriented 4,026 14.89 

Cellphone oriented 2,440 9.02 

Other 173 0.64 

Seatbelt Yes 25,675 94.93 

No 1,370 5.07 

AgeGroup (16-19) 4,015 14.85 

(20-24) 6,419 23.73 

(25-49) 7,429 27.47 

(50-69) 5,094 18.84 

(+70) 4,088 15.12 

Educ High school 11,919 44.07 

College degree 10,323 38.17 

Graduate degree 4,723 17.46 

Male Yes 13,440 49.69 

No 13,605 50.31 
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Table 4.7 Summary of Basic Statistics for the Binary/Categorical Variables 

(Continued) 

Variable Description Number Percentage 

Lighting Daylight 21,019 77.72 

Darkness lighted 3,534 13.07 

Darkness not lighted 1,418 5.24 

Dusk 727 2.69 

Dawn 347 1.28 

surfaceCondition Dry 22,538 83.34 

Wet 4,234 15.66 

Snowy/Icy 273 1.01 

traddicDensity LOS A1 9,197 34.01 

LOS A2 6,969 25.77 

LOS B 7,958 29.43 

LOS C 1,897 7.01 

LOS D 692 2.56 

LOS E 281 1.04 

LOS F 51 0.19 

intersectionInfluence No junction 18,474 68.31 

Traffic signal 3,252 12.02 

Interchange/Intersection 1,572 5.81 

Parking/Driveway entrance 1,379 5.10 

Uncontrolled 1,068 3.95 

Stop sign 969 3.58 

Yes, other 331 1.22 

Curve No 23,150 85.60 

Yes 3,895 14.40 

grade Level 22,747 84.11 

Grade up 2,817 10.42 

Grade down 1,481 5.48 

WorkZone No 25,807 95.42 

Yes 1,238 4.58 

vehClass Car 19,545 72.27 

SUV/Crossover 5,210 19.26 

Pickup/Truck 1,376 5.09 

Van/Minivan 914 3.38 

Adv.Tech No 25,371 93.81 

Yes 1,674 6.19 

Int.Cell No 21,705 80.26 

Yes 5,340 19.74 
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4.2.2 Preparation of the Training and Testing Datasets 

Similar to the real-time crash risk analysis, it is also important to check for correlation 

between the decision variables in the NDS sample dataset. Figure 4.7 provides a graphical 

representation of the correlation matrix created, using Pearson correlation. Based on the 

results, no significant correlation (>0.7) was found among the explanatory variables.  

 

 

Figure 4.7 Correlation matrix for the crash likelihood analysis dataset. 
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After checking for the correlations, the next step was to divide the full data set into 

training and testing set using the same proportions as in 4.1.5. All models are fitted on the 

training datasets and were then evaluated using the test dataset to derive the performance 

metrics.  

4.2.3 Model Tuning and Application 

The fixed effect Bayesian Logistic Regression models were calibrated in R statistical 

software using rjags package (Plummer, Stukalov, Denwood, & Plummer, 2019). All 

parameters are assumed to be normally distributed as 𝛽 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.000001) which 

indicates that they follow non-informative priors. Full Bayesian inference was employed 

based on the Markov Chain Monte Carlo (MCMC) simulation. This study employs an 

ordinary logistic regression to assign the initial values to the variables. 20,000 iterations 

are set up and the first 5,000 samples are considered as burn-in. Also, to consider the 

explanatory variable as significant, 95% Bayesian Credible Interval (BCI) should be 

reached. The explanatory variable is statistically significant if zero is not included in the 

range of 95% credible interval of the coefficient.  

The ML models were implemented in R statistical software using CARET package 

and the DL model was executed in R using h2o package. A 10-fold cross validation was 

performed for all models to evaluate their performance. In developing and tuning the 

machine learning models, several parameters (referred to as hyperparameters) are 

considered and calibrated for the RF, GBM and MLFDNN models. The set of tuning 

parameters that were found to yield the highest AUC value for the models using the NDS 

data are summarized in Table 4.8.  
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Table 4.8 Summary of the Hyperparameters for the RF, GBM, and MLFDNN 

Model Hyperparameters for the crash 

likelihood analysis 

Hyperparameters for the crash 

injury severity analysis 

RF mtry = 6 mtry = 5 

split.rule = gini split.rule = gini 

node.size = 4 node.size = 4 

sample.size = full training set sample.size = full training set 

GBM n.trees = 104 n.trees = 153 

interaction.depth = 3 interaction.depth = 5 

shrinkage = 0.3 shrinkage = 0.01 

n.minobsinnode = 15 n.minobsinnode = 10 

bag.fraction = 0.8 bag.fraction = 0.65 

MLFDNN epochs = 15 epochs = 15 

hidden.layer1 = 50 hidden.layer1 = 50 

hidden.layer2 = 50 hidden.layer2 = 50 

 

 



 

80 

 

CHAPTER 5 

DISCUSSION OF THE MODEL RESULTS 

 

5.1 Real-time Crash Likelihood Model 

The outputs of the BLR model estimation are summarized in Table 5.1. The standard 

deviation of speed (Speed_sd_1015), average speed (speed_avg_1015), hourly 

precipitation and visibility (HourlyPrecipitation, HourlyVisibility, respectively) and v/c 

ratio (v_ratio) are found to be significant at the 95% Bayesian credible interval (BCI). As 

shown in the table, hourly precipitation, average speed, and standard deviation of speed 

have positive correlation to the crash occurrence, while v/c ratio and hourly visibility have 

negative correlation to the crash occurrence. The Bayesian model has the deviance 

information criterion (DIC) of 8578.467, and AUC of 0.67. The DIC value is lower than 

the null model, indicating that explanatory variables improve the model fit.  

 

Table 5.1 Summary of the Random Effect BLR Model for Real-time Crash Likelihood 

Variables Mean Std. Err 95% BCI 

speed_sd_1015 0.069 0.022 (0.028, 0.111) 

speed_avg_1015 0.32 0.024 (0.415, 0.295) 

HourlyPrecipitation 0.125 0.033 (0.082, 0.179) 

HourlyVisibility -0.118 0.026 (-0.167, -0.071) 

V_ratio -0.138 0.027 (-0.192, -0.080) 

Constant -0.148 0.026 (-0.206, 0.103) 

 

The performance statistics for the BLR, RF, GBM, NB, KNN, and MLFDNN 

models in terms of the overall accuracy, sensitivity, specificity, and the AUC values is 
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summarized in Figure 5.1. It should be noted that lager values for all metrics indicate better 

performance of the models.  

In terms of specificity, which reflects the ability of the models to correctly predict 

non-crash cases, the BLR has the highest value of 0.77, while the values for GBM and RF 

are just slightly lower. The lowest specificity has the KNN model (0.65), which balances 

the sensitivity value (0.50). Therefore, most of the models tend to favor majority class 

(non-crash cases) over the minority class (crash cases). Overall, RF appears to demonstrate 

the best performance of all tested models. It has the highest overall accuracy, sensitivity, 

precision, F1-score, and AUC value and the specificity is comparable to slightly higher 

value achieved by the BLR.  

 

   

Figure 5.1 I80/I-287 crash likelihood model results. 

 

Accuracy Sensitivity Specificity Precision F1-Score AUC

BLR 0.67 0.53 0.77 0.36 0.43 0.67

RF 0.72 0.65 0.75 0.39 0.49 0.70

GBM 0.64 0.53 0.75 0.35 0.42 0.66

GNB 0.63 0.52 0.74 0.32 0.40 0.64

KNN 0.58 0.50 0.65 0.26 0.34 0.61

MLFDNN 0.65 0.59 0.68 0.35 0.44 0.63
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Nevertheless, even that performance of the RF model can be categorized as 

“unsatisfactory” as it correctly predicts only 65% of crash occurrences in the testing set. 

With such performance, this model would not be applicable in practice as it would not be 

sufficiently effective in detecting the conditions that (may) lead to crashes. 

 

5.2 Real-time Crash Severity Model 

A random effects BLR model was calibrated for the real-time prediction of crash severity, 

based on the dataset for I-20 and I-287 in New Jersey. The summary of the output statistics 

for calibrated BLR crash severity model is provided in Table 5.2. The results show that an 

increase in the average speed, hourly visibility, and the existence of sun glare result in an 

increase in crash severity. The DIC and AUC values of this model are equal to 4850.40 

and 0.59, respectively. Compared to the null model, the DIC value of this model is lower, 

which means that the explanatory variables help the model fit.  

 

Table 5.2 Summary of the Random Effect BLR Model for Real-time Crash Severity 

Variables Mean Std. Err 95% BCI 

Speed_avg_1015 0.2 0.08 (0.05, 0.4) 

HourlyVisibility 0.02 0.009 (0.001, 0.03) 

Sunglare 0.01 0.006 (0.005, 0.02) 

Constant 0.02 0.001 (0.004, 0.04) 

 

The performance metrics for the BLR, RF, GBM, GNB, KNN, and MLFDNN 

models for the crash injury severity analysis is summarized in Figure 5.2. It can be observed 

that the AUC values range between 0.55 and 0.61, with RF having the highest AUC value. 

In relation to sensitivity, which indicated the capability of the models to correctly predict 
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the injury crashes, RF has the highest sensitivity value (0.46), followed by GNB, BLR, and 

MLFDNN which all provide the similar sensitivity value of 0.41. In fact, BLR and GNB 

have identical performance across the overall accuracy (0.67), sensitivity (0.41), specificity 

(0.73), precision (0.61), and F1-score (0.49). In terms of specificity, which reflects the 

ability of the models to correctly predict PDO cases, GBM provides the highest values 

(0.96), followed by GNB and BLR (0.73), and RF (0.72). MLFDNN also provides the 

lowest specificity value (0.65) among all investigated models. It is noteworthy that despite 

the high specificity value achieved by GBM, it cannot be recommended for predicting the 

severity of crashes as it provides the lowest sensitivity value among all investigated 

models. 

Overall, as in the analysis of crash likelihood, RF appears to demonstrate the best 

performance of all tested models. It has the highest AUC value, and the overall accuracy 

is the second highest after GBM. Nevertheless, looking at the sensitivity values, the overall 

performance of all the models can be categorized as “weak” and it can be concluded that 

none of the models is adequate in terms of predicting the crash severity. 
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Figure 5.2 I-80/I-287 case study crash severity model results. 

 

5.3 Real-time Combined Driver Severity Model 

The low sensitivity and AUC values obtained from the crash severity models triggered the 

idea of adding the reactive crash data as inputs, in addition to the proactive data. The 

reactive data had been widely used in developing metrics for crash severity analyses. 

However, despite the critical impact of the factors described by reactive data on the crash 

severity outcomes, the main challenge of using the reactive data for operational crash 

prediction is their unavailability in real-time. To overcome this problem, crash records 

were analyzed by dividing them in groups considering the age of the drivers and vehicles. 

Table 5.3 provides a summary of the driver age and vehicle age characteristics of the crash 

groupings, along with the number of crash records in the case study data set in each group. 

It should be noted that as one aims to investigate the impact of driver age and vehicle age 

Accuracy Sensitivity Specificity Precision F1-Score AUC

BLR 0.67 0.41 0.73 0.61 0.49 0.59

RF 0.68 0.46 0.72 0.55 0.50 0.61

GBM 0.80 0.08 0.96 0.56 0.14 0.58

GNB 0.67 0.41 0.73 0.61 0.49 0.58

KNN 0.61 0.40 0.66 0.54 0.46 0.55

MLFDNN 0.61 0.41 0.65 0.49 0.45 0.55
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on crash severity in the combined study, the driver injury severity level should be 

considered as the dependent variables rather than the crash injury severity. The case study 

dataset contained 12,566 driver records, with 11,059 (88%) records of non-injury cases and 

1,507 (12%) records of injury cases. 

 

Table 5.3 Summary Statistics of Crash Records Considering Driver and Vehicle Age  

Group # Variable n % 

1 DrAge1 < 25 & VehAge2 < 5 1096 8.72 

2 DrAge < 25 & 5 ≤ VehAge < 10 627 4.99 

3 DrAge < 25 & 10 ≤ VehAge  716 5.69 

4 25 ≤ DrAge < 70 & VehAge < 5 5927 47.17 

5 25 ≤ DrAge < 70 & 5 ≤ VehAge < 10 1991 15.84 

6 25 ≤ DrAge < 70 & 10 ≤ VehAge 1832 14.57 

7 70 ≤ DrAge & VehAge < 5 198 1.58 

8 70 ≤ DrAge & 5 ≤ VehAge < 10 89 0.71 

9 70 ≤ DrAge & 10 ≤ VehAge 90 0.72 

1: DrAge = driver age; 2: VehAge = vehicle age.  

 

The RF method was used to predict the driver injury severity for each age group. 

The RF method was selected over the other models as it outperformed other investigated 

models in the initial assessment. The performance statistics for the RF models considering 

the driver and vehicle age is summarized in Table 5.4. 
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Table 5.4 Results of the Driver Injury Severity RF Model for Each Driver-Vehicle Age 

Group 

Group # Accuracy Sensitivity Specificity AUC 

1 0.61 0.60 0.61 0.62 

2 0.58 0.66 0.55 0.63 

3 0.62 0.55 0.63 0.66 

4 0.68 0.54 0.79 0.68 

5 0.69 0.52 0.77 0.64 

6 0.63 0.55 0.72 0.64 

7 0.68 0.42 0.89 0.66 

8 0.65 0.52 0.76 0.66 

9 0.62 0.52 0.67 0.61 

Average 0.64 0.54 0.71 0.64 

 

It can be observed from the result that the average AUC value incased to 0.64, a 4-

percentage point increase from the crash severity model that did not account for driver and 

vehicle age. Similar improvement was achieved in terms of model sensitivity, which 

increased by 8-percentage points, from 0.46 in the crash severity model, to 0.54 in the 

driver severity model. The overall performance of the model can be categorized as “weak”, 

with limited practical applicability for crash severity prediction. 

It should be states that the information about individual drivers and vehicles is not 

known in real time. In fact, as noted earlier, this information is only known after the crashes 

occur about the drivers and vehicles participating in reported crashes. Nevertheless, it is 

possible to predict the driver injury severity outcome if relative shares of drivers by age 

and vehicles by age can be estimated in a total driver population and vehicle fleet 

respectively for a given road or an analysis area. Having the estimated share of each group 

of drivers (e.g., by age) and vehicles (by age) travelling on a road segment, the probability 

of a crash having a certain driver injury severity outcome along that segment can be 

calculated using the law of total probability: 
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𝑃𝑖(𝑆𝑗) =  ∑ 𝑃𝑖(𝐺𝑘) 𝑃𝑖(𝑆𝑗|𝐺𝑘)

𝑘

 (5.1) 

where 𝑃𝑖(𝑆𝑗) is the probability that a crash on segment i will result in driver injury 

severity outcome j, 𝑃𝑖(𝐺𝑘) is the proportion of drivers and vehicles belonging to group k 

(∑ 𝑃𝑖(𝐺𝑘)𝑘 = 1),  and 𝑃𝑖(𝑆𝑗|𝐺𝑘) is the conditional probability of driver injury severity 

outcome j for group k.  

Combined, the crash likelihood prediction model and the crash injury severity 

prediction model can be applied to estimate the probability of crash and the expected 

severity of a crash (if/when the crash occurs) at a given roadway segment with a given set 

of roadway, traffic, and environmental characteristics, and the assumed (estimated) 

composition of drivers by age and vehicles by age. Nevertheless, despite the improved 

performance when including driver age and vehicle age, the overall accuracy and predictive 

power of the resulting models is found to be relatively poor and must be further improved 

to be used for a meaningful operational crash risk prediction.  

 

5.4 Crash Risk with Driver Behavior Explanatory Variable 

It can be concluded from the results obtained with previous models that the input dataset 

is lacking and does not provide sufficient “information” for either statistical or machine 

learning models to successfully predict crash likelihood or severity in real-time, operational 

context. Based on the previous research, the missing information is likely related to driver 

behavior factor. However, it is understood that such data is not readily available, especially 

not in real time and with a sufficient coverage and sample to provide reliable source for 

operational analysis. 
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Nevertheless, despite the general unavailability of driver behavior data for 

operational analysis, using such data available to researchers for crash modeling provides 

an unprecedented opportunity to shed light on how factors such as driver behavior can 

influence the risk of crash occurrence and severity. One such dataset is the NDS dataset. 

Knowing that NDS data is obtained using vehicles instrumented with advanced onboard 

data acquisition systems (DAS), it is not yet possible to collect such data for all or majority 

of vehicles in a network. Thus, unlike the data collected for the I-80 and I-287 in New 

Jersey, NDS data cannot be applied to develop real-time operational crash risk models. 

However, as more vehicle manufacturers are installing vehicle telemetry and driver 

monitoring sensors in the newer vehicle models, it is quite plausible that the data similar 

to NDS would soon become more available, and at some point, available in the prevailing 

share of vehicles operating on the roads. Furthermore, besides detailed information on 

driver behavior and other driver-related factors, NDS dataset contains additional 

information such as presence of work zone, intersections, and roadway geometry (e.g., 

roadway alignment, presences of curve, and grade), not only for CNC events, but also for 

baseline conditions (i.e., normal driving). For these reasons, additional prediction models 

were developed using the NDS dataset to demonstrate if and how the inclusion of driver 

behavior factors would improve the accuracy and predictive power of the crash prediction 

models.  

It should be mentioned that based on the results obtained from the initial set of 

models for the I-80/I-287 case study, it was decided to exclude the KNN and GNB methods 

from consideration in the NDS crash risk analysis, due to their poor performance. Also, as 

the NDS data does not support calculation of the crash risk at the roadway segment level, 
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the random-effect Bayesian Logistic Regression was replaced with the normal Bayesian 

Logistics Regression model by excluding the random parameter. 

5.4.1 Crash Likelihood 

The estimation of the BLR model is summarized in Table 5.5. The table provides the 

summary for all explanatory variables significant at the 95% Bayesian credible interval 

(BCI). The explanatory variables that were found not to be statistically significant include:  

• lighting dawn,  

 

• lighting dusk, 

  

• seatbelt usage, 

  

• wet road surface,  

 

• LOS F,  

 

• gender,  

 

• education level,  

 

• activity-oriented secondary task,  

 

• drivers older than 50,  

 

• driving SUV/crossover,  

 

• driving pickup/truck,  

 

• vehicle advanced technology, and  

 

• integrated cellphone system. 

  According to the calculated odd ratios, driver behavior indicator (Behavior) has the 

highest influence on increasing the risk of CNC occurrence, followed by intersection 

influence (intersection influence) and maneuver judgment (maneuver judgment). Based on 
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the sample, the Odds Ratios suggest that distracted and drowsy driving presents a risk of 

CNC event 411.44 times higher than normal driving. Other risky driving behaviors are 

inattention and risky actions during driving, which increase the CNC risk by 64.99 and 

23.70 times, respectively. In addition, the impact of a parking lot or driveway entrance/exit 

has an odds ratio of 10.45, indicating the positive correlation between this factor and the 

probability of a CNC event. Another influencing factor in this regard is the level of service 

(LOS). It is found that the odds ratio of LOS D is the highest at 10.12, indicating that the 

drivers are more likely to be involved in a CNC events when high density exists, but the 

flow is stable. Unsafe and/or illegal maneuver judgments are also found to increase the 

odds of CNC event, with the corresponding odds ratios higher than 8.00, relative to safe 

and legal maneuvers. In terms of the impact of driver age, drivers belonging to the 16-19 

age group are more at risk of being involved in the CNC events. Finally, horizonal curves, 

work zones, lighting condition, snow/icy road surface, roadway grade, engagement in a 

secondary task, and secondary task duration, all increase the odds of a CNC event.  
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Table 5.5 Summary of the BLR Model for CNC Likelihood (NDS Data) (Continued) 

Variable Mean SD References 95% BCI 
Odds 

ratio 

Constant -3.073 0.126 - (-3.316,-2.810) 0.05 

Behavior (Aggressive) 2.875 0.871 vs. normal (1.403,4.730) 13.69 

Behavior (Avoiding other 

vehicles/objects) 

1.400 0.330 vs. normal (0.776,2.050) 4.05 

Behavior 

(Distracted/Drowsy/Fatigued) 

6.092 0.325 vs. normal (5.492,6.745) 411.44 

Behavior (Inattention) 4.244 0.391 vs. normal (3.471,4.986) 64.99 

Behavior (Risky action) 3.192 0.141 vs. normal (2.913,3.466) 23.70 

Behavior (Sign/Signal 

violation) 

0.712 0.186 vs. normal (0.325,1.061) 2.02 

Behavior (Speed violation) -0.709 0.185 vs. normal (-1.054,-0.313) 0.50 

Impairment 

(Drowsy/Fatigued) 

-5.465 0.353 vs. no 

impairment 

(-6.184,-4.830) 0.10 

Impairment (Emotional state) 0.893 0.270 vs. no 

impairment 

(0.355,1.400) 2.43 

Safe but illegal maneuver -1.469 0.199 vs. safe and 

legal 

(-1.871,-1.075) 0.23 

Unsafe and illegal maneuver 2.091 0.170 vs. safe and 

legal 

(1.770,2.438) 8.00 

Unsafe but legal maneuver 2.320 0.143 vs. safe and 

legal 

(2.044,2.610) 10.03 

Cellphone oriented secondary 

task 

-0.215 0.088 vs. no 

secondary 

task 

(-0.391,-0.044) 0.81 

Object oriented secondary 

task 

0.513 0.058 vs. no 

secondary 

task 

(0.401,0.626) 1.67 

Dark but lighted 0.235 0.064 vs. daylight (0.115,0.360) 1.26 

Dark and unlighted 0.321 0.098 vs. daylight (0.127,0.512) 1.38 

Snowy/Icy surface condition 1.193 0.181 vs. dry (0.840,1.558) 3.27 

LOS A2 0.167 0.063 vs. LOS A1 (0.041,0.290) 1.18 

LOS B 1.186 0.057 vs. LOS A1 (1.072,1.292) 3.24 

LOS C 2.023 0.080 vs. LOS A1 (1.868,2.179) 7.47 

LOS D 2.327 0.127 vs. LOS A1 (2.075,2.570) 10.12 

LOS E 1.488 0.195 vs. LOS A1 (1.121,1.884) 4.39 

Presence of curve 0.216 0.058 vs. straight (0.109,0.332) 1.24 

Grade (Down) 0.743 0.085 vs. level (0.584,0.914) 2.10 

Grade (Up) 0.509 0.065 vs. level (0.377,0.630) 1.66 

Presence of Work zone 0.372 0.089 vs. non-

work-zone 

(0.194,0.548) 1.45 
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Table 5.5 (Continued) Summary of the BLR Model for CNC Likelihood (NDS Data)  

Variable Mean SD References 95% BCI 
Odds 

ratio 

Intersection influence 

(Intersection/Interchange) 

1.341 0.073 vs. No 

influence 

(1.197,1.480) 3.81 

Intersection influence 

(Parking/Driveway) 

2.356 0.087 vs. No 

influence 

(2.193,2.530) 10.45 

Intersection influence (Stop 

Sign) 

0.888 0.114 vs. No 

influence 

(0.655,1.099) 2.43 

Intersection influence (Traffic 

Signal) 

1.126 0.062 vs. No 

influence 

(1.001,1.242) 3.07 

Intersection influence 

(Uncontrolled intersection) 

2.224 0.094 vs. No 

influence 

(2.037,2.405) 9.17 

Driver age (16-19) 0.382 0.077 vs. 25-49 (0.232,0.530) 1.46 

Driver age (20-24) 0.220 0.061 vs. 25-49 (0.104,0.340) 1.24 

Van/Minivan -0.640 0.140 vs. car (-0.912,-0.367) 0.53 

Secondary task duration 0.048 0.023 - (0.003,0.093) 1.05 

 

The performance statistics for the evaluated models (BLR, GBM, RF, and 

MLFDNN) in terms of the overall accuracy, sensitivity, specificity, precision, F1-score, 

and the AUC values, is summarized in Figure 5.3. The results reveal that all models 

perform relatively well, and markedly better than the models excluding the driver behavior 

characteristics. However, GBM outperforms all candidate models, followed by RF and 

MLFDNN. The overall accuracy, sensitivity, specificity, precision, F1-score, and AUC 

values achieved by the GBM model are highest at 86.5%, 83.4%, 87.7%, 73.7%, 0.783, 

and 0.934, respectively. 

Furthermore, compared to the initially presented real-time crash risk models, a 

significant improvement is achieved in the model’s performance where the AUC value 

obtained by the GBM model shows a 23.4 percentage point increase from what was 

obtained in the RF crash likelihood model developed in the case study using the New Jersey 

roadway and traffic data without consideration of driving behavior factors. Considering the 
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model performance measures, the overall performance of the presented GBM model can 

be characterized as “very strong”. 

 

  
Figure 5.3 CNC likelihood model performance summary (NDS Data). 

 

In general, there can be two potential reasons for this significant improvement: first, 

the inclusion of driver behavior and driver-related factors; and second, the completely 

different nature of the NDS dataset compared to the dataset utilized in the real-time crash 

risk models for the I-80/I-287 case study. To address the uncertainty related to the 

difference between the datasets, an additional model was developed based on NDS data, 

this time using only the variables that can be obtained in real-time, and comparable to the 

variables used in the initial crash likelihood and crash severity models calibrated for the 

New Jersey case study. The list of the variables used in the model development included 

Accuracy Sensitivity Specificity Precision F1-Score AUC

BLR 0.826 0.771 0.850 0.697 0.732 0.880

GBM 0.865 0.834 0.877 0.737 0.783 0.934

RF 0.851 0.827 0.860 0.709 0.764 0.918

MLFDNN 0.812 0.798 0.818 0.656 0.720 0.886
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lighting condition, surface condition, traffic density (which can be computed from the 

speed and flow rate), intersection influence, roadway alignment, and presence of work 

zone. The GBM model was used for the comparison as it outperformed other investigated 

models in the previous NDS analysis. Table 5.6 presents a side-by-side comparison of the 

model’s performance indicators. It is clear from the comparison that while using the NDS 

dataset improves the model performance in general, this improvement is much higher after 

adding driver behavior and driver-related factors. The comparison reveals that using the 

full NDS dataset (with driver behavior variables) improves the AUC value by more than 

34%. Around 21% of this improvement can be explained by driver behavior and driver-

related factor, and the remaining 13% can be associated with the difference between the 

input datasets.  

 

Table 5.6 Comparison of Model Performance Indicators 

Model Accuracy Sensitivity Specificity Precision F1-score AUC 

Real-time crash 

likelihood model (RF) 
0.722 0.651 0.749 0.394 0.491 0.704 

CNC likelihood model 

without driver behavior 

variables (GBM) 

0.752 0.674 0.781 0.564 0.614 0.789 

CNC likelihood model 

with driver behavior 

variables (GBM) 

0.865 0.834 0.877 0.738 0.783 0.934 

 

This conclusion can be elaborated by identifying the important variables in a 

detection process, wherein the variables are ranked based on their relative influence in 

developing the GBM model (Figure 5.4).  During this process, which is very similar to the 

RF variable importance ranking discussed in Subsection 3.4.4, the relative importance of 

the variables is determined by a variable's average relative influence across all trees 
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generated by the GBM algorithm (Friedman, 2001; Ridgeway, 2007). The variable 

importance is scaled on a scale of 0 to 100, where a higher number represents higher 

importance. As can be seen in the figure, only the intersection influence (62.83%) and 

traffic density (33.70%) are found to be significant predictors. This implies that the 

prediction performance of the real-time models can be significantly improved by adding 

these two factors to the input dataset, especially at locations other than freeways (where 

the impact of traffic controls and intersections is minimal or none). Also, the real-time 

dataset having more variables compared to the NDS dataset, the real-time models’ 

underperformance can be mainly attributed to the existence of noise in the input data. The 

potential causes of this noise are the use of synthesized hourly volumes rather than the 

actual real-time volumes, as well as the crash time reporting error. 

 

 

Figure 5.4 GBM variable importance plot for CNC likelihood with selected variables. 
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A similar approach was undertaken to detect the important variables for the full 

model (Figure 5.5). The results of the variable importance analysis demonstrate that driver 

behavior, secondary task duration, intersection influence, traffic density, maneuver 

judgement, and impairment are the most influential factors to CNC occurrence, accounting 

for 39.66%, 28.69%, 12.03%, 7.67%, 5.87%, and 3.05% of the GBM model’s detection 

accuracy, respectively. On the other hand, surprisingly, roadway geometry characteristics 

(i.e., grade and curvature), driver characteristics (i.e., age, gender, and education), and 

environmental conditions (i.e., lighting and surface condition) are found to have no 

significant influence on model’s accuracy. 

 

 

Figure 5.5 GBM variable importance plot for CNC likelihood with all variables. 
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5.4.2 Crash Severity 

The estimation of the BLR model for the crash severity prediction using the NDS data is 

summarized in Table 5.7. Based on the model results, traffic density and driver behavior 

have the highest impact on the increased probability of a severe crash (classified as a 

police-reportable crash in the NDS dataset).  According to the odd ratios, traffic density is 

the most contributing factor to police-reportable crashes, where LOS E, LOS D, LOS C, 

LOS B, and LOS A2 all increase the odd of police-reportable crash compared to LOS A1. 

Among the driver behavior factors, inattention driving has the highest influence with a risk 

of 13.76 times higher than normal driving. Engagement in cellphone oriented secondary 

task, wet road surface, presence of stop sign or traffic signal, uncontrolled intersection, and 

male driver are also found to increase the odds of police-reportable crashes. On the other 

hand, college education, and driving pickup/truck or SUV/crossover reduce the severity of 

crashes. 
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Table 5.7 Summary of the BLR Model for Crash Severity (NDS Data) 

Variable Mean SD References 95% BCI 
Odds 

ratio 

Constant -3.147 0.557 - (-4.15,-2.07) 0.04 

Behavior (Inattention) 2.652 0.809 vs. normal (1.08,4.26) 13.76 

Behavior (Risky action) 2.367 0.385 vs. normal (3.13,1.63) 0.1 

Cellphone oriented secondary 

task 

0.703 0.311 vs. no 

secondary 

task 

(0.07,0.29) 2.02 

Wet surface condition 0.621 0.237 vs. dry 

surface 

(0.16,1.08) 1.87 

LOS A2 0.742 0.304 vs. LOS A1 (0.13,1.32) 2.11 

LOS B 1.766 0.259 vs. LOS A1 (1.24,2.26) 5.81 

LOS C 2.398 0.385 vs. LOS A1 (1.63,3.13) 11 

LOS D 2.567 0.662 vs. LOS A1 (1.32,3.93) 12.94 

LOS E 4.052 1.056 vs. LOS A1 (1.99,6.09) 54.44 

Intersection influence (Stop Sign) 0.753 0.406 vs. No 

influence 

(0.01,1.59) 2.13 

Intersection influence (Traffic 

Signal) 

0.980 0.268 vs. No 

influence 

(0.44,1.50) 2.65 

Intersection influence 

(Uncontrolled intersection) 

0.945 0.375 vs. No 

influence 

(0.19,1.66) 2.58 

Male driver 0.437 0.202 vs. female (0.06,0.84) 1.54 

College education -0.615 0.265 vs. high 

school 

(-1.12,-0.08) 0.54 

Pickup/Truck -1.149 0.620 vs. car (-2.40,-0.01) 0.33 

SUV/Crossover -0.820 0.280 vs. car (-1.34,-0.29) 0.44 

 

The performance statistics for the investigated models are provided in Figure 5.6. 

At the first glance, one can note that GBM outperforms other candidate models in terms of 

all performance metrics, followed by the BLR and RF. Also, MLFDNN has the lowest 

performance among the investigated models. Compared to the metrics obtained from the 

crash likelihood models for the NDS dataset, the values of precisions and F1-scores are 

lower for all investigated models illustrated in Figure 5.6. This can be explained by the 

very low number of police-reportable crashes in the dataset. It should be noted that in crash 

likelihood and severity analysis it is more important to correctly detect the positive cases 

(crashes in the crash likelihood analysis and severe/police-reportable crashes in the crash 
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severity analysis). Based on the definition, precision is implied as the number of correctly 

predicted positive cases (police-reportable crashes in the crash severity model) from all 

predicted positive cases while sensitivity is the number of correctly predicted positive cases 

from all the actual positive cases. Therefore, sensitivity being more important than 

precision in evaluating the models’ performance, the overall performance of BLR, GBM, 

and RF are satisfactory.   

 

 

Figure 5.6 Crash severity model results (NDS Data). 

 

It is also noteworthy that, as in the CNC likelihood analysis, using NDS data 

improves the predictive performance of injury severity models, significantly. This can be 

concluded by looking at the AUC values, where the newly obtained value (0.866) is 37% 

higher than the AUC value obtained in the real-time combined driver severity model 

(0.641). 

Accuracy Sensitivity Specificity Precision F1-Score AUC

BLR 0.802 0.722 0.814 0.357 0.478 0.850

GBM 0.810 0.809 0.810 0.421 0.554 0.866

RF 0.794 0.722 0.803 0.345 0.467 0.813

MLFDNN 0.738 0.698 0.744 0.319 0.438 0.788
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The graphical representation of the GBM-based variable importance ranking for 

the crash severity dataset is presented in Figure 5.7. Overall, the results confirm the 

findings of the BLR model, where traffic density, driver behavior, intersection influence, 

secondary task duration, and surface condition are the most significant variables, 

accounting for 36.36%, 32.89%, 28.69%, 11.09%, 4.48%, and 4.11% of the GBM model’s 

detection accuracy, respectively. 

 

 

Figure 5.7 GBM variable importance plot for crash severity (NDS data). 
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5.4.3 Impact of Different Factors on Driver Behavior Fault 

Based on the findings of this study, the driver behavior has the highest impact on the 

likelihood of CNC occurrence. Therefore, a separate analysis was conducted to examine 

the correlation between driver behavior fault and other factors. A clear understanding of 

the impact of other factors on driver behavior would help to evaluate and select the most 

effective countermeasures to reducing the number of crashes. In addition, it is hard to 

constantly watch and assess driver behavior; instead, more attention should be given to the 

attempts towards controlling the factors that contribute to driver behavior fault. To serve 

this objective, a GBM-based model was developed where the response variable was either 

0, when the driver acted normal and 1, when the driver acted faultily.  

The developed model had an overall good performance in terms of all metrics, 

where the overall accuracy, sensitivity, specificity, and AUC were found to be 71%, 65%, 

72%, and 0.73, respectively. The result of the variable importance ranking also indicate 

that intersection influence (44.73%) and driver impairment (42.2%) have the highest 

impact on driver behavior fault (Figure 5.8). 
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Figure 5.8 GBM variable importance plot for driver behavior analysis. 

 

5.5 Practical Implications of Demonstrated Models 

The outcomes of this research can be implemented in designing an operational traffic safety 

management system that can predict the relative short-term (e.g., next 5-15 minutes) crash 

risk for all regional roadways at the roadway segment level. Also, to account for the 

relatively poor model performance, it is suggested to use relative crash risks instead of 

absolute probability values, for operational purposes. To this end, the probability of having 

a crash and its associated injury severity level is calculated for each road segment. These 

values are then clustered into multiple groups based on pre-defined thresholds to represent 

the relative risk of crash. To exemplify, the following values can be used to categorize the 

crash risk at a road segment level: 
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{

𝐿𝑜𝑤 𝑟𝑖𝑠𝑘                                       𝑖𝑓                           𝑃𝑖 ≤ 0.3
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑟𝑖𝑠𝑘                           𝑖𝑓                0.3 < 𝑃𝑖 ≤ 0.6

𝐻𝑖𝑔ℎ 𝑟𝑖𝑠𝑘                                       𝑖𝑓               0.6 <  𝑃𝑖 ≤ 0.75
𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘               𝑖𝑓                           0.75 <  𝑃𝑖

 

 

(5.1) 

Besides, to facilitate monitoring the roadway’s safety condition in real-time, a map-

based system in which the road segments are colored/labeled based on their associated 

relative crash risks is proposed to be developed (Figure 5.9). This is expected to help the 

traffic operations management authorities to take proactive traffic management strategies 

such as utilizing variable speed limit, variable message signs, and coordinated warning 

signals to mitigate crash risks for high-risk locations.  
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Figure 5.9 Real-time crash risk map-based system. 

 

The results of the NDS data analysis indicated that driver behavior and driver 

distraction are the most significant contributing factors to crashes. Therefore, as it is not 

yet possible to track and monitor driver behavior and distraction directly, encouraging more 

drivers to use mobile apps or devices which are able to collect data from the vehicle 

telematics system is suggested as a potential solution to reduce the likelihood and severity 

of crashes. These apps or devices should emphasize on safe driving and also be capable of 

notifying the drivers when they are speeding or apply harsh braking to be penalized.  

To sum up, the results of the study showed satisfactory performance of the models 

in predicting crash risk, when including driver behavior and driver-related variables. This 
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hints that focusing on driver-related factors instead of controlling for speed and volume 

may yield a higher return on investment, in terms of reduction in number and severity of 

crashes, as well as indirect negative effects of traffic crashes. 
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CHAPTER 6 

CONCLUSION, RESEARCH CONTRIBUTION, AND FUTURE RESEARCH 

 

6.1 Conclusion 

This main goal of this study was to apply advanced data analytics methods to develop and 

evaluate crash severity and crash likelihood prediction models that can be used in near-real 

time. For this purpose, the models were built using the data that is available to regional 

transportation agencies in real time and provides coverage of all major highway facilities 

on a reginal or statewide scale. The dataset applied in the study consisted of data collected 

for two interstate highways in New Jersey – I-80 and I-287 and included detailed crash 

data from the New Jersey State DOT crash records database, basic roadway geometry data, 

synthetic vehicle volume and capacity data, probe-vehicle traffic speed data, and weather 

data from the National Weather Service. All data is available in real time and is provided 

on a roadway segment level, which range in length between 0.02 miles and 5.14 miles. The 

crash records dataset consisted of 10,155 crashes, including 2,139 crashes with an injury 

or fatal outcome, and 8,016 PDO crashes. For the crash likelihood model additional records 

were created to represent non-crash cases following the matched case–control 

methodology. To deal with the data imbalance between the crash cases and non-crash cases 

in the crash likelihood model, as well as between PDO and injury/fatality crashes in the 

crash severity model the study employed the random oversampling examples (ROSE) 

method. The relative importance of explanatory variables was evaluated using RF model 

and they were ranked based on mean decrease accuracy.  



 

107 

 

The BLR model further revealed (or rather confirmed) the significance of each 

explanatory variable in both crash likelihood and crash injury severity analyses. The crash 

likelihood model had five significant explanatory variables, including the standard 

deviation of speed 5-15 minutes preceding the crash, average speed 5-15 minutes prior to 

the crash, hourly precipitation, hourly visibility, and v/c ratio. On the other hand, the crash 

severity model had three significant explanatory variables, two of which were the same as 

in the crash likelihood model (average speed 5-15 minutes prior to the crash and hourly 

visibility), and sun glare as an additional significant factor. 

The Odds Ratios were calculated for all explanatory variables and showed that 

while hourly precipitation, average speed, and standard deviation of speed increase the 

odds of crash occurrence; v/c ratio and hourly visibility were found to reduce the chance 

of crash involvement. Also, speed average, hourly visibility, and sun glare were found to 

increase the odds of injury crashes. In addition to the BLR model, five additional machine 

learning (ML) and Deep learning (DL) methods were implemented for crash likelihood 

and crash severity prediction. A 10-fold cross-validation method was applied for tuning all 

ML and DL models, which produced optimal combination of the hyperparameters for each 

model, as applicable. The prediction accuracy of all models was evaluated using the 

performance metrics including the overall accuracy, sensitivity, specificity, and the AUC 

value. The estimation results for the crash likelihood and crash severity models revealed 

that the RF model outperformed all the other investigated models in terms almost of all 

performance metrics. In conclusion, even the best performing model of crash likelihood 

and crash severity could be characterized as having limited predictive value based on the 

performance metrics. 
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The results of the analysis hint that the data used in this study is not sufficient or 

sufficiently informative to enable satisfactory separation of crash outcome and severity 

classes in the crash dataset. In that sense, and considering results of numerous previous 

studies and literature, the present study tried to bridge the gap between the use of proactive 

and reactive crash factors by developing a combined model that includes the data reflecting 

both proactive and reactive factors. The study examined the potential improvement in the 

predictive performance of the injury severity models by incorporating the reactive data on 

driver age and vehicle age. This was achieved through implementation of a modeling 

framework that evaluated injury severities for different crash groupings based on the age 

of drivers and age of vehicles. The results indicated that while inclusion of driver age and 

vehicle age can improve the predictive performance of the severity model, the results were 

still far from satisfactory. 

To tackle this problem, this dissertation developed additional models using NDS 

data, which includes driver behavior indicators, to identify the most important risk factors 

contributing to crash/near-crash (CNC) events. To this end, different statistical, ML, and 

DL models were developed to find the linear and non-linear correlations between a large 

set of explanatory variables and CNC occurrence. Among the candidate models, GBM was 

found to be superior in terms of almost all performance metrics, indicating the model’s 

ability to correctly classify the data into CNC and baseline events based on pre-event 

variables. The results from the BLR and GBM models confirmed driver behavior to be the 

most critical factor to CNC occurrence. Also, among all types of driver behavior, distracted 

and drowsy driving was found to have the highest CNC risk. Developing the real-time 

driver monitoring systems that are capable of providing reliable feedback to drivers when 
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apparent signs of distraction and drowsiness are detected, can be proposed as a solution to 

reduce the influence of this factor on the increased risk of crash. Furthermore, the variable 

importance analysis by the GBM model showed intersection influence and traffic density 

to be among the most significant risk factors to CNC events, emerging the need for 

enhanced safety by legislators and transportation agencies at the risk-prone locations. 

These treatments might include improving the roadway designs in term of geometry and 

operational indices and applying stricter policies in the areas with high CNC risk.  

Similar analysis was also carried out to find the key contributing factors to different 

crash severity levels where the results from the BLR and GBM models indicated that traffic 

density, driver behavior, and intersection influence are the most important contributing 

factors to more severe crashes. The GBM model was found to have the best predicting 

performance among all investigated models. 

It was obvious from the findings that a clearer understanding of driver behavior’s 

role in the occurrence of CNC events would help to analyze and implement pre-crash safety 

measures and develop enforcement policies, infrastructure design, and advanced vehicle 

safety systems. This would not be possible without investigating the influence of other 

factors on driver behavior fault. The presented study developed a GBM model to explore 

the impact of factors contributing to faulty driver behavior. The results of the model 

demonstrated that intersection influence and impaired driving have the highest impact on 

driver behavior fault, meaning that a driver is more at risk of acting irregularly when 

impaired or approaching an intersection/interchange.   

At the outset of the study, the aim was at developing models that would allow the 

transportation agencies and decision makers to assess the crash likelihood and anticipated 
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severity of crashes in near-real-time, using the data already available to them. That in turn 

would allow them to make more effective operational decisions and implement operational 

countermeasures and tactics to reduce the likelihood and severity of crashes. Some 

examples would include proactive activation of advanced warnings on variable message 

sign (VMS), adjustments of variable speed limits (VSL) and ramp metering (RM), as well 

as tactical deployment of highway safety patrols and other traffic operations and 

management assets. Similarly, benefiting from the NDS data, this study provides the 

knowledge required by transportation agencies and decision makers to find the important 

risk factors in order to properly allocate funds to safety programs. The availability of 

microscopic information collected by well-instrumented vehicles on real-time driving 

behavior and instantaneous decisions of drivers via NDS has enabled investigation of the 

correlation between driver behavior and crash risk.  The results showed that while it is hard 

to control for driver behavior, which was found to have the highest impact on CNC risk, it 

is expected that crash frequency and its associated injury severity would be reduced 

significantly by adding advanced safety features to more vehicles on the roads. For the 

crash prediction capability, advent of connected and automated vehicles will be critical, as 

those vehicles will likely have the capability of providing data on driver behavior and 

vehicle telemetry, similar to the NDS data.  

 

6.2 Research Contributions 

The main contributions of this dissertation are listed as follows: 

1. Developed a modeling framework that would allow the transportation agencies 

and decision makers to assess the crash likelihood and anticipated severity of 

crashes in near-real-time, using the data available at the highway-network scale. 

Despite the relatively weak performance of the models developed in the case 
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study of New Jersey roadways, the modeling framework can be readily applied 

in determining the relative crash risk at a network scale. Findings of the analysis 

using the Naturalistic Driving Study (NDS) data suggest that adding driver 

behavior and driver-related factors in the same modeling framework 

significantly improve the models’ performance for operational purposes. The 

datasets that reflect these factors, similar to the NDS dataset, are expected to 

become available in real-time or near-real-time with the advancements in 

vehicle technologies and the advent of connected and autonomous vehicles in 

near future.   

 

2. Demonstrated the use of Random Over-Sampling Examples (ROSE) method to 

deal with the data imbalance problem. This method has not been previously 

demonstrated in literature in crash risk modeling applications. The presented 

application of ROSE in crash severity prediction models was found to greatly 

improve their sensitivity. 

 

3. Demonstrated the application of a combined model that includes the data 

reflecting both proactive and reactive crash factors, including driver age and 

vehicle age. The model can be readily applied in operational analysis with the 

inclusion of inferred or statistically representative reactive factor data. The 

factors such as driver age, education, vehicle type and age, can be estimated 

based on the statistics of driver and vehicle composition in a given analysis 

area, a highway corridor, or roadway segment, depending on the availability of 

driver population and vehicle usage data.  

 

4. Compared the predictive performance of various statistical, machine learning 

and deep learning methods under a validation framework to explore the linear 

and non-linear relationship between a large set of contributing factors and crash 

risk, in terms of both likelihood and severity. The presented analysis 

demonstrated varying performance of crash likelihood and crash severity 

models developed using different modeling methods and different datasets. As 

such, this study contributed to filling the methodological gap and added to the 

current knowledge by comparing this large set of models. In particular, the 

analysis demonstrated and quantified critical improvement of predictive 

performance when including driver behavior data in the prediction models. 

While the driver behavior data used in this study is not currently available in 

real- or near-real-time, or with sufficient spatial and temporal coverage, the 

presented analysis demonstrates the methodology of including such data in 

crash prediction models and determining the relative influence of different 

driving behavior factors.      

 

5. The presented research can be readily applied in traffic management 

information systems to identify roadway segments with relatively high crash 

risk based on the available data provided as model inputs. The presented models 

can be implemented in map-based computer applications to visualize crash risks 

on roadway segments. They can also be used in traffic safety decision support 
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systems (DSS) to assist the traffic management authorities proactively manage 

the traffic safety risks using active traffic management strategies and tools. It is 

expected that such crash risk visualization and DSS tools will gain more 

practical value with greater availability of vehicle telemetry data and driver 

behavior data provided from connected and autonomous probe vehicles. 

 

6.3 Future Studies 

The present study will provide models to quantify the relative risks of a crash at a given 

highway segment and the expected injury severity level when the crash occurs. The 

proposed models will provide a basis for further research in crash prediction, considering 

the emerging datasets, such as driving behavior records collected by the UBI systems, 

which are already being offered to be used by some insurance companies. In addition, NDS 

and connected vehicles (CVs) sharing similar data format, the increasing adoption of CV 

technology and the share of CVs on the roads will provide an opportunity to utilize driver 

behavior data in near real time. This can significantly improve the performance of the crash 

risk prediction models in the future, using the modeling framework presented in this study. 

Last but not least, driver behavior was found to be the most critical risk factor in 

both crash likelihood and crash severity models, clearly indicating that the attention should 

be given to the monitoring of driver’s behavior to reduce the crashes. There are some recent 

attempts in this regard. As an example, to increase safety for commercial vehicles, 

automakers have partnered with NHTSA to launch the Driver Alcohol Detection System 

for Safety (DADSS) program.  The goal of this public-private partnership is to develop 

novel technology to passively detect drivers with a Blood Alcohol Concentration (BAC) 

over the legal limit. This technology, once completed, will be licensed to anyone for 

commercial applications (Alliance for Automotive Innovation, 2021).  
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As another example, The ATTENTION ASSIST system developed by Mercedes-

Benz measures more than 70 parameters that are analyzed to detect fatigue. This continual 

monitoring is important for recognizing the gradual transition from alertness to tiredness, 

providing sufficient time to initiate timely alerts and warnings to the driver. Based on a 

variety of data, ATTENTION ASSIST creates an individual driver profile during the first 

few minutes of each journey and compares this with sensor data and the driving situation 

as recognized by the vehicle's electronic control unit. Alongside values such as speed and 

longitudinal/lateral acceleration, the Mercedes system also measures indicator and pedal 

usage, for example, as well as specific operations and external factors such as crosswinds 

and the unevenness of the roads. If the system detects drowsiness, it emits an audible 

warning signal and flashes up an unequivocal message on the display in the instrument 

cluster: "ATTENTION ASSIST. Break!" (Euro NCAP Advanced, 2021). Similar systems 

are also planned to be deployed by other car manufacturers. In 2019, Volvo announced that 

it will fit all its new cars with driver-facing cameras and other sensors to detect distracted 

driving. Volvo claimed that this system not only can alert the driver, but also have the 

power to reduce the car’s speed, or even slow down, park and call the assistance service 

(Volvo Cars, 2019). Another interesting technology offered by Nuance can use voice 

commands and eye movement to control certain vehicle systems. For example, the driver 

can close the window or ask information about a point of interest outside of the car and be 

assisted by the car’s advanced voice assistance system. Lastly, Bosch is using cameras to 

switch between human and different levels of computer drive. This system decides to 

control the vehicle if driver distraction is identified.  
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Despite the commercial availability, there are still serious concerns about the 

effectiveness of these new technologies and more importantly the fully automated driving 

systems. As a result, the Alliance for Automotive Innovation, which represents auto 

suppliers and manufacturers producing nearly 99% of new cars and light trucks sold in the 

U.S., has recently released several safety principles such as adoption of camera-based 

driving monitoring systems in vehicles with automated driving or driver-assist systems. It 

is believed that similar models as developed in this study can help such organizations to 

assess the effectiveness of advanced technologies by performing different analyses with 

before-and-after experimental designs.  

Considering these advancements and vehicle technologies already on the market, 

alongside the advent of connected and autonomous mobility, there will be more data 

similar to that provided by the NDS, which will allow the transportation safety researchers 

to perform more accurate crash risk analyses. When such data become available in real 

time or near real time, the modeling framework presented in this study can be further 

refined to predict unsafe conditions in near-real-time considering the variety of risk factors, 

including driver behavior factors. Finally, according to the findings of this study, it is 

expected that the deployment of automated vehicles will potentially results in a massive 

decline in crash frequency. But even then there will be other factors, such as computational 

errors or computer system failures, which may become a new focus of concern and risk 

factor in assessing the crash risks.  
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