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Abstract

The number of vehicles on the roads increases every day. According to the
National Highway Traffic Safety Administration (NHTSA), the overwhelming
majority of serious crashes (over 94 percent) are caused by human error. The
broad aim of this research is to develop a driver behavior model using real on-
road data in the design of Advanced Driving Assistance Systems (ADASs). For
several decades, these systems have been a focus of many researchers and vehi-
cle manufacturers in order to increase vehicle and road safety and assist drivers
in different driving situations. Some studies have concentrated on drivers as
the main actor in most driving circumstances. The way a driver monitors
the traffic environment partially indicates the level of driver awareness. As
an objective, we carry out a quantitative and qualitative analysis of driver
behavior to identify the relationship between a driver’s intention and his/her
actions. The RoadLAB project developed an instrumented vehicle equipped
with On-Board Diagnostic systems (OBD-II), a stereo imaging system, and a
non-contact eye tracker system to record some synchronized driving data of
the driver cephalo-ocular behavior, the vehicle itself, and traffic environment.
We analyze several behavioral features of the drivers to realize the potential
relevant relationship between driver behavior and the anticipation of the next
driver maneuver as well as to reach a better understanding of driver behavior
while in the act of driving. Moreover, we detect and classify road lanes in
the urban and suburban areas as they provide contextual information. Our
experimental results show that our proposed models reached the F1 score of
84% and the accuracy of 94% for driver maneuver prediction and lane type
classification respectively.
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Summary for Lay Audience

The large number of vehicle collisions leads to both tremendous human
and economic costs. Road traffic injury is the leading cause of death among
young people and children aged 5-29 years and makes road fatalities the eighth
leading cause of death across all age groups. Evidence has shown that a
significant number of vehicle accidents are due to driver error. The broad aim
of this research is to develop a driver behavior model using real on-road data
in the design of Advanced Driving Assistance Systems (ADASs). In many
driving situations, drivers may receive an alert from their passengers to avoid
an accident with another vehicle or a pedestrian. This role can be played by
an intelligent ADAS by warning the driver or even intervening if ADAS finds
it necessary. An intelligent ADAS can understand and benefit from valuable
information including the state of the driver’s behavior, the vehicle, and the
environment to analyze driver behavior in different driving situations as well
as to predict driver maneuvers. We analyze several behavioral features of the
drivers to realize the potential relevant relationship between driver behavior
and the anticipation of the next driver maneuver as well as to reach a better
understanding of driver behavior while in the act of driving.
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1

Chapter 1

Introduction

Avoiding fatalities and serious impacts caused by road accidents is becoming

an increasingly important target for governments as well as car manufacturers

around the world. According to the global status report on road safety 2018,

launched by World Health Organization (WHO), in December 2018 [40], an

estimated 1.35 million people die annually in the world as a result of road

traffic accidents, and up to 50 million people are injured. Now, road traffic

injury is the leading cause of death among young people and children aged

5-29 years and makes road fatalities the eighth leading cause of death across

all age groups surpassing HIV/AIDS, diarrhoeal, and tuberculosis diseases.

Undoubtedly, driver error is the main cause of road accidents. In order to

overcome this, efforts are being made to develop Advanced Driver Assistance

Systems (ADASs) in different aspects. The number of road collisions and their

serious impacts can be decreased by equipping vehicles with such advanced

safety systems to warn the driver in highly dangerous driving situations or

even take control of the vehicle by performing automatic actions.

In this research, we aim to analyze and model driver behavior using real
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driving data for designing ADASs for on-road vehicles. In fact, co-driver

ADASs, first should understand and analyze driver behavior during driving

to monitor the driver. Also a kind of ADAS system may aim to predict the

most probable next maneuver of the driver and assist the driver or intervene

if it finds that necessary. In our work, by employing a deep learning model,

we predict driver maneuvers using dynamic vehicle and cephalo-ocular behav-

ioral features. Moreover, we identify driver attention based on the attentional

visual filed of the driver and four major traffic object types including vehicle,

traffic light, traffic sign and pedestrian. For this, we first need a model to de-

tect and recognize the aforementioned traffic objects based on the attentional

visual filed and we develop that. Furthermore, we attempt to discover where

the driver is gazing at in a course of driving to reach a better understanding

of driver gaze behavior. Also, we detect and classify road lanes in the urban

and suburban areas which this provides us more contextual information.

The next section presents a literature survey of related research on driver

behavior analysis applications, ADAS systems focusing on the relationship

between these systems and the driver’s role and driver maneuver prediction.

After the survey, an over of the research in this thesis is presented, along with

several hypotheses motivating the research, and followed by a brief overview

of the instrumented vehicle and data collected. The Chapter concludes with

a summary of the main contributions and the thesis organization.

1.1 Literature Survey

In order to assist drivers in driving tasks, a variety of ADAS systems have

been developed such as Lane Departure Warning (LDW), Forward Collision

Warning (FCW), Adaptive Cruise Control (ACC), Highway Assist (HA), Blind
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Spot Detection(BSD), and Emergency Brake Assist (EBA). These technolo-

gies can assist drivers to experience comfortable driving as well as help to

decrease the number of crashes. Some ADAS systems consider the critical

role of the driver as the main element in driving events and utilize informa-

tion related to the driver. These systems analyze driver behavior to predict

the driver’s intentions in different driving situations [25], [61], [50]. As men-

tioned, most collisions are due to driver error and driver distraction leading

to a notable number of traffic collisions. For example, the results extracted

from the second Strategic Highway Research Program (SHRP 2) Naturalistic

Driving Study (NDS) indicate 60% to 65% of rear-end events occur because of

driver distraction. It is obvious, the recent excessive use of in-vehicle devices,

such as navigation systems and cell phones, increases driver distraction and

consequently, the risk of an accident. Distracted drivers do not attend to the

roads effectively, which means they may not be properly aware of the presence

of traffic objects and other obstacles. Hence, analyzing and monitoring driver

distraction to decrease the hazardous situation is of great importance in the

development of a safety monitoring system.

In many driving situations, drivers may receive an alert from their passen-

gers to avoid an accident with another vehicle or a pedestrian. This role can

be played by an intelligent ADAS by warning the driver or even intervening if

the ADAS finds it necessary to control the vehicle itself. An intelligent ADAS

can understand and benefit from valuable information including the state of

the driver’s behavior, the vehicle, and the environment to perform its augmen-

tation in different driving situations as well as predict driver maneuvers.

In order to make an intelligent ADAS more efficient and practical, one

of the most beneficial research areas is the identification of driver behavioral

features and objects eliciting visual responses from drivers. The next subsec-
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tions are devoted to a review of driver behavior analysis applications, advanced

driver assistance systems, and driver maneuvers prediction.

1.1.1 Driver Behavior Analysis Applications

Many studies have been conducted on analyzing driver behavior to achieve dif-

ferent goals such as safety driving, traffic management, commercial purposes,

and so on. In [65], an overview of different driver behavior analysis methods

has been provided. They categorized the driver behavior analysis applications

into three classes including vehicle-oriented applications, management-oriented

applications, and driver-oriented applications. These categories are described

in more detail in the following along with some of their subcategories.

Vehicle-Oriented Applications

These applications focus mainly on the vehicles to improve the driving task

and reduce driver workload by creating advanced systems to assist drivers

in different driving situations. These systems interact drivers in a real time

manner. This category consists of three main subcategories including ”Intel-

ligent Vehicles Systems and Autonomous Vehicles”, ”Driver Assistance” and

”Accidents Detection”.

The first subcategory is the recent area of exploration which looks to em-

ploy new technologies to automate vehicle tasks [12], [10], [9]. In [7], Google

developed its first fully autonomous car prototype, followed by car companies

of Tesla, Mercedes and Volkswagen. The applications of this subcategory ex-

ploit advanced vehicular control and environmental detection technologies [26]

using real-time data such as traffic information and nearby vehicles.

The second subcategory includes applications which aim to assist the driver



5

in different driving tasks such as blind spot detection, parking assistance, etc.

Nowadays, these systems are employed by car manufacturers to reduce driver

error caused by inattention, distraction, such as emergency braking systems

[18], [42] and lane keeping assistance systems [6], [56].

The third subcategory includes systems which detect accidents automati-

cally [8], [41], [11]. The role of these systems is to urgently request emergency

assistance services for the injured/unconscious driver who may unable to re-

quest it by himself. These systems employ some techniques to investigate

various vehicle’s factors such as speed, brake, acceleration and sudden stop to

detect abnormal incidents which can reveal the vehicle has just crashed.

Management-Oriented Applications

The applications that fall into this category aim to optimize the vehicle use,

mainly including fleet management and traffic modeling. These applications

focus on the management of infrastructure and resources by monitoring the

road conditions and the vehicle. These systems identify road conditions based

on the driver maneuvers such as acceleration, braking, and the data related

to three-axes accelerations [48], [5]. Consequently, these technologies yield

effective planning for managing the traffic and also maintaining the roads.

Moreover, transport companies can establish effective fleet management and

using such applications they can monitor their vehicles in terms of speed, safety

inspection as well as fuel consumption. Also, they can reduce the risks for their

drivers and vehicles, decrease their costs and improve the performance of their

services [23], [31], [1].
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Driver-Oriented Applications

Applications in this category consider the driver as the main element. The ma-

jor application areas that fall into this category are ”Driver Attention Evalua-

tion”, ”Distraction Detection”, ”Driving Style Assessment” and ”Driver Intent

Prediction”.

Driver attention evaluation is one of the main research areas in the field

of driver behavior analysis. These applications analyze the attention of the

driver [51], [54], [59], [62] and somnolence of the driver [28], [13] during driving

using information such as facial features, gaze activity, heart rate and so on.

In distraction detection systems, the degree of driver focus on the road is

identified and these applications look to detect driver distraction considering

driver reactions [21], [30]. Other applications in this category can be classified

into two classes of the driving style assessment and driver intent prediction.

The former aims to categorize the driving mode based on a variety of features

collected from the vehicle and the driver’s actions such as acceleration, steering,

speed, braking and GPS [53], [20], [58]. In other words, the data analysis stage

in these systems is to find and assess the correlation between driving style and

the input data. Aggressive style and risky style are the two common styles

in this area of research. The resulting information is of great importance

for automobile insurers who calculate Usage-Based Insurance (UBI) [22], [63].

Using these techniques the insurance costs for each driver can be determined

based on the driving score. This approach can increase the affordability of

insurance for lower-risk drivers, many of whom are also lower-income people

[22]. As for driver intent prediction, these applications aim to anticipate the

most probable next maneuver (overtaking, lane change, emergency braking,

etc.) of the driver using the methods of automatic prediction of maneuvers
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Figure 1.1: The SAE levels of automation [37]

[29], [57], [33].

1.1.2 Advanced Driver Assistance Systems (ADASs)

ADASs are designed to increase car and road safety by assisting drivers in

dangerous driving situations. ADASs play a critical role to prevent fatalities

and injuries by reducing the number of collisions and the serious impacts of

those accidents that cannot be avoided. These systems may benefit from vari-

ous sources of information including the Controller Area Network bus protocol

(CANbus) vehicular data, a GPS system, Lidar, Radar, and cameras to per-

form their tasks. The Society of Automotive Engineers (SAE) has categorized

driving automation into five levels [16]. Fig.1.1 illustrates these levels. The

following provides an overview of ADASs with consideration of the relation-

ship between these systems and the role of the driver according to the level of

automation [16], [37].
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Level 0 (No Driving Automation)

The majority of vehicles on the road are manually controlled which means

they are in Level 0. These systems monitor the driving environment and

provide information to the driver but do not control the vehicle. Several

examples of such systems are: Parking Sensors: provide an acoustic warning

about surrounding obstacles depending on their distances while parking a car.

Lane Departure Warning (LDW): alarms the driver if the driver accidentally

leaves the current lane. Blind Spot Detection(BSD): informs the driver if an

obstacle exists in the blind spot of the rear-facing mirrors. Forward Collision

Warning (FCW): provides the driver a warning about an imminent accident

with an obstacle ahead. Night Vision: by means of IR illuminator and camera,

improves driver’s perception of the road ahead in the darkness.

Level 1 (Driver Assistance)

Level 1 is the lowest level of automation. These systems perform single func-

tionalities in specific driving situations and also control the vehicle with proper

actuators. However, Level 1 and 2 still assign authority to the driver. Exam-

ples of Level 1 systems include: Anti-lock Braking Systems (ABS) which while

braking avoids wheel lock and tire saturation and so provides a reduction in

braking distance and better vehicle stability. Electronic Stability Control sys-

tems (ESC) which can automatically brake a single wheel to better keep the

vehicle stable when the system recognizes that it needs to control the steer.

Adaptive Cruise Control (ACC) which, in addition to keeping the vehicle at

the desired speed, can maintain a safe distance from traffic ahead by employing

both cutting engine power and actuating the brakes. Emergency Brake Assist

(EBA) which can automatically apply the brakes if it detects an impending
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collision. In an urgent situation if the driver is not braking adequately, the sys-

tem can provide additional braking power to avoid a collision. Lane Centering

(LC) which, unlike lane departure systems that gives a warning to the driver,

maintains the vehicle in the center of the lane by continuously controlling the

steer of the vehicle.

Level 2 (Partial Driving Automation)

As mentioned, Level 2 and Level 1 systems leave the authority to the driver but

Level 2 systems can perform more complex maneuvers, control both steering

and accelerating/decelerating. Tesla Autopilot and Cadillac (General Motors)

Super Cruise systems both qualify as Level 2. Highway Assist (HA) systems

combine ACC, LC, and BSD, for continuously controlling longitudinally and

laterally the vehicle. These systems can help reduce driver stress and fatigue

and allow drivers to feel safer on highways while driving. Autonomous Obsta-

cle Avoidance systems, similar to HA, control the vehicle longitudinally and

laterally to avoid an accident with an obstacle. Autonomous Parking systems

help the driver to find a suitable parking and then assist in parking the car by

controlling the steer, speed and avoid collision. These systems still leave the

overall authority to the driver.

Level 3 (Conditional Driving Automation)

The leap from Level 2 to Level 3 is substantial from a technological perspec-

tive, even if from a human perspective, their functionalities seem quite similar.

Level 3 systems perform the maneuvers in the determined scenario, but if the

system is unable to execute the task or they detect a self-fault, they require

the driver to override. In other words, the driver must be ready to take con-
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trol of the vehicle although he/she is not required to continuously monitor the

driving environment. According to the SAE standard, these systems need re-

dundancies in sensors and decision Electronic Control Units (ECU) to perform

their roles. Highway Chauffeur [38] is an example of a Level 3 system. This

system is an evolution of HA that autonomously plans when to overtake and

accepts full responsibility for the maneuver.

Level 4 (High Driving Automation)

In Level 4 systems, taking control of the vehicle by the driver is not required

most of the time. These systems extend the scenarios where they can make

decisions, manage situations, and perform all the necessary driving tasks in

those situations. For these systems, an integrated intelligence with all-around

sources of sensing is required. Automatic Valet Parking [39] is an example of

a Level 4 system. In this system, the vehicle takes the responsibility to find a

parking spot and to park the car after the driver has left the vehicle. In level 4

systems, communication between the vehicle and the infrastructure is usually

needed to improve performance.

Level 5 (Full Driving Automation)

Level 5 is the final automation level so that the vehicles do not require human

attention. Level 5 vehicles can even lack interfaces such as steering wheels

or acceleration/braking pedals. In fact, the driver is treated as a typical pas-

senger, who just sets a destination and can even sleep while the vehicle is

performing all transportation tasks to arrive at the predetermined destina-

tion.
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1.1.3 Driver Maneuver Prediction

In the ADAS context, the prediction of driver maneuver is one of the princi-

pal targets of driver behavior modeling. Driver maneuvers can be considered

according to traffic and road infrastructure [2]. Reichart [45] and Tolle [55]

categorized driver maneuvers which are mentioned in Table 1.1. These two

categories present driving maneuvers on the same level of granularity and only

differ to a minor degree. For example, the list of maneuvers provided by Tolle

[55], is sufficient to fully cover any trip in city and rural areas as well as on high-

ways. This list does not include unexpected changes in traffic conditions such

as the sudden appearance of an obstacle. The other maneuver lists that have

been suggested in the literature are similar to the items mentioned above, the

differences in the list of maneuvers relating mostly to the aim of the intended

application. For instance, the work developed in [35] focuses on maneuvers

that occur on highways.

Table 1.1: List of driver maneuvers provided by [45] and [35]

Reichart Tölle

Follow lane Start
React to obstacle Follow

Turn at intersection Approach vehicle
Cross intersection Overtake vehicle
Turn into street Cross intersection

Change lane Change lane
Turn around Turn at intersection

Drive backwards Drive backwards
Choose velocity Park
Follow vehicle

In order to anticipate driver maneuvers, the temporal aspects of the driv-

ing context using multiple sensors are modeled and then the intention of the

driver can be inferred. Driver maneuver prediction is still quite a challenging
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task because the interactions between the sensors are complex and a driver’s

intentions can not be directly identified. Many internal and environmental

factors can influence driver behavior, which ideally should be considered to

provide a faithful model [2]. These factors include, but are not limited to:

� emotional features such as stress or anger,

� physical abilities e.g. reaction times,

� environmental conditions, such as lighting, weather,

� cognitive capabilities such as distraction, fatigue, mental load,

� driving skills and driver learning capabilities,

� motivations and goals.

A model that includes all of the aforementioned aspects is highly complicated

and not yet feasible in practice. Consequently, driver prediction models that

have been presented in the literature deal with subsets of these aspects.

Models for Driver Maneuver Prediction

Driver behavior models can be divided into two classes: cognitive driver models

and behaviorist driver models [2].

Cognitive Driver Modeling

Cognitive driver models try to model human behavior based on human infor-

mation processing. Human aspects such as memory, learning or visual under-

standing play a critical role in the modeling. Some psychological aspects can

be involved in cognitive driver behavior modeling such as reaction time, body

strength, distraction, stress, fatigue, etc. [19]. Understanding driver behavior
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in a cognitive structure is of great importance to find out the driver’s motiva-

tion for performing an appropriate maneuver. For example, the work presented

in [3] utilized cognitive structures to model the driver’s situation awareness.

In [32], cephalo-ocular behavior of drivers was analyzed in different car/road

events including overtaking and crossing an intersection. The authors were

able to identify the driver’s visual search actions using computer vision, and

finally, mapped these events with the driver’s behavior. Moreover, a cognitive

model was developed in [47] to predict the impact of cellular-phone dialing on

driver performance.

Behaviorist Driver Modeling

On the other hand, behaviorist driver models attempt to determine how the

driver interacts with his surrounding environment including vehicles, pedestri-

ans, and other traffic objects and also the control elements in the vehicle, such

as the steering wheel, the accelerator and brake pedals, and the turn signals.

Some examples of maneuvers that have been studied include emergency brak-

ing [49], car-following [24], and lane change [14]. In [49], a prediction system

was proposed to distinguish merely strong braking behavior from emergency

braking. Khodayari et al. [24] proposed a car-following model using fuzzy logic

technique to predict the driver’s car-following behavior. In [14], a method was

proposed to model lane changes on curved roads and compare lane changing

with lane-keeping scenarios.

In the following, we briefly review some recent methods in the field of

driver maneuver prediction which have been developed based on deep learning

techniques in recent years.
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Some Recent Driver Maneuver Prediction Methods Based on Deep

Learning Techniques

Olabiyi et al. [36] proposed a method for anticipating driver actions includ-

ing braking, lane changes and turn anomaly actions. Their prediction system

employed Deep Bidirectional Recurrent Neural Network (DBRNN) including

multiple Long-Short Term Memory (LSTM) units and/or Gated Recurrent

Units (GRU) cells that discovers the spatial-temporal dependencies in tempo-

ral data. In [46], the authors presented a new sensory-fusion framework based

on deep learning to predict driver maneuvers which utilized a variety of sensory

data such as inside and outside camera videos, vehicle speed, GPS and other

related information. In order to learn spatial relationships and capture long

temporal dependencies, their model took advantage of a combination of dilated

CNN and convolutional neural network maxpooling (CNN maxpooling) pairs.

In [64], a novel model called Cognitive Fusion-RNN (CFRNN) was proposed

to predict driving maneuvers which combined both a cognition-driven model

and data-driven model. The CFRNN model included two LSTM units to fuse

the data from both inside and outside of the vehicle in a cognitive way and

the two LSTM units were regulated by the driver cognition time process. The

authors in [34] proposed a method including two parts of processing to antic-

ipate driver maneuvers. In the first part, in addition to the outside features

they extracted features using CNN DenseNet121 [44] architecture from the in-

side frames. The second part mainly included the construction of CNN-LSTM

model that is a combination of two standard models of CNN and LSTM. In

[33], Mora et al. proposed a simplified model to predict the emergency braking

intention using a deep learning method and electroencephalogram (EEG) data

without transforming the EEG data into gray-scale images. Their method was
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able to discriminate the events of normal driving and emergency braking using

only four electrodes. In [17], a model named Attention-based Global Context

Network (AGCNet) was proposed to predict driver maneuvers. This model

utilizes multi-modal data, including front view frame data and driver physio-

logical data to perform its task. By proposing the Global Context (GC) block

and Channel-wise Attention (CA), AGCNet is capable of generating global

context features and choosing valuable ones in a effective way. The AGCNet

model coupled with a new Dual attention-based LSTM (DaLSTM) network

learns co-occurrence features and predicts driver maneuvers. In [57], a hybrid

deep learning based model was proposed to predict lane-changing behavior of

the driver. The first level of the hybrid model includes Seq2Seq, a variant of

RNN [43], which is mainly employed for temporal data processing to decrease

invisible data loss. The second level includes a fully connected neural network

(FC) to fuse data and classify lane-changing. The two-level training model en-

ables the Seq2Seq-FC network to deepen the number of network layers while

it can avoid gradient dispersion problem.

1.2 Research Overview

The main objective of this research is to analyze and model driver behavior

using real driving data in the design of advanced driver assistance systems

for on-road vehicles. An intelligent ADAS, as a co-driver, should be able to

understand driver behavior in order to be able to identify the most probable

next maneuver and assist the driver in different driving situations or intervene

if the ADAS finds it necessary. For this, some valuable information from the

vehicle, driver, and environment needs to be provided to the ADAS. Therefore,

the system would be able to analyze and understand driver behavior in a
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driving context and monitor it. The system should be able to warn the driver

about an unseen obstacle or a traffic object such as a pedestrian, vehicle, or

sign or even take control of the vehicle in critical situations. Developing models

of understanding and prediction of driver behavior using such data can enable

advancement in technologies relating to the vehicle and its passenger’s safety

and at a higher level, road safety.

1.2.1 Primary Conjecture

ADASs in several different aspects such as detection of drowsiness, distraction,

etc. have been studied to help drivers to increase driver safety. It seems the

most appropriate method may be an approach that evaluates and monitors

driver behavior in order to avoid future hazardous maneuvers [15]. Driver

cephalo-ocular behavior and visual attention have been shown to be beneficial

in understanding driver behavior and predicting driver maneuvers [60], [61].

Based on observations, as the main conjecture, connecting driver visual be-

havior and the driver environment (vehicle, pedestrian, etc.) can lead to a

better understanding and predictive model of driver behavior.

1.2.2 Hypotheses

In this section, we break down the main conjecture into several hypotheses

which can be empirically investigated in the following. We address these hy-

potheses in Chapters 2, 3, 4, 5 and 6 accordingly.

1. Driver maneuvers can be partly anticipated using dynamic vehicle and

cephalo-ocular behavioral features: The authors in [61] employed driver

behavioral features and vehicle dynamics features to anticipate driver
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maneuvers using a traditional Input Output Hidden Markov Model (IO-

HMM). They have shown that both extracted features from the cephalo-

ocular behavior of drivers and vehicular dynamics are necessary to pre-

dict the next driving action with proper accuracy. By employing a deep

learning LSTM-based model, we explore this hypothesis with the aim of

improving prediction accuracy as well as expanding the types of predicted

driver maneuvers in comparison to the previous work [61]. We explore

this hypothesis to make the model which takes advantage of three merits

that make it a competitive and reliable model in comparison to previous

works. Since our model employs LSTM which is capable of keeping long-

term dependencies in the temporal data, it can predict driver maneuvers

with more performance in comparison to the works employing classifiers

which are not suitable for time series data. The second aspect is the

fact that our model can predict five maneuver types although there are

many works in the literature that predict less than five types. As the

last merit, our model utilizes gaze information to perform its task but

many previous works ignore such this useful information.

2. It is possible to detect and recognize all traffic objects inside the atten-

tional visual field of the driver: The attentional visual area of drivers

is a central part of safe driving which is computed as a 2D ellipse in

the imaging plane of the stereo system. We verify this hypothesis by

the fact that we can find objects in the traffic scene. Therefore, those

objects would locate inside the attentional field of the driver, which has

been previously obtained by Kowsari et al. [27]. This enables us to

detect and recognize those objects located inside the visual attentional

area of the driver. To explore this hypothesis, we focus on the traffic ob-
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jects including vehicles, traffic lights, traffic signs, and pedestrians to be

detected and recognized. For this, we first need to develop a framework

to perform this task. Prior to the time of the implementation of our

framework, there had been a very little attention in previous research

focusing on simultaneously detecting traffic objects of different major

classes. Hence, one aspect which makes our framework different than

others is the fact that in addition to detection of more major classes of

traffic objects, we also classify them into their own sub-classes.

3. It is possible to detect and classify lane types including lane boundary in

urban and suburban areas: Lanes provide contextual information which

can be helpful in different applications such as lane keeping assistance

systems, driver attention evaluation, driver maneuver prediction and so

on. To explore this hypothesis, we employ deep learning methods to

detect and classify eight types of lane including road boundary as one

type of lane when there is no actual lane marking within urban and

suburban areas. Our work is different from similar previous work in

several aspects. The majority of previous studies apply their model to

highways, where lanes are typically well defined and generally ignore

different types of lanes. Other works do classify lanes into types, though

assume fewer lane types and ignore road boundaries (no lane markers)

whereas our work identifies eight types of lanes and considers the road

boundaries.

4. Driver attention can be estimated based on the driver’s visual attentional

field and major classes of traffic objects: It is generally accepted that

the driver gaze area is considered the range to extend ±6.5 degrees [52].

Consequently, a driver cannot attend to the whole driving environment.
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In addition, a driver may miss some information because of inappropriate

driving habits, driving skills, or even distractions that affect the choice

of proper maneuver of the driver. There has been little previous work

done to estimate driver attention where multiple classes of traffic objects

have been considered. To investigate this hypothesis, we focus on a

driver’s attention to four kinds of traffic objects (traffic lights, signs,

vehicles, pedestrians). We develop an analytical model to estimate a

driver’s average traffic scene attention based on the attentional area of

the driver. Our model is the first model of its kind that along with

detection of the four aforementioned traffic object types, takes advantage

of the attentional visual field of the driver to perform its task.

5. It is possible to identify what traffic object the driver is gazing at using

the Point of Gaze (PoG) of the driver during driving: The authors in [27]

devised a technique in our laboratory to cross-calibrate the eye-tracker

and stereo systems and project the PoGs onto the stereo system imaging

plane. In the literature there has been little work to investigate driver’s

PoG while driving considering multiple object classes, including vehicle,

traffic light, traffic sign, and pedestrian simultaneously. We investigate

this hypothesis by means of detecting the four aforementioned traffic

object types, we aim to discover what traffic object (or elsewhere) the

driver is gazing at while in the act of driving using PoG of the driver.

As a result, we can estimate a driver’s average percentage of the driving

time in which the driver has gazed at each aforementioned type of traffic

objects in the path of driving.

Investigation of these hypotheses enables us to identify in what type of lanes

the driver is driving and also it will increase our knowledge about improved
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understanding of driver visual behavior by means of estimating average driver

attention with respect to traffic objects of the four types as well as estimating

average percentage of the driving time in which a driver has gazed at different

objects. Moreover, it leads to improved development of predictive modeling

of driver behavior in terms of reliability and expanded types of maneuvers in

comparison to previous work [61] on real on-road RoadLAB data with the aim

of assisting/warning the driver appropriately.

1.2.3 RoadLAB Vehicular Configuration

Our research is based on data gathered in the RoadLAB project. Data was

gathered using an experimental vehicle that was equipped with a forward

stereoscopic system, OBD-II CANbus, and an eye tracker [4]. (see Fig.1.2.)

This configured vehicle was able to record data as follows:

1. The On-Board Diagnostic system (OBD-II) obtained vehicular dynamics

data in real-time. These data included steering wheel angle, odometry,

accelerator/brake pedal position, and turn indicators.

2. The stereoscopic system mounted on the vehicle’s roof recorded the front

view of the vehicular driving environment at 30Hz.

3. A non-contact 3D gaze tracker mounted on the dashboard captured sev-

eral driver cephalo-ocular features, including head/eye motion and gaze

information.

This information was collected in real-time as sixteen driving sequences for

sixteen drivers, including seven males and nine females. CANbus data was

collected via an interface between the on-board computer and the CANbus
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Figure 1.2: RoadLAB vehicular instrumentation configuration. a) (left): 3D in-
frared gaze tracker; b) (right): Forward stereoscopic vision system on rooftop

system of the vehicle to record vehicle odometry information and the driver-

related elements such as steering wheel, accelerator/brake pedals, and turn

signals. Stereo cameras were employed to collect data on the environment

including road markers and traffic signs. FaceLAB, a commercial gaze and

head tracking system, was employed to gather eye and head positions. In

order to cross-calibrate the stereo system and FaceLAB, a new algorithm was

devised in the research RoadLAB group [27].

Each participant drove the instrumented vehicle on a predetermined 28.5km

course within the city of London, ON, Canada. (see Fig.1.3.) The course in-

cludes downtown, urban and suburban areas of the city. The driver sequences

were captured in different weather conditions including sunny (9 driver se-

quences), partially sunny (4 driver sequences), and partially cloudy (3 driver

sequences). Moreover, regarding RoadLAB data, there was ethics approval for

the driving experiments and the use of the resulting data for analysis; the data

was anonymized.
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Figure 1.3: Map of the predetermined course for drivers, located in London,
Ontario, Canada. The path includes urban and suburban driving areas and is
approximately 28.5 kilometers long.

1.3 Contributions

This thesis is an inherent part of the RoadLAB research program, instigated

by Professor Steven Beauchemin, and is entirely concerned with vehicular in-

strumentation for the purpose of the study of driver behavior/intent. Chapters

2, 3, 4, and 5 have been published in recognized peer-reviewed venues. In what

follows I describe my contributions with regard to each publication within the

thesis:

1. Chapter 2: N. Khairdoost, M. Shirpour, M.A. Bauer, S.S. Beauchemin,

Real-Time Driver Maneuver Prediction Using LSTM. IEEE Transactions

on Intelligent Vehicles, vol. 5, no. 4, pp. 714-724, Dec. 2020.

� M. Shirpour and I contributed equally in finding appropriate ideas

to solve the problem, implementing the algorithms as well as writing



23

the paper. We presented a driver behavior model to predict driver

maneuvers using LSTM. For this, we benefited from cephalo-ocular

behavior features and dynamic vehicle features to create our LSTM-

based model. According to our experimental results, our model

outperformed the previous IO-HMM model [45]. It improved the

precision from 79.5% to 85.6% and recall from 83.3% to 84.1%.

Moreover, we expanded the prediction model to anticipate two more

maneuvers (left/right lane changes).

2. Chapter 3: M. Shirpour, N. Khairdoost, M.A. Bauer, S.S. Beauchemin,

Traffic Object Detection and Recognition Based on the Attentional Visual

Field of Drivers. IEEE Transactions on Intelligent Vehicles, 2021.

� M. Shirpour and I contributed equally in finding appropriate ideas

to solve the problem, implementing the algorithms as well as writ-

ing the paper. We developed a vision-based model that detects

and recognizes simultaneously traffic objects of four major classes

including vehicle, traffic light, traffic sign and pedestrian based on

the attentional visual field of the drivers. Our framework achieved

91% of detection rate and provided promising results in the object

recognition stage.

3. Chapter 4: N. Khairdoost, S.S. Beauchemin, M.A. Bauer, Road Lane De-

tection and Classification in Urban and Suburban Areas based on CNNs.

in 16th International Conference on Computer Vision Theory and Ap-

plications (VISAPP), Vienna, Austria, 2021.

� The detection and classification of lanes in urban areas is an im-

portant problem. I presented a CNN-based framework to detect
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and classify lane types in urban and suburban environments. To

detect lanes, we used a network that generates lane information in

an end-to-end way. In the lane type classification stage, our model

categorized the detected lane boundaries into eight classes including

road boundary (when there is no actual lane marking) and reached

the accuracy of 94% for this stage.

4. Chapter 5: N. Khairdoost, S.S. Beauchemin, M.A. Bauer, An Analyti-

cal Model for Estimating Average Driver Attention Based on the Visual

Field. in 7th International Conference on Signal and Image Processing

(ICSIP), Suzhou, China, 2022.

� For predicting what drivers are paying attention to, it is important

to detect relevant objects located inside and outside the attentional

visual area of drivers. I provided a new analytical vision-based

model including three proposed metrics to estimate average driver

attention with respect to several classes of important traffic objects

including vehicles, traffic lights, traffic signs, and pedestrians. Our

presented model is the first model of its kind that takes advantage

of the attentional visual field of the driver to perform its task at

any moment while in the act of driving.

1.4 Thesis Organization

The thesis is organized as follows: in Chapter 2, we present a model using

LSTM to predict a driver maneuver a few seconds before it occurs. In Chap-

ter 3, we explain our method to detect and recognize traffic objects inside and

outside the attentional visual field of the driver. In Chapter 4, we present our
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CNN-based method to detect and classify road lanes in urban and suburban

areas. In Chapter 5, contributions related to average driver attention esti-

mated based on the attentional visual field of the driver with respect to traffic

objects are presented. In Chapter 6, we describe our method to measure the

average percentage of the driving time in which a driver has gazed at traffic

objects. Finally, Chapter 7 provides conclusions and outlines paths for future

research.
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Chapter 2

Driver Maneuver Prediction

This Chapter is a reformatted version of the following article:

N. Khairdoost, M. Shirpour, M.A. Bauer, S.S. Beauchemin, Real-Time

Driver Maneuver Prediction Using LSTM. IEEE Transactions on Intelligent

Vehicles, vol. 5, no. 4, pp. 714-724, Dec. 2020.

Driver maneuver prediction is of great importance in designing a modern

Advanced Driver Assistance System (ADAS). Such predictions can improve

driving safety by alerting the driver to the danger of unsafe or risky traffic

situations. In this research, we developed a model to predict driver maneuvers,

including left/right lane changes, left/right turns and driving straight forward,

3.6 seconds on average before they occur in real time. For this, we propose

a deep learning method based on Long Short-Term Memory (LSTM) which

utilizes data on the driver’s gaze and head position as well as vehicle dynamics

data. We applied our approach on real data collected during drives in an

urban environment in an instrumented vehicle. In comparison with previous

IO-HMM techniques [55] that predicted three maneuvers including left/right

turns and driving straight, our prediction model is able to anticipate two more

maneuvers (left/right lane changes). In addition to this, our experimental
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results show that our model, using the identical dataset, improved the F1

score by 4% to 84%.

2.1 Introduction

The number of vehicles on our streets and highways increases every day. This

fact makes the analysis of traffic situations increasingly complicated. For ex-

ample, in the US alone, at least 33,000 people on average die in road acci-

dents every year, with unsuitable maneuvers being reported as the main cause

for most of these accidents [8]. Hence, vehicle manufacturers have been de-

veloping advanced driver assistance systems (ADASs) to assist the driver in

various driving tasks where ADASs are able to avoid up to 40% of vehicle

accidents [11]. Examples of ADASs include adaptive cruise control, collision

avoidance systems, traffic warning systems, smartphone connectivity, lane de-

parture warning systems, automatic lane centering, blind spot monitoring, etc.

Obviously, improving the reliability and robustness of these systems would

have a significant impact on decreasing the number of collisions and accident

injuries.

An ADAS consists of advanced sensors and camera systems and is activated

when some specific predefined conditions are satisfied. In traditional ADAS,

a threshold is considered for the inputs and if these inputs are greater than

the threshold, the ADAS is activated [21]. Modeling driving behavior of the

driver in different traffic scenes, in addition to understanding surrounding

environment, makes an ADAS more useful for assisting the driver in controlling

the vehicle and avoiding collisions. The goal of this research is to model a

driver’s behavior so that the ADAS can predict the next driving maneuver a

few second before it occurs.



38

In order to predict driver maneuvers, we need to model the temporal as-

pects of the driving context and to infer the driver’s intention from them.

This task is still quite challenging because a driver’s decisions are not directly

detectable and the interactions between them are complex. The contextual

information is also obtained from multiple sensors.

We developed a model to predict driver maneuvers using a Long Short-

Term Memory (LSTM) neural network. LSTM is a special type of Recurrent

Neural Network (RNN) that is capable of learning long-term dependencies [32,

13]. LSTM includes a memory cell and processes the information flow using its

input, forget, and output gates which enables the LSTM model to ignore the

non-essential data and keep in its memory only essential information relating

to the target. Moreover, an LSTM can effectively resolve the problem of

gradient disappearance found in the original RNN approach [50, 54]. LSTMs

are successful in many applications such as speech recognition [39], image

captioning [22] as well as language translation [46]. In many applications

relating to driver behavior, LSTM outperforms the traditional models and

standard RNNs [37, 17, 9, 58, 53]. Also, in order to model driver behavior,

several previous works studied the significance and superiority of LSTM [37].

Like other algorithms, there are some drawbacks to using the LSTM model.

For example, an LSTM model is prone to overfitting, although the dropout

can deal with this in deep learning-based models. As well, although LSTM

became popular since it solves the disappearing gradient problem, it is unable

to eliminate the problem completely. In addition, the number of memory units

in the network does not change dynamically, so the memory of the network

is eventually limited [45]. However, given the overall advantages of LSTM it

seemed to be a good choice to use for the sequence learning problem and in

particular the problem of driver maneuver prediction where the driver analyzes
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the driving environment information only based on several seconds before the

current situation [4].

In order to predict driver maneuvers, our LSTM-based model learns the

parameters from real driving sequences, including vehicle dynamics, driver’s

head movements, as well as gaze data. Then the model infers the potential

driving maneuvers (namely, left/right turns, left/right lane changes and driv-

ing straight forward) by means of generating a probability for each maneuver.

In other words, the maneuver with the highest probability is considered as the

predicted maneuver.

The rest of this paper is structured as follows. In Section 2.2, we review

the literature. In Section 2.3, we explain our vehicle instrumentation. Section

2.4 contains a description of the proposed method. Section 2.5 presents a

summary of the datasets used, learning parameters, and the experimental

results obtained along with a critical analysis of those results. We discuss

several common reasons resulting in incorrect maneuver prediction in Section

2.6. We give conclusions and future research directions in Section 2.7.

2.2 Literature Survey

In general, to anticipate a driver maneuver, a trained model analyzes contex-

tual driving information. This means each driver maneuver is predicted by

analyzing data about things such as head movements, GPS, vehicle dynamics,

driver gaze, etc. Much research has been done to predict the action of a driver

in advance of the driver performing one or more actions [55, 17, 16, 35, 10,

51].

Artificial Neural Networks (ANNs) have a powerful ability to discover im-

plicitly complicated nonlinear relationships among input variables. Hence,
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ANNs are suitable techniques for pattern recognition and action prediction

applications, provided that enough experimental data is available. For driver

maneuver prediction, the inputs can be behavioral features, such as acceler-

ation, signaling and braking, and the ANN outputs the predicted maneuver.

For instance, Kim et al. [21] applied an ANN to measurements from the on-

board sensors, such as the steering wheel angle, the yaw rate and the throttle

position, to classify road conditions and to predict the driver’s intention for a

lane change. Leonhardt and Wanielik [27] employed an ANN for lane change

prediction. MacAdam and Johnson [31] represented driver steering behavior

in path regulation control tasks using elementary neural networks. Mitrovic

[34] used neural networks for short-term prediction of lateral and longitudinal

vehicle acceleration.

Although traditional ANNs, such as feed-forward neural nets, are powerful

machine learning techniques, ANNs are black box learning techniques. They

cannot interpret the relationship among the input and output. Moreover, in

the standard probabilistic framework, they cannot work with uncertainties.

Another disadvantage is that ANNs consider all input data independent of

each other, while in many applications, such as driver maneuver prediction,

the input data is a sequence of observations taken sequentially in time and, of

course, this temporal information is of great importance.

A Bayesian Network (BN) is an acyclic directed graph that constitutes

the conditional dependencies among a set of variables, where the directed

edges reflect the qualitative relationships between variables and conditional

probability distributions are considered as the quantitative relationships. BNs

have been employed for driver maneuver recognition such as overtaking, lane

changes or left/right turns [15, 18, 33]. Amata et al. [1] presented a prediction

model for driver behaviors, such as stopping at intersections based on traffic
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conditions. Tezuka et al. [48] used a BN and steering wheel angle data to

develop a model to detect lane keeping, normal lane changes and emergency

lane changes. Also, BNs have been utilized for intersection safety systems to

recognize turning maneuvers at intersections as well as red light crossing [56].

BNs have been used for identifying emergency braking situations [44]. On the

one hand, BNs are suitable for applications, like driver maneuver modeling,

where considering uncertainties in modeling is essential. On the other hand,

considering temporal data using BNs is difficult. Li et al. [28] used a novel

Dynamic Bayesian Network (DBN) in highway scenarios to predict driver ma-

neuvers. DBNs can model temporal changes, although they cause increased

complexity in building and analyzing the network.

Temporal behavior analysis of vehicles surrounding the ADAS vehicle plays

an essential role in the safety of the driver. Hence, other methods have been

proposed to predict the intention of surrounding vehicles. For example, Kim et

al. [20] used an LSTM to propose a trajectory prediction technique for analyz-

ing the temporal behavior of surrounding vehicles and their future positions.

Also, Khosroshahi et al. [19] proposed a framework to classify maneuvers

of observed vehicles at four-way intersections using LSTM and 3D trajectory

cues. Using LSTM, a method has been introduced by Patel et al. [40] to pre-

dict lane changes of surrounding vehicles in highway driving. An RNN-based

model was presented to interpret the time series data about an observed ve-

hicles at signal-less intersections in order to classify their intentions [57].

For recognition of a driver’s intention, many researchers have utilized Hid-

den Markov Models (HMMs). Kuge et al. [25] developed steering behav-

ior models for normal/emergency lane changes, as well as lane keeping using

HMMs. Another approach was proposed by Tran et al. [49] to predict driver

maneuvers, including stop/non-stop, left/right lane changes and left/right
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turns in both urban and highway driving environments. They employed differ-

ent input sets to investigate the model performance. He et al. [12] developed a

double-layer HMM structure to model driving behavior and driving intention

in the lower and upper layers, respectively. Amsalu and Homaifar [2] employed

a Genetic Algorithm (GA) for optimization, as well as for predicting a driver’s

intentions when the vehicle approaches an intersection. Aoude et al. [3] devel-

oped two SVM- and HMM-based approaches to estimate driver behaviors at

road intersections. Their results showed that the SVM-based approach often

outperformed the HMM-based model. Jain et al. [16] proposed a maneuver

prediction model based on an Autoregressive Input-Output Hidden Markov

Model (AIO-HMM), which jointly exploits the information inside and outside

of the vehicle.

Similarly, Zabihi et al. [55] developed a maneuver prediction model us-

ing an Input-Output Hidden Markov Model (IO-HMM) that learns relevant

parameters from natural driving sequences. They combined vehicle dynamics

features and two features of driver’s cephalo-ocular behavior, including driver

gaze direction and head pose for detecting driver intent. We followed the work

of Kowsari et al. [24] and Zabihi et al. [55] for feature extraction. We refer

the reader to these publications for more details.

Researchers also focused on driver maneuver prediction at (urban) inter-

sections. Klingelschmitt et al. [23] created two separate Bayesian Network and

Logistic Regression-based models for a vehicle’s driving situation and its be-

havior respectively. Then, they combined them in a single Bayesian Network

to design a model able to predict driver intent. In [42], an indicator-based

approach for driver intent prediction was proposed. They combined context

information with vehicle data. The authors in [30] proposed a new approach

for intersection maneuver prediction that was based on personalized incremen-
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tal learning. In other words, they continuously improved the model accuracy

by incorporating individual driving history. Liebner et al. [29] proposed an

approach to predict driver intent including straight intersection crossing and

right turn with the presence or absence of a preceding vehicle. Their model

was based on an explicit parametric model for the longitudinal velocity of

preceding vehicles.

Recurrent Neural Networks (RRNs), Long Short-Term Memories (LSTMs)

and Convolutional Neural Networks (CNNs) have been utilized in different ap-

plications of ADAS and they have shown promising results, such as for driver

activity prediction [17, 38]. Jain et al. [17] employed a RNN with LSTM

units to keep long dependencies over the time. They applied their proposed

model on a real dataset to predict driver maneuvers. Olabiyi et al. [38] pro-

posed a method for anticipating driver action using a deep bidirectional RNN

by discovering the relationships between sensor information and future driver

maneuver. For this, they used a fusion of the past and future context. More-

over, deep learning has been employed for other ADAS applications, which has

brought significant improvements, such as classifying a vehicle’s situation for

lane changes as safe/unsafe [43] and detecting a driver’s confusion level [14].

In this study, we aim to apply LSTM as a deep learning-based method

to our natural driving sequences to predict driver maneuvers some number of

seconds before they occur. As a result, this would allow an ADAS to take

some actions if deemed dangerous or at least warn the driver. Previously, in

[55], a traditional method based on IO-HMM was proposed to anticipate three

maneuvers of left/right turns and driving straight forward using our dataset.

In addition to the aforementioned maneuvers, our model predicts the maneu-

vers of left/right lane changes as well. Our model takes advantage of three

different aspects of a driving environment in comparison to many previous pro-
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posed maneuver prediction methods in the literature. First, since our model

employs an LSTM, which is capable of keeping long-term dependencies in the

temporal data, it is able to predict driver maneuvers better than works em-

ploying classifiers which are not suitable for time series data, such as [27, 41,

26]. The second aspect is related to the number of maneuvers that a maneuver

prediction system is able to predict. As mentioned, our model predicts five

maneuver types although there has been previous work that has predicted ma-

neuvers [35, 10, 51] they consider fewer maneuvers. Finally, our model utilizes

gaze information to perform its task while many previous works ignore such

this useful information, such as [51, 21, 49].

2.3 Vehicular Instrumentation

We instrumented (hardware and software) a research vehicle capable of record-

ing driver-initiated vehicular actuation and relating the 3D driver gaze direc-

tion with environmental stereo imagery. The instrumented vehicle was used

to collect data sequences with 16 drivers on a pre-determined 28.5km course

within the city of London, Ontario, Canada. (See Figures 2.1 and 2.2). 3TB

of driving sequences were recorded, containing forward stereo imaging and

depth, 3D PoG and head pose, and vehicular dynamics obtained with the

OBD-II CANbus interface (See Figure 2.3). Data frames are collected at a

rate of 30Hz.

Our research vehicle is instrumented to find whether driver maneuvers

could be predicted ahead of time. The vehicle is fitted with a non-contact

infra-red 3D gaze and head pose tracker working at 60Hz. Its purpose is

to record head movements and gaze direction as they happen while driving.

Both head pose and gaze are recorded in the reference frame of the tracker
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Figure 2.1: a) (left): 3D infrared gaze tracker; b) (center): Forward stereo-
scopic vision system on rooftop; c) (right): Driver PoG and LoG expressed
in the reference frame of stereoscopic vision system and corresponding depth
map.

Figure 2.2: Map of predetermined route for drivers, located in London On-
tario, Canada. The path length is approximately 28.5 and includes urban and
suburban driving areas.



46

Figure 2.3: The on-board data recorder interface displaying depth maps, driver
PoG, vehicular dynamics, and eye tracker data.

(See Figure 2.1 a) for a depiction of the tracker). A forward stereoscopic

vision system is mounted on the roof of the vehicle to provide dense stereo

depth maps at 30 Hz. Depth maps are expressed in the frame of reference

of the forward stereo system. Details concerning this instrumentation were

described by Beauchemin et al. [5].

We devised a cross-calibration technique to transform the 3D driver gaze

and head pose, expressed in the tracker coordinates, in the reference frame

of the forward stereoscopic vision system. As a result, the 3D Point of Gaze

(PoG) and Line of Gaze (LoG) of the driver into the surrounding environment

are known in absolute 3D coordinates. The attentional visual area of the

average driver is defined as the cone from the eye along the LoG. Here, we

briefly describe the procedure we used to determine the attentional visual area,

whose contour is defined as an ellipse. We first transform the eye position
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e = (ex, ey, ez) and the 3D PoG g = (gx, gy, gz) into the frame of reference

of the forward stereo system, and form a cone with apex e that contains the

LoG at its center. This cone has an opening of 6.5◦ with respect to the LoG

[47]. Next, we define a plane perpendicular to the LoG that contains the PoG,

and compute the intersection this plane makes with the cone, resulting in a 2D

circle located in 3D space. The radius of this circle representing the attentional

gaze area is obtained as:

r = tan(θ)d(e, g) (2.1)

where

d(e, g) =
√

((ex − gx)2 + (ey − gy)2 + (ez − gz)2) (2.2)

The circle is reprojected onto the imaging plane of the forward stereo vision

system where it becomes a 2D ellipse, as pictured in Figure 2.4. The identi-

fication of objects in the scene that elicit an ocular response from the driver

can then be identified within this area (Figure 2.5). The cross calibration pro-

cedure was devised by Kowsari et al. [24]. At the time of its deployment, this

was the first publicly known vehicle capable of identifying the 3D PoG of the

driver in real-time and in absolute 3D coordinates.

2.4 Proposed Method

In order to anticipate driver maneuvers, we need to jointly model the temporal

aspects of the driving context and the driver’s intent. For this purpose, we

employed LSTM as it has the powerful ability to model time series data with

their long-term dependencies.

In general, the aim of driver maneuver prediction is to anticipate the

driver’s future maneuvers some time before they occur, given information on
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Figure 2.4: The attentional visual area of driver is defined as the base of the
cone located at the depth of sighted features.

Figure 2.5: Two projections of the visual attention cone base on the stereo
imaging plane.
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driving context. In the model training stage, a set of complete sequences of

observations are fed into the model, where at the end of the sequence, an event

happens. In our application, the event can be one of five driver maneuvers: a

left/right lane change, a left/right turn, or going forward. The model receives

an observation at each time slice so as to predict the driver’s future maneuver

as early as possible. In other words, the model needs to predict the event by

only receiving partial observations from a data sequence. To be exact, each

time slice consists of the information of a pre-determined number of frames.

Hence, by processing the information available up to current time slice, the

observation can be represented as a feature vector (described in Section 2.4.2).

We discuss our choice for the size of time slices in Section 2.5.2. Finally, for

each time slice, the model outputs the SoftMax probability of each maneu-

ver. Then, the maneuver that has the highest probability is proposed as the

predicted maneuver, provided that its probability is higher than a preassigned

threshold value, otherwise the system makes no prediction. The choice for this

threshold value is justified in Section 2.5.3. Algorithm 1 depicts the complete

procedure of our prediction model using LSTM. We refer the reader to Zyner

et al. [57] and Jain et al. [17] for more details on this particular technique.

Figure 2.6 provides an overview of our proposed method. Below we present

an overview of a standard LSTM unit which is illustrated in Figure 2.7.

2.4.1 Long Short-Term Memories (LSTM)

In this work, we focus on driver maneuver prediction using LSTMs [13]. LSTM

is a particular form of RNNs which is suitable for time series data. We briefly

explain the structure of LSTM. Figure 2.7 shows the internal structure of the

LSTM unit. An LSTM is able to keep the information of previous input data
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Figure 2.6: Overview of the proposed approach for predicting driver maneuvers

Figure 2.7: The internal view of an LSTM unit
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in its memory, called a cell. Hence, it can overcome the vanishing gradient

problem in order to remember long-term dependencies. As mentioned before,

LSTMs have been employed in different ADAS applications [20, 19, 17].

We proceed to describe the equations of an LSTM unit [17, 13]. An LSTM

unit has a memory cell and three gates, including an input gate i, a forget

gate f and an output gate o. At each time step, given the observation xt, the

hidden status from the previous time step ht−1, and the previous cell state ct−1,

the unit computes it and ft and then updates ct−1 to ct in order to obtain ot

and ht. Unlike a RNN, the forget gate in the LSTM unit allows the network to

throw away part of memory or learn new information. The following recursive

equations encode the mechanism:

ft = sigm(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2.3)

it = sigm(Wxixt + Whiht−1 + Wcict−1 + bi) (2.4)

gt = tanh(Wxcxt + Whcht−1 + bc) (2.5)

ct = ct−1 ⊙ ft + it ⊙ gt (2.6)

ot = sigm(Wxoxt + Whoht−1 + Wcoct + bo) (2.7)

ht = ot ⊙ tanh(ct), (2.8)

where sigm, tanh and ⊙ are the sigmoid function, the hyperbolic tangent

function, and the element-wise product, respectively. W and b stand for the

weight matrix and bias vector. For multi-class applications, we employ a Soft-

Max layer in which the SoftMax function is applied on a linear transformation

of ht. The following notation describes the internal working of a recurrent

LSTM unit concisely. In Section 2.4.2, we describe how we reach an observa-
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tion x (our features).

(ct, ht) = LSTM(xt, ct−1, ht−1). (2.9)

2.4.2 Features for Driver Maneuver Prediction

We proceed with describing the features that are extracted for maneuver pre-

diction. These features are divided into two major categories called driver

cephalo-ocular behavioral features and vehicle dynamics features. These fea-

tures are aggregated and normalized for each time slice (i.e. after receiving

20 consecutive frames in every 0.67 seconds of driving) and their combination

constitutes the feature vector, to be fed into the LSTM model. In what follows,

we discuss the extracted features for both categories.

Cephalo-Ocular Behavioral Features

It is generally believed that 3D gaze direction plays a significant role in predict-

ing maneuvers since the driver is observing and focusing on the environment

moments before performing a maneuver [36],[55]. Hence, two features of the

cephalo-ocular behavior of the driver including 3D Point of Gaze (PoG) in

absolute coordinates and also the horizontal head motion have been utilized

to predict driver maneuvers. In order to find the 3D PoG of the driver cor-

responding to its 3D LoG, we used a cross-calibration method proposed by

Kowsari et al. [24]. This method combines a binocular eye gaze tracker with

a binocular scene stereo system and still remains precise for large distances.

Once the cross-calibration step is done, the Line of Gaze (LoG) expressed in

the coordinates of the eye-tracker is projected onto the imaging plane of the

forward stereo system of the instrumented vehicle. Finally, the 3D PoG is
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identified as the region obtained by intersecting this projected 3D LoG onto

the imaging plane of the stereo system with a valid depth estimate.

To extract 3D PoG features, the frame is separated into six non-overlapping

equal parts (as shown in Figure 2.8). We create a histogram of 3D PoGs falling

into these parts. Figure 2.8 illustrates the PoGs over the last 5 seconds before

a maneuver occurs. As can be seen, when drivers are deciding to perform

one of the five manuvers they look at different parts of the frame. For more

clarification, we discussed the positions of PoGs during a sequence of time

slices for a sample of right lane change maneuver. (See Figure 2.9). As shown

in Figure 2.9, the driver at first is looking forward, then he decides to check

potential obstacles in the right lane before performing the maneuver and then

he again looks forward. Finally, he performs the maneuver while is paying

attention toward the right lane. We also monitor horizontal driver’s head

motions and construct a histogram to track that prior to a maneuver.

Vehicle Dynamics Features

In 2011, Beauchemin et al. [7] instrumented a vehicle with OBD-II CAN-

bus. As a matter of fact, all vehicles manufactured after 1996 equipped with

on-board diagnostic (OBD-II) systems, which allow physical scan devices by

means of vehicle sensors to gather and monitor certain vehicle data on the

current status via the OBD-II port. Moreover, since 2008, CANbus protocol

(ISO 15765) has been mandatory for OBD-II in all cars sold in the US. As a

result, this standardization simplifies examination of the real-time vehicle data

(which are generally captured with frequencies between 20 and 200 Hz) for re-

searchers and also car industries to create or improve the performance of the

intelligent ADAS (i-ADAS) applications. For example, the captured real-time
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(a) Left turn (b) Left lane change (c) Right turn

(d) Right lane change (e) Going straight

Figure 2.8: Gaze points are shown on the driving frames over the last 5 seconds
before a left/right turn, left/right lane change, or going straight maneuver
occurs. Frames are divided into six areas.
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Figure 2.9: A sequence of time slices belonging to a right lane change event.
(t1): Driver goes straight and looks forward. (t2 and t3): Driver decides to
initiate an attempt to change lane, and searches visually for potential obstacles
in the right lane. (tn and tn+1): Attention of the driver returns to the current
lane and the driver still goes straight. (tT−1): The driver makes the final
decision to change lane and looks at the right lane. (tT ): Right lane change
event has occurred.
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vehicular data provide the information that is essential for the application of

driver maneuver prediction.

Vehicle dynamics-based data include vehicle speed, steering wheel angle,

left/right turn signals, brake pedal pressure, gas pedal pressure and the speeds

of all wheels. We integrated features to benefit from the sum of them simulta-

neously. For each time slice, we made a histogram of steering wheel angles and

encoded the minimum, average and maximum values of vehicle speed, brake

pedal pressure, gas pedal pressure, indicating independent wheel speeds. Fi-

nally, for left and right turn signals, we considered a binary feature for each.

This feature value is 1 if the turn signal is on, and 0 otherwise.

Algorithm 1 Driver Maneuver Prediction Using LSTM

Input: Cephalo-Ocular Behaviour and Vehicle Dynamics Features; Prediction
Threshold Pth

Output: Predicted Maneuver M; Time-to-Maneuver
while t = 1 to T do

Observe features available up to current time slice
Max Probability = Calculate and find the maximum of probabilities of
each maneuver using LSTM model
if Max Probability > Pth then

M = Corresponding maneuver with Max Probability
Time-to-Maneuver = T - t
break

end if
end while
Return M, Time-to-Maneuver

2.5 Experimental Results

We first give an overview of our maneuver dataset. Then, we explain how

we tuned different parameters of the proposed model. Finally, we report our
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experimental results for maneuver prediction in details.

2.5.1 Dataset

To investigate our proposed model, we applied our approach to driving se-

quences recorded by the RoadLAB instrumented vehicle in the city of Lon-

don, Ontario, Canada [6], with the aim of comparing our results with those

obtained by Zabihi et al. [55], using the same driving sequences as they did.

Table 2.1 provides details on the sequences that have been collected by dif-

ferent drivers for our experiments. These driving sequences contain the data,

including GPS, 3D driver gaze, head pose, vehicle speed, and the angle of

steering wheel, among others. We used a total of 325 events which have been

obtained from the aforementioned sequences containing 65 left lane changes,

40 right lane changes, 65 left turns, 75 right turns, and 80 randomly sampled

instances of driving straight. Each actual event is considered as one sample,

which means our dataset consists of a total of 325 non-overlapping sample

events.

Table 2.1: Data description (Each sequence belongs to one driver)

Sequence Date of Capture Temperature Weather

Seq. 8 Sep. 12 2012 27 ◦C Sunny
Seq. 9 Sep. 17 2012 24 ◦C Partially cloudy
Seq. 10 Sep. 19 2012 8 ◦C Sunny
Seq. 11 Sep. 19 2012 12 ◦C Sunny
Seq. 13 Sep. 21 2012 19 ◦C Partially sunny
Seq. 14 Sep. 24 2012 7 ◦C Sunny
Seq. 15 Sep. 24 2012 13 ◦C Partially sunny
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2.5.2 Learning Parameters

We benefited from 5-fold cross-validation to tune the network parameters and

the threshold on probabilities for driver maneuver prediction by searching in

ranges for the given different parameters. We selected those set of parameters

which give us the highest F1-score on the validation set. Finally, we tested

the model on a pre-separated unseen data that consists of a set of randomly

selected samples. We performed this strategy several times to estimate the

accuracy and generality of the proposed model. We explain more about F1-

score and the results in Section 2.5.3. For instance, for the size of the time

slice, researchers have reported different number of frames such as 10 [30], 15

[52] and 20 [17] in the literature. We also investigated the performance of the

time slice consisting of 10, 15, 20, 25 and 30 consecutive frames and reached

better results by employing 20 consecutive frames. Here, we briefly report the

other fine-tuned parameters.

Our proposed model consists of 3 hidden LSTM layers. The number of

hidden units for the 3 layers was set to 100. We added a dense layer with

5 units for the 5 output classes (including left/right lane changes, left/right

turns and driving straight). We employed 0.25, 100 and 10 for the parameters

of validation split, epochs and batch size, respectively. The tanh activation

function for the LSTM layers was used in our experiments. We also used a

SoftMax activation function, mean squared error and Adam method for the

dense layer, loss function and stochastic optimization, respectively. Dropout

is very important to avoid over-fitting, and so we used 0.2, 0.3 and 0.2 for

the first, second and third LSTM layers respectively. Moreover, the threshold

value in our experiments was set to 0.80 which has been discussed in details

in Section 2.5.3. (See Figure 2.11).
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2.5.3 Maneuver Prediction Results

In the test step, the model predicts the driver maneuver every 20 frames

and we expect the prediction system to anticipate the maneuver using only

partial observations of a sequence. Previously, Zabihi et al.[55] proposed an

IO-HMM-based model to anticipate three maneuvers of left/right turns and

driving straight using our real driving dataset. To compare the performance

of our model with theirs, as a first experiment, we employed our approach to

predict Zabihi’s maneuvers only. In the second experiment, in addition to the

aforementioned maneuvers, we utilized our method to predict the maneuvers

of left/right lane changes. For each time slice (i.e. after receiving 20 frames),

the model generates the probability for each maneuver. Obviously, the sum

of these probabilities should be 1. Then, the maneuver with the highest prob-

ability is chosen as the predicted maneuver only if it is higher than a preset

threshold. If the highest probability is less than the threshold (0.8), the sys-

tem cannot predict the driver maneuver and requires reception of additional

features from the next time slice to perform its task. Note that if the maneuver

occurs and the system still has not predicted it, the system makes no predic-

tion. We verified the performance of our model by calculating the measures of

precision and recall for each maneuver. These measures are defined as follows:

Pr =
tp

tp + fp
(2.10)

and

Re =
tp

tp + fn
, (2.11)

where, for each maneuver m, tp is the number of correctly predicted instances

of maneuver m, fp is the number of incorrectly predicted instances of maneuver
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m, and fn is the number of instances of maneuver m that are wrongly not pre-

dicted or the system does not choose any maneuver. In other words, precision

is the number of correctly predicted instances of maneuver m divided by the

number of instances that were predicted as maneuver m. Recall is the number

of instances of correctly predicted maneuver m divided by the total number

of instances of maneuver m. We computed the average of precision and recall.

We also computed the average of time-to-maneuver, for true predictions (tp),

which indicates the interval between the time of algorithm’s prediction and the

start of the maneuver. Zabihi et al. [55] performed several experiments and

reported that utilizing IO-HMM with the data on the driver’s gaze and head

pose (IO-HMM G+H) made the better model in terms of precision, recall and

Time-to-Maneuver.

Table 2.2 compares our results (considering three and five maneuvers) with

their best results. As can be seen, our LSTM-based model outperformed their

prediction model. To be exact, precision and recall of our model for the three

maneuvers are 6.1% and 0.8% respectively higher than those of the previous

work by Zabihi et al. [55] for these three maneuvers. However, their method

can predict the three maneuvers 0.16s earlier on average than ours. The last

row in Table 2.2 shows the results of extending our model to predict two more

types of maneuvers. In this case, we obviously expect more complexity for the

problem and results show that precision, recall and time-to-maneuver have

decreased slightly in comparison with our method for predicting only three

maneuvers.

Figure 2.10 shows the confusion matrices for our prediction system for

three and five maneuvers. In these matrices, a row represents an instance of

the actual maneuver class, whereas a column represents an instance of the

predicted maneuver class. Consequently, the values of the diagonal elements
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(a) Model with three maneuvers (b) Model with five maneuvers

Figure 2.10: Confusion matrices of our prediction model

represent the degree of correctly predicted classes which is greater than or

equal to 82% and 76% for the three and five maneuvers respectively.

Table 2.2: Result of different models of driver maneuver predic-
tion on our data set.

Pr
(%)

Re
(%)

Time-to-
maneuver(s)

IO-HMM G+H (for
three maneuvers)

79.5 83.3 3.8

Our model (for three
maneuvers)

85.6 84.1 3.64

Our model (for five ma-
neuvers)

84.2 82.9 3.56

Figure 2.11 compares the changes of the F1-score when we employ our

model and the IO-HMM-based model, with different values for the threshold.

The F1-score is the harmonic mean of Pr and Re, where it can reach 1 with

perfect precision and recall, and 0 in the worst case. In other words, the pre-

diction threshold is a useful parameter to find a trade-off between the precision
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Figure 2.11: The effect of the threshold on the F1 score for IO-HMM and
LSTM models.

and recall of the algorithms. The F1-score is defined as follows:

F1 =
2PrRe

Pr + Re

(2.12)

As can be seen, the trend of F1-scores for the IO-HMM model remains roughly

stable when the threshold changes. However, when we choose 0.8 for the

threshold, the LSTM-based prediction model achieves a significantly higher

F1-score in comparison with IO-HMM model. In Table 2.2, we utilized the

threshold values which gave us the highest F1-score. Our model predicts ma-

neuvers every 0.67 seconds (20 frames) in 2.8 milliseconds on average on a

3.40GHz Core i7 − 6700 CPU with Windows 10.

Finally, we briefly mention here the results of several previous works which

have also addressed the driver maneuver prediction problem, using their own

dataset and features. For instance, Morris et al. [36] accomplished a binary

classification of lane changes and driving straight maneuvers. They employed a

Relevance Vector Machine (RVM; a Bayesian extension to the popular SVM).
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In addition, Jain et al. [17] evaluated some algorithms for the same purpose

(including SVM, Bayesian Network and variants of their deep learning model).

The methods listed in Table 2.3 use identical feature vectors, which guarantees

a fair comparison1. As can be observed, the SVM classification does not model

the temporal aspect of the data, and its performance is poor as a result.

Table 2.3: Maneuver anticipation results of several previous
methods.

Method Pr (%) Re (%) Time-to-
maneuver(s)

SVM[36] 43.7±2.4 37.7±1.8 1.20
IO-HMM[16] 74.2±1.7 71.2±1.6 3.83
AIO-HMM[16] 77.4±2.3 71.2±1.3 3.53
S-RNN[17] 78.0±1.5 71.1±1.0 3.15
F-RNN-UL[17] 82.2±1.0 75.9±1.5 3.75
F-RNN-EL[17] 84.5±1.0 77.1±1.3 3.58

2.6 Common Reasons for Wrong Maneuver An-

ticipations

We discuss some major reasons that can generally result in wrong anticipa-

tions in the driver maneuver prediction problem. For example, when a driver

is interacting with other passengers, head and gaze features are not reliable

enough to be taken into account. Also, a driver may be distracted when he/she

is watching videos, programming a GPS, using a cell phone, adjusting the ra-

dio, smoking and etc. In such situations, wrong anticipation is common as

1The methods listed in the Table are: SVM: Support Vector Machine, IO-HMM: Input-
Output Hidden Markov Model, AIO-HMM: Auto-Regressive Input Output Hidden Markov
Model, S-RNN: Simple Recurrent Neural Network, F-RNN-UL: Fusion-Recurrent Neural
Network Uniform Loss, F-RNN-EL: Fusion-Recurrent Neural Network Exponential Loss.
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the driver may not be fully focused on the road. Moreover, different drivers

have different driving styles. For example, during lane change maneuver, some

drivers may merge slowly while others may merge quickly that in this case,

the driver has not provided the system with enough data and time to predict

maneuver. Hence, in this situation, other features such as speed, accelera-

tion, steering wheel angle can be significant to predict an accurate maneuver.

As another example, when drivers rely on their recent perception of traffic

scene, they probably do not check blind spots and the surroundings carefully

resulting in lack of head information but we may still have valid gaze features.

A similar driving situation is when a driver is driving in left/right-turn-only

lanes. In this case, the driver might not give us helpful head information as

well.

2.7 Conclusion and Future Work

We presented a deep learning-based model to predict driver maneuvers sev-

eral seconds before they are performed. We employed driver cephalo-ocular

behavioral information and vehicle dynamics data as features to train our

model. Our experimental results show that our model outperformed the pre-

vious IO-HMM model [55]. It improved the precision from 79.5% to 85.6%

and recall from 83.3% to 84.1%. Moreover, we expanded the prediction model

to anticipate two more maneuvers (left/right lane changes). For predicting the

five maneuvers, our model achieved 84.2% and 82.9% for precision and recall

respectively. Our model has three features which make it competitive and

more reliable in comparison to previous work: it employs an LSTM to utilize

long-term temporal dependencies, is able to predict five maneuver types and

benefits from using gaze information.
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Several limitations do exist and can be addressed for improving the accu-

racy and generality of the model. Adding more features from the environment,

such as the lane in which the driver is located or where the driver is gazing dur-

ing the driving maneuver, could improve the accuracy of the model. In terms of

generality, the tests conducted in this research were based on a limited number

of drivers and under specific weather and environmental conditions. Collect-

ing new data under different situations and training the model on a broader

set of data could help the generality of the model. Hence, for the commercial

use of this model, the mentioned items need to be considered. Lastly, this

research area is still challenging and more research is still needed before such

models are practical in commercial use. As for future work, we plan to study

the extraction of features from video within the attentional visual area of the

driver. We believe that utilizing LSTM trained with a combination of these

features, with cephalo-ocular behavior and the vehicle dynamics will improve

current prediction results.
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Chapter 3

Traffic Object Detection and Recognition

Based on the Attentional Visual Field of

Drivers

This Chapter is a reformatted version of the following article:

M. Shirpour, N. Khairdoost, M.A. Bauer, S.S. Beauchemin, Traffic Object

Detection and Recognition Based on the Attentional Visual Field of Drivers.

IEEE Transactions on Intelligent Vehicles, Dec. 2021.

Traffic object detection and recognition systems play an essential role

in Advanced Driver Assistance Systems (ADASs) and Autonomous Vehicles

(AVs). In this research, we focus on four important classes of traffic objects:

traffic signs, road vehicles, pedestrians, and traffic lights. We first review the

major traditional machine learning and deep learning methods that have been

used in the literature to detect and recognize these objects. We provide a

vision-based framework that detects and recognizes traffic objects inside and

outside the attentional visual area of drivers. This approach uses the driver

3D absolute coordinates of the gaze point obtained by the combined, cross-

calibrated use of a front-view stereo imaging system and a non-contact 3D
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gaze tracker. A combination of multi-scale HOG-SVM and Faster R-CNN-

based models is utilized in the detection stage. The recognition stage is per-

formed with a ResNet101 network to verify sets of generated hypotheses. We

applied our approach on real data collected during drives in an urban envi-

ronment with the RoadLAB instrumented vehicle. Our framework achieved

91% of correct object detections and provided promising results in the object

recognition stage.

3.1 Introduction

Advanced Driver Assistance Systems (ADASs) have attracted the attention

of many researchers and vehicle manufacturers for several decades. Achiev-

ing higher performance levels for ADAS requires a robust perception of the

driving environment. Hence, vision-based traffic scene perception which refers

to the identification of the position of traffic objects such as pedestrians, ve-

hicles, traffic signs, etc is of great importance in designing a modern ADAS.

However, in practice, many traffic scene issues, such as occlusions, weather

conditions, shadows and distant object identification affect the performance

of such systems. Improving the accuracy and adaptability of such methods is

still a challenging area of research [89]. In this study, we focus on four essen-

tial categories of objects: traffic signs, vehicles, traffic lights, and pedestrians.

Correctly detecting and localizing these classes of objects in the context of

ADAS is still a difficult challenge. Typically, problems encountered include

variations in viewpoints, object shape, size, color, distance from sensors, illu-

mination conditions, and object occlusion [4], [20], [25].

Our contributions include: collecting and labelling a large dataset includ-

ing images of different objects, and proposing an integrated framework to de-
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tect and recognize traffic objects including traffic signs, vehicles, traffic lights,

and pedestrians. Our model inherits the advantage of deep neural networks

(ResNet and Faster R-CNN) and classical machine learning models (multi-

scale HOG-SVM). This framework is the first one of its kind which performs

its tasks taking the attentional visual field of the driver into consideration.

This is an important aspect of an ADAS, as it allows the ADAS to identify

objects seen and not seen by the driver, among other things.

This contribution is organized as follows: In Section 3.2, we review the

related literature. Section 3.3 describes the datasets we used and the proposed

method. Section 3.4 presents the experimental results obtained along with a

critical analysis. Conclusions and future research directions are described in

Section 3.5.

3.2 Related Works

3.2.1 Generic Object Detection

Generic object detection algorithms can be divided into two major types of

traditional and deep learning-based methods. In this section, we briefly review

these generic object detection methods. Several object detection surveys can

be found in [113], [114], [90], [118], [98] and [30].

Among the traditional object detectors we find the framework proposed

by Viola and Jones which employs searches based on sliding-windows and Ad-

aBoost classifiers [95]. Another popularly used framework is the linear Support

Vector Machine (SVM) classifier with such features as Histograms of Oriented

Gradients (HOG), Scale Invariant Feature Transforms (SIFT), and Local Bi-

nary Patterns (LBP). For example, in [53] and [22], researchers employed SVM



78

and a multi-scale detection framework with HOG features to detect birds and

pedestrians respectively. Finally, Aggregated Channel Features (ACF) is as

another successful detection framework that has been proposed by [21]. This

method also uses sliding-window searches and AdaBoost to detect objects in

a multi-scale fashion [70], [64].

Unlike traditional object detection algorithms that benefit from prior knowl-

edge, deep learning-based object detection methods attempt to learn high-level

features from a massive amount of data. As a result, they are less sensitive to

illumination changes, deformations and geometric transformations [86]. There

are two major types of deep learning-based object detection methods: Region-

based methods and regression-based methods. The former generates region

proposals at first and then classifies them into different object categories while

the latter transforms the object detection problem into a regression problem

and predicts locations and class probabilities directly from the whole image

[113]. The region-based methods mainly include R-CNN [30], Fast R-CNN

[29], Faster R-CNN [78], R-FCN [16], SPP-net [38] and Mask R-CNN [36]. On

the other hand, the regression-based methods mainly include AttentionNet

[107], G-CNN [67], SSD [62], YOLO [75], YOLOv2 [76], YOLOv3 [77], DSOD

[82] and DSSD [27].

3.2.2 Traffic Sign Detection and Recognition

Sign detection methods are generally categorized into color-based, shape-based

and hybrid approaches [44], [96]. Color-based methods use color information

as the main attribute to localize image regions containing traffic signs in the

image. Color thresholding segmentation is the more common approach among

color-based methods as it reduces the search area by ignoring untargeted re-
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gions [18], [54]. These methods are generally sensitive to variations in illumi-

nation and the distance to traffic signs [79]. Traffic signs also have specific

shapes that can be searched for by shape-based methods. The Hough trans-

form is one of the most common shape-based methods [68], [106], as it is

relatively robust against illumination change and image noise. Similarity de-

tection [80] and Distance Transform matching [28] also constitute shape-based

methods. Hybrid approaches take advantage of both sign color and shape [19],

[74]. Classification stages mostly employ template matching [91], [33], SVM

[103], [110], Genetic Algorithm (GA) [50], Artificial Neural Network (ANN)

[35], [39], AdaBoost [11], [60] and deep learning-based methods. In recent

years, deep learning methods have increasingly attracted a great deal of at-

tention. Convolutional Neural Networks (CNNs) constitute a subset of deep

neural network models that have the power to learn robust and discriminative

features from raw data. There is a variety of CNN that have been employed for

traffic sign recognition such as small-scale CNN [117], multi-scale CNN [81],

a committee of CNN [15], multi-column CNN [14], and multi-task CNN [52],

CNN-SVM [58], [55], among others. A number of traffic sign datasets have

been created in the past decade. However, methods that have been proposed

in the literature are mostly based on European datasets. As Traffic signs in

North America differ in color and shape, the methods that have been pro-

posed based on European traffic signs are not directly suitable in the North

American context [108].

3.2.3 Vehicle Detection

Many traditional vehicle detection approaches comprise a Hypothesis Gen-

eration (HG) step followed by a Hypothesis Verification (HV) step. With
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regards to HG, there are various methods that can be divided into three basic

categorizes including knowledge-based, stereo-based, and motion-based [87].

Knowledge-based methods use prior knowledge including shadows [93], sym-

metry [49], edges [66], color [104], texture [8], corners [5] and vehicle lights

[10]. Stereo-based approaches usually exploit the Inverse Perspective Map-

ping (IPM) [6] or disparity maps [26] to localize vehicles, while motion-based

methods detect vehicles with optical flow [63]. HV approaches can be clas-

sified into two major categories [87]: template-based and appearance-based.

The former employs predefined vehicle patterns and estimates the correlation

between templates and candidate image regions [34], while the latter uses ma-

chine learning methods such as SVM [92], ANN [31], and AdaBoost [85] to

classify hypotheses into vehicle and non-vehicle categories.

Classifiers such as SVM [92], ANN [31], and AdaBoost [85] learn the char-

acteristics of vehicle appearance to draw a decision boundary between vehicle

and non-vehicle classes. In HV, a number of local feature descriptors such

as HOG [105], PHOG [49], Haar-like [100], Gabor [65], and SURF [59] have

shown a remarkable ability in collecting contextual information. Addition-

ally, different vehicle detection approaches that employ deep learning-based

methods discussed in Section 3.2.1 have been proposed. For instance, in [23],

the authors provided a comparative study on the performance of AlexNet and

Faster R-CNN models. Also, in [116], the authors exploited the fine-tuned

YOLO [75] for vehicle detection. In [42], vehicles are detected with a simpli-

fied Fast R-CNN.
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3.2.4 Pedestrian Detection

Many traditional methods for pedestrian detection have been proposed with

the majority of them using features such as HOG [17], Haar-Like [72], Viola-

Jones [94], and LBP [97], followed by a classification stage using either SVM,

ANN, or AdaBoost. Additionally, pedestrian detection methods using deep

learning can be categorized as either single-stage or two-stage techniques.

RPN+BF [111], and Faster R-CNN [112] are examples where the authors em-

ployed a two-stage approach. Examples of single-stage approaches have been

proposed: For instance, Lan et al. [56] modified YOLOv2 into a single-stage

network called YOLO-R for pedestrian detection. Comprehensive surveys on

pedestrian detection are provided in [7] and [1].

3.2.5 Traffic Light Detection

Color segmentation is a method often used to reduce the search space in traf-

fic scene images. For example, in [12] and [9], the authors employed HSI and

YCbCr color spaces respectively to detect traffic lights. In some studies, a

shape-based method such as the circular Hough transform [71] was used af-

ter color segmentation to find round traffic lights. Blob detection is another

approach to detect traffic lights that analyses the size and aspect ratio of the

traffic lights to eliminate regions likely to produce false positives [115]. In

[47], saliency maps are employed to detect traffic lights. In [48], GPS data

and digital maps are used to identify traffic lights in urban areas. Feature

descriptors such as HOG [12], Haar-like [32], and Gabor Wavelets [9] have

been extensively used to detect traffic lights. To recognize the state of traffic

lights, several methods have been employed mostly including SVM [83], fuzzy

algorithms [2] and more recently, deep learning methods. A simple CNN was
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used by Lee and Park [57] for traffic light classification. Behrendt et al. [4]

applied YOLOv1 for detection and classification. In [45], YOLO-9000 [76]

was applied to the LISA traffic light dataset. The authors in [99] exploited

DeepTLR networks for real-time traffic light detection and classification. A

novel Faster R-CNN hierarchical architecture was proposed in [73] and trained

on a joint traffic light and sign dataset.

Prior to our work, there has been a very little attention in previous research

for simultaneously detecting different major classes of traffic objects. Hence,

one aspect which makes our work different from others is the fact that in

addition to detection of more major classes of traffic objects, we also classify

them into their own subcategories.

3.3 Proposed Method

In this section, we describe our proposed method for traffic object detection

and recognition based on the attentional visual field of the driver. First, our

dataset used in this research is introduced. Following this, we describe the

method employed to find the attentional gaze area of the driver in the forward

stereo imaging system. Next, in the object detection stage, our trained models

and the methods used for enriching our data set are described. We then discuss

the Region of Interests (ROIs) integration method we used. Finally, the object

recognition stage is presented. Figure 3.1 illustrates our proposed framework.

3.3.1 The RoadLAB Dataset

An essential element of deep learning-based object detection systems is the

availability of a large number of sample images. In this section, we present our
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Figure 3.1: Framework Overview. Our framework detects and recognizes
traffic objects inside the visual field of driver. (from left to right: a)
The RoadLAB vehicle with forward stereoscopic and eye-tracking systems. b)
Dataset created with the RoadLAB experimental vehicle. c) Computing the
radius of driver’s view as attentional gaze cone and locating the re-projected
2D ellipse of the visual field of the driver. d) We used two different model
types in the detection stage of the framework; Model A consists of two steps
including multi-scale HOG-SVM followed by applying a CNN, and Model B is
a Faster Region-based CNN. Detection results are integrated by an NMS-based
algorithm. e) For the recognition stage, we separately trained three indepen-
dent models on traffic signs, vehicles, and traffic lights.
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own object dataset from the RoadLAB experimental data sequences [3], [51],

[84]. As one of our contributions in this study, in order to train, validate and

test our models, we collected 13,546 sample images to detect and recognize

traffic objects including traffic signs, vehicles, pedestrians and traffic lights.

Our dataset contains 3,225 sample images for the background class in addition

to 5,172, 1,984, 1,290 and 1,875 sample images for the object classes of traffic

sign, vehicle, pedestrian and traffic light respectively. The vehicle class consists

of 3 distinct classes including car, bus and truck. The traffic light class consists

of 4 distinct classes including red, yellow, green and not clear. Finally, the

traffic sign class includes 19 distinct classes of traffic signs. Additionally, some

traffic sign classes include more than one sign type such as “Maximum Speed

Limit”, “Construction”, “Parking”, etc. Our samples for traffic signs can be

considered as a complete sign dataset including warning signs, regulatory signs,

direction signs, and temporary signs.

3.3.2 Driver Gaze Localization

The visual attentional field of the driver consists of a circle in 3D space within

the plane that contains the Point of Gaze (PoG), perpendicular to the Line

of Gaze (LoG). The radius of the circle is determined by the angular opening

of the cone of visual attention as shown in Figure 3.2. The circle generally

is projected onto the imaging plane of the stereo sensor as a 2D ellipse. We

describe the procedure we employed, as per Kowsari et al. [51].

First, both the eye position e = (ex, ey, ez) and the 3D PoG g = (gx, gy, gz)

are transformed into the reference frame of the forward stereo sensor. Next,

the radius of the circular attentional gaze area is obtained by computing the
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Figure 3.2: (top): Depiction of the driver attentional gaze cone. (bottom):
Re-projection of the 3D attentional circle into the corresponding 2D ellipse on
image plane of the forward stereo scene system.

Euclidean distance between e and g (θ is set to 6.5 ◦: [88]).

r = tan(θ)∥e− g∥2 (3.1)

We re-project the obtained circle contained in the 3D plane perpendicular

to the LoG onto the image plane of the forward stereo imaging sensor where

it becomes an ellipse. The coordinates of the ellipse are obtained as:

(X, Y, Z) = g + r(cosϕu + sinϕv) (3.2)

where u=(ux, uy, uz) and v=(vx, vy, vz) are two orthonormal vectors in the

plane orthogonal to the LoG and ϕ ∈ [0, 2π]. Using perspective projection

x = X
Z

and y = Y
Z

and applying the intrinsic calibration matrix of the stereo

scene system from [51] yields the 2D ellipse on the image plane of the forward

stereo sensor. The mathematical details are found in [51] and [109]. Figure

3.3 illustrates several attentional visual areas for several sample frames.
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Figure 3.3: Examples of attentional gaze areas projected onto the forward stereo
sensor of the vehicle.

3.3.3 Object Detection Stage

To detect traffic objects of interest inside and outside of the attentional field

of the driver, we employed a framework consisting of two different model types

that we proceed to describe:

Model A

The first model consists of two steps that include a multi-scale HOG-SVM

followed by the use of a ResNet101 network. The multi-scale HOG-SVM de-

scriptor counts occurrences of gradient orientations in an image region followed

by a block-normalization algorithm that results in better invariance to edge

contrast and shadows. Since it operates on local cells, it is also relatively

invariant to geometric and photometric transformations. In general, the de-

tection algorithm is based on an overlapping sliding window approach. Since

the Region of Interest (ROI) contains objects that vary in size, we used a

multi-scale method for the object detection problem. We treat the HOG fea-
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Figure 3.4: Internal view of a multi-scale HOG-SVM

tures extracted from each sliding window at each level as independent samples

prior to feeding them to the SVM classifier. Figure 3.4 illustrates the internal

view of multi-scale HOG-SVM.

We trained four independent multi-scale HOG-SVM models to find ROIs,

for our four types of traffic objects (signs, vehicles, pedestrians, and traffic

lights). The model moves a sliding window across the images and HOG fea-

tures are extracted. The model follows this strategy at several imaging scales.

Typically, SVM outputs conventional binary decision labels. However, it can

also provide a probabilistic confidence score [61] for each sliding window, which

we use to threshold on ROIs. With the use of HOG-SVM, we discard the ROIs

labelled as background while other candidates are transferred to the next stage

of processing.

The remaining ROIs from the HOG-SVM classifier were categorized into

five classes: background, traffic sign, vehicle, pedestrian and traffic light. In

the second stage we applied ResNet101 [37], which is a popular CNN that

has been already trained with more than a million images from the ImageNet
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Figure 3.5: Model A output examples.

database [69]. Figure 3.5 illustrates sample results obtained with this model.

However, during our empirical trials, we noted the multi-scale HOG-SVM had

difficulty localizing vehicles occupying a large part of the image (Figure 3.6

illustrates this problem). Hence, we also used a Faster R-CNN model to detect

vehicles.

Model B

We trained a Faster R-CNN model on our dataset to localize vehicles. Dur-

ing our empirical trials, we observed that Model B is able to correctly detect

vehicles that occupy a large image area, or that are very close to the instru-

mented vehicle. Conversely, based on our empirical trials as well as our survey

of the literature [46], [40] and [43], we found that Faster R-CNN struggled

with objects that are low in resolution or small in size. As a result, to detect

objects of different sizes, we integrated the results from both Models A and

B to take advantage from both. The hypotheses generated in this stage are
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Figure 3.6: Examples of model A missing large vehicle objects.

directly transferred to an integration stage where detection results are merged.

Figure 3.7 displays vehicle detections obtained with Model B.

3.3.4 Data Augmentation

In addition to collecting over 10,000 sample object images, to further enrich

our training dataset, we employed a data augmentation technique and a boost-

ing algorithm. Through data augmentation, we made our dataset greater by

adding the translated, rotated, scaled, and sheared versions of our original

samples resulting in increased performance at the detection stage. To boost

the performance of our models, we employed an advanced learning method

known as Hard Examples Mining (HEM). HEM refers to examples that are

mislabeled by the current version of the model. We trained the SVM, Resnet,

and Faster R-CNN models in an iterated procedure on a portion of the training

data, and at each iteration, the detector models were applied to a number of

unseen images from the training data. Then, we added manually the corrected
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Figure 3.7: Model B output examples.

mislabeled objects in the preparation of training set for the next iteration. We

finally provided the models with additional key samples which made them

more robust.

3.3.5 Integrating Detection Results

After completing the detection stage on test images, in order to improve the

detection performance, we eliminated redundant detections and merged the

remaining ones into a set of integrated results. For this, we used a method

that is based on Non Maximum Suppression (NMS) [108], [44]. When mul-

tiple bounding boxes overlap, NMS retains the highest-scored bounding box

and eliminates any other whose overlap ratio exceeds a preset threshold. We

employed Pascal’s overlap score [24] to find the overlap ratio a0 between them.

This ratio is obtained as:

a0 =
area(B1 ∩B2)

area(B1 ∪B2)
(3.3)
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where B1 and B2 are two overlapping bounding boxes.

The NMS algorithm is not practical in all situations. For instance, consider

a situation in which a vehicle is partially occluded by a pedestrian, and both

of them are detected. If their overlap ratio is greater than the threshold,

NMS wrongly eliminates the lower-scored object. To address this case, we

integrated all bounding boxes in three steps. We considered a lower bound

and a upper bound threshold for the overlap ratio. In the first step, we employ

NMS to merge bounding boxes that belong to the same class. In this step,

NMS eliminates the lower-scored bounding boxes whose overlap ratios are

between the lower bound and the upper bound thresholds. In the second step,

if bounding boxes belong to the same class and their overlap ratio is greater

than the upper bound threshold, they are merged into a larger bounding box.

In the last step, all remaining bounding boxes are merged without employing

NMS to generate the final set of detected hypotheses.

3.3.6 Object Recognition Stage

The output of the detection stage is a list of candidate objects that have been

labeled with the class they belong to (traffic sign, vehicle, traffic light, and

pedestrian). Except for pedestrian objects, the remaining objects from the

list are considered for further analysis at this stage. We separately trained

three independent models on traffic signs, vehicles, and traffic lights by using

ResNet101 for recognizing the remaining objects. After feeding the candidate

object (hypothesis) into its corresponding model, the classifier decides whether

the object in the list is either a rejected object or a recognized object and,

in this case, the classifier responds with the appropriate class name. More

precisely, the traffic light recognizer is able to classify traffic light hypotheses



92

Figure 3.8: Output samples from the proposed framework superimposed on the
attentional visual field of the driver

into five classes, the vehicle recognizer is able to classify vehicle hypotheses into

four classes, while the traffic sign recognizer classifies traffic sign hypotheses

into twenty classes. Fig 3.8 shows a sample of results from the proposed

framework for four classes of traffic objects.

3.4 Experimental Results

We employed the driving sequences captured with the RoadLAB experimental

vehicle [3] and our dataset as described in Section 3.3.1. The proposed method

was used to detect and recognize traffic objects inside and outside of the atten-

tional visual area of the driver. Based on the attentional visual field, we can

infer whether the driver is likely to have seen the object or not, namely, when

the existing object falls inside the driver gaze area. In the following we first

provide the parameters which have been used in our experiments and then we

report on our experimental results for the proposed detection and recognition
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stages in detail.

3.4.1 Parameters

To obtain fine-tuned parameters for each classifier model, we used cross-

validation experiments on our training dataset. We divided the training data

into a basic training set and a validation set. Then, the basic training set was

used to train the classifier and subsequently, the validation set was used to

evaluate the model. By exploring various ranges for the tuning parameters,

we selected the parameter settings that resulted in maximum validation accu-

racy. Next, the classifier was re-trained on the complete training set using the

fine-tuned parameters. Our model achieved 95.1% and 94.2% performance for

training and validation sets respectively. Finally, we tested the models on the

pre-separated unseen data that consists of a set of randomly selected samples.

We applied a threshold to the score values that each SVM model provided,

and ROIs were considered for post-processing only if their SVM score was

higher than the threshold value. These score values ranged from 0 (definitely

negative) to 1 (definitely positive). We selected the threshold that allowed a

maximum of true positives. While some false positives passed this stage, they

could mostly be eliminated in the following stage of processing.

Threshold values of 0.50, 0.40, 0.40, and 0.60 were applied to the SVM

models for detection of traffic signs, pedestrians, traffic lights, and vehicles

respectively. These values provided the best results. We also utilized different

augmentation methods to improve the performance of our models. Table 3.1

lists the methods we have used to augment our data.
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Table 3.1: Description of data augmentation

Method Description Range

Translate
Each image is translated in the horizontal

and vertical direction by a distance, in pixels
(−10, 10)

Rotate
Each image is rotated by an amount,

in degrees
(−15, 15)

Scale
Each image is scaled in the horizontal

and vertical direction by a factor
(0.5, 1.5)

Shear
Each image is sheared along the horizontal

or vertical axis by a factor
(−30, 30)

3.4.2 Results for the Object Detection Stage

In the following Subsections, we discuss the results we obtained for the object

detection stage in detail.

Assessing the Accuracy of the Trained ResNet101 CNN Model

As described in Section 3.3.3, after localizing ROIs by way of multi-scale HOG-

SVM, a ResNet101 CNN was trained and used on our dataset to verify and

categorize ROIs into our five classes of traffic objects. We computed the con-

fusion matrix from the ResNet101 model on the test data (See Figure 3.9).

The model classifies the test data correctly in 94.1% of cases. Notably, 10%

of vehicles have been incorrectly classified as background by ResNet101. As

a result, we employed a Faster R-CNN-based model to detect vehicles besides

Model A.

Assessing the Accuracy the Object Detection Stage

To verify the accuracy of the object detection stage, we report the Detection

Rate (DR) and the number of False Positives Per Frame (FPPF), defined as

follows:
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Figure 3.9: Confusion matrix from trained ResNet101 for labelling of traffic
object classes.

DR =
TP

TP+FN
(3.4)

FPPF =
FP

F
(3.5)

where TP is the number of correctly detected objects, FN is the number of

objects that are wrongly not detected, FP is the number of incorrectly detected

objects, and F is the total number of frames.

Moreover, Table 3.2 includes F1-scores for different traffic objects. As can

be seen, our model achieved 0.91, 0.90 and 0.06 for DR, F1-score and FPPF

respectively. Previously, Zabihi et al. [108] detected traffic signs only from the

RoadLAB dataset and reported 0.84 for DR and 0.04 for FPPF (last row of

Table 3.2). Their model was based on traditional machine learning methods.

They employed a linear SVM as a classifier and a HOG as traffic sign features

for the detection stage. Our model for traffic sign detection, when compared
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with the work from Zabihi et al. [108], has reached 0.07 more accuracy for DR

and shows an increase in FPPF of 0.02. Recent studies have compared several

recent object detection models including Faster R-CNN [78], Fast R-CNN [29],

YOLO [75], and YOLOv3 [77]. Faster R-CNN has a better performance than

R-CNN and Fast R-CNN. However, as mentioned, Faster R-CNN struggles

with objects that are small in size. According to [75] and [77], YOLO struggles

with small objects as well and on the other hand, YOLOv3 struggles with

larger size objects. Using our framework, we were able to detect objects of

different sizes. Figure 3.10 illustrates the performance of our detector using a

Receiver Operating Characteristics (ROC) curve, comparing the True Positive

Rate (TPR) to the False Positive Rate (FPR). In figure 3.10, Class1, Class2,

Class3, and Class4 represent object classes for pedestrians, traffic signs, traffic

lights and vehicles, respectively.

Table 3.2: Description of detection results

Description DR FPPF F1-score

Traffic lights 0.93 0.03 0.91
Pedestrians 0.88 0.11 0.87
Traffic signs 0.91 0.06 0.89

Vehicles 0.92 0.04 0.94
Object detection stage, 4 object classes 0.91 0.06 0.90

Previous work [108] for traffic signs 0.84 0.04 -

3.4.3 Trustworthiness Quantification

It is beneficial in any artificial intelligence-based model to know whether the

probabilistic description is reliable. Recently, network-level trust quantifica-

tion has attracted increasing interest from researchers such as [13], [101], [41],

where the authors attempted to quantify the overall trustworthiness of deep
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Figure 3.10: ROC curve obtained from experiments.
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Figure 3.11: Trustworthiness quantification.

neural networks. To analyze the trust of the network, they use the concept

of trust spectrum to investigate the overall trust across both correctly and

incorrectly answered questions [102]. The trust spectrum provides valuable

information when trust can break down. The trust spectrum in Figure 3.11

illustrates the overall trust for the four classes, including pedestrian, traffic

sign, traffic light, and vehicle. As can be seen, the vehicle class achieved the

highest trust while pedestrian class obtained the lowest reliability.

3.4.4 Results for Object Recognition Stage

The object recognition stage is applied to the output of the object detection

stage to recognize hypotheses and to provide a classification result. We trained

three separate ResNet101 models for classes corresponding to traffic signs,

traffic lights, and vehicles using our training dataset. To verify the accuracy

of the object recognition stage, we computed the confusion matrix for each

class, as displayed in Figures 3.12, 3.13 and 3.14.
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Figure 3.12: Confusion matrix from trained ResNet101 for traffic sign recog-
nition.
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Figure 3.13: Confusion matrix from trained ResNet101 for traffic light recog-
nition.

Figure 3.14: Confusion matrix from trained ResNet101 for vehicle recognition.
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Results for traffic sign recognition (Fig 3.12) show that the model reached

96.1% accuracy with our Canadian traffic sign dataset. The largest values

along the main diagonal indicate that the majority of the test sign images

were classified correctly. The lowest correct response of 83.3% was obtained

for the class PedestrianCrossover.

Fig 3.13 illustrates the confusion matrix for traffic light recognition. The

results show that the model has reached 96.2% of overall correct classification.

As can be seen, the lowest degree of correctly categorized classes belongs to

class NotClear while classes Green and Red obtained 98.8% and 99.2% respec-

tively.

The results shown in Figure 3.14 indicate that the vehicle recognizer model

achieved 94.8% of overall correct classification. This confusion matrix shows

that this model is able to discriminate vehicle objects (i.e. vehicle, bus, and

truck) with less than 3% of mislabeling error. The background class achieved

the least accuracy with 87.3%.

3.5 Conclusion

We conducted a literature review of detection and recognition approaches for

four important classes of traffic objects including traffic signs, vehicles, pedes-

trians and traffic lights. Generally, the availability of suitable and adequate

training data is a vital element in the learning process in order to achieve a

discriminative model. In this work, we collected over 10,000 object sample im-

ages from sequences belonging to the RoadLAB initiative [3]. We also enriched

our training data using augmentation and a HEM strategy. We localized the

attentional visual area of the driver onto the imaging plane of the forward

stereoscopic system, and a framework for the detection and recognition of
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traffic objects located inside and outside the attentional visual field of drivers

was devised. This information helps an ADAS to infer the object seen by the

driver when the existing object has fallen inside the driver gaze area. We con-

sidered 3, 4, and 19 different classes for vehicles, traffic lights, and traffic signs

respectively. The object detection stage was built from a combination of both

traditional and deep learning-based models to detect objects at various scales.

Finally, in the recognition stage, by means of trained ResNet101 networks, our

framework achieved 96.1%, 96.2% and 94.8% of correct classification for traffic

signs, traffic lights, and vehicles respectively.



103

Bibliography

[1] S. Ahmed, M.N. Huda, S. Rajbhandari, C. Saha, M. Elshaw, and S.

Kanarachos. “Pedestrian and Cyclist Detection and Intent Estimation

for Autonomous Vehicles: A Survey”. In: Applied Sciences 9.11 (2019),

p. 2335.

[2] T. Almeida, N. Vasconcelos, A. Benicasa, and H. Macedo. “Fuzzy model

applied to the recognition of traffic lights signals”. In: 2016 8th Euro

American Conference on Telematics and Information Systems (EATIS).

IEEE. 2016, pp. 1–4.

[3] Steven S Beauchemin, Michael A Bauer, Taha Kowsari, and Ji Cho.

“Portable and scalable vision-based vehicular instrumentation for the

analysis of driver intentionality”. In: IEEE Transactions on Instrumen-

tation and Measurement 61.2 (2011), pp. 391–401.

[4] K. Behrendt, L. Novak, and R. Botros. “A deep learning approach to

traffic lights: Detection, tracking, and classification”. In: 2017 IEEE

International Conference on Robotics and Automation (ICRA). IEEE.

2017, pp. 1370–1377.

[5] M. Bertozzi, A. Broggi, and S. Castelluccio. “A real-time oriented sys-

tem for vehicle detection”. In: Journal of Systems Architecture 43.1-5

(1997), pp. 317–325.



104

[6] A. Broggi, M. Bertozzi, A. Fascioli, C Bianco, and A. Piazzi. “Visual

perception of obstacles and vehicles for platooning”. In: IEEE Trans-

actions on Intelligent Transportation Systems 1.3 (2000), pp. 164–176.

[7] A. Brunetti, D. Buongiorno, G.F. Trotta, and V. Bevilacqua. “Com-

puter vision and deep learning techniques for pedestrian detection and

tracking: A survey”. In: Neurocomputing 300 (2018), pp. 17–33.

[8] T. Bucher, C. Curio, J. Edelbrunner, C. Igel, D. Kastrup, I. Leefken,

G. Lorenz, A. Steinhage, and W. von Seelen. “Image processing and

behavior planning for intelligent vehicles”. In: IEEE Transactions on

Industrial electronics 50.1 (2003), pp. 62–75.

[9] Z. Cai, Y. Li, and M. Gu. “Real-time recognition system of traffic light

in urban environment”. In: 2012 IEEE Symposium on Computational

Intelligence for Security and Defence Applications. IEEE. 2012, pp. 1–

6.

[10] D. Chen, Y. Lin, and Y. Peng. “Nighttime brake-light detection by Nak-

agami imaging”. In: IEEE Transactions on Intelligent Transportation

Systems 13.4 (2012), pp. 1627–1637.

[11] Long Chen, Qingquan Li, Ming Li, and Qingzhou Mao. “Traffic sign

detection and recognition for intelligent vehicle”. In: IEEE Intelligent

Vehicles Symposium (IV). 2011, pp. 908–913.

[12] Q. Chen, Z. Shi, and Z. Zou. “Robust and real-time traffic light recog-

nition based on hierarchical vision architecture”. In: 2014 7th Interna-

tional Congress on Image and Signal Processing. IEEE. 2014, pp. 114–

119.



105

[13] Mingxi Cheng, Shahin Nazarian, and Paul Bogdan. “There is hope after

all: Quantifying opinion and trustworthiness in neural networks”. In:

Frontiers in Artificial Intelligence 3 (2020), p. 54.

[14] Dan CireAan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber.

“Multi-column deep neural network for traffic sign classification”. In:

Neural networks 32 (2012), pp. 333–338.
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Chapter 4

Road Lane Detection and Classification

This Chapter is a reformatted version of the following article:

N. Khairdoost, S.S. Beauchemin, M.A. Bauer, Road Lane Detection and

Classification in Urban and Suburban Areas based on CNNs. in 16th Interna-

tional Conference on Computer Vision Theory and Applications (VISAPP),

Vienna, Austria, 2021.

Road lane detection systems play a crucial role in the context of Advanced

Driver Assistance Systems (ADASs) and autonomous driving. Such systems

can lessen road accidents and increase driving safety by alerting the driver

in risky traffic situations. Additionally, the detection of ego lanes with their

left and right boundaries along with the recognition of their types is of great

importance as they provide contextual information. Lane detection is a chal-

lenging problem since road conditions and illumination vary while driving. In

this contribution, we investigate the use of a CNN-based regression method

for detecting lane boundaries. After the lane detection stage, following a pro-

jective transformation, the classification stage is performed with a ResNet101

network to verify the detected lanes or a possible road boundary. We applied

our framework to real images collected during drives in an urban area with
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the RoadLAB instrumented vehicle. Our experimental results show that our

approach achieved promising results in the detection stage with an accuracy

of 94.52% in the lane classification stage.

4.1 Introduction

Nowadays, almost every new vehicle features some type of Advanced Driving

Assistance System (ADAS), ranging from adaptive cruise control, blind-spot

detection, collision avoidance, traffic sign detection, overtaking assistance, to

parking assistance. ADASs generally increase safety and reduce driver work-

load. Lane detection constitutes one of the fundamental functions found in

autonomous driving systems and ADASs. Lane boundaries provide the infor-

mation required for estimating the lateral position of a vehicle on the road,

enabling systems such as lane departure warning, overtaking assistance, intel-

ligent cruise control, and trajectory planning.

Lane detection approaches are categorized into two groups: classical and

deep learning methods. The traditional lane detection methods usually employ

a number of computer vision and image processing techniques to extract spe-

cialized features and to identify the location of lane segments. Subsequently,

post-processing techniques remove false detections and join sub-segments to

obtain final road lane positions. In general, these traditional approaches suffer

from performance issues when they encounter challenging illumination condi-

tions and complex road scenes.

Recently, deep learning-based methods have been employed to provide re-

liable solutions to the lane detection problem. Methods based on CNNs fall

into two categories, namely segmentation-based methods and Generative Ad-

versarial Network based methods (GAN) [26]. Chougule et al. [6] proposed
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a regression-coordinate network based on CNN for lane detection in highway

driving scenes in an end-to-end fashion. In this study, we followed their lane

detection strategy in environments where there exists a greater variety of lane

types as opposed to highways. We classify various types of lanes as they indi-

cate traffic rules relevant for driving. Following the detection stage, we use a

two-step algorithm to classify the lane boundaries into eight classes, consider-

ing road boundaries (no markings) as one particular type of lane.

The rest of this contribution is organized as follows: In Section 4.2, we

review the related literature. Section 4.3 provides a summary of the datasets

and the lane model. Results and evaluations are given in Section 4.4. Finally,

we summarize our results in Section 4.5.

4.2 Literature Survey

In this section, we survey both traditional and deep learning methods for lane

marking recognition and classification.

4.2.1 Traditional Approaches

Most traditional methods extract a combination of visual highly-specialized

features using various elements such as color [4], [3], edges [13], ridge features

[20], and template matching [5]. These primitive features can also be combined

by way of Hough transforms [16], Kalman filters [21], [12], and particle filters

[15]. Most of these methods are sensitive to illumination changes and road

conditions and thus prone to fail.
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4.2.2 Deep Learning-Based Approaches

There are mainly two groups of segmentation methods for lane marker detec-

tion: 1) Semantic Segmentation and 2) Instance Segmentation. In the first

group, each pixel is classified by a binary label indicating whether it belongs

to a lane or not. For instance, in [9], the authors presented a CNN-based

framework that utilizes front-view and top-view image regions to detect lanes.

Following this, they used a global optimization step to reach a combination

of accurate lane lines. Lee et al. [14] proposed a Vanishing Point Guided Net

(VPGNet) model that simultaneously performs lane detection and road mark-

ing recognition under different weather conditions. Their data was captured

in a downtown area of Seoul, South Korea.

Conversely, Instance Segmentation approaches differentiate individual in-

stances of each class in an image and identify separate parts of a line as one

unit. Pan et al. [23] proposed the Spatial CNN (SCNN) to achieve effective

information propagation in the spatial domain. This CNN-analogous scheme

effectively retains the continuity of long and thin shapes such as road lanes,

while its diffusion effects enable it to segment large objects. LaneNet [22] is a

branched, instance segmentation architecture that produces a binary lane seg-

mentation mask and pixel embeddings. These are used to cluster lane points.

Subsequently, another neural network called H-net with a custom loss function

is employed to parameterize lane instances before the lane fitting.

GANs have been used for lane detection. Liu et al. [17] presented a style-

transfer-based data enhancement approach, which used GANs [8] to create

images in low-light conditions that raise the environmental adaptability of the

model. Their method does not require additional annotation nor extraneous

inference overhead. Ghafoorian et al. [7] proposed an Embedding Loss GAN
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(EL-GAN) framework for lane boundary segmentation. The discriminator re-

ceives the source data, a prediction map, and a ground truth label as inputs

and is trained to minimize the difference between the training labels and em-

beddings of the predictions. In [11], a data augmentation method with GAN

was proposed for oversampling minority anomalies in lane detection. The

GAN network is employed to address the imbalance problem by synthesizing

the anomalous data. It learns the distribution of the falsely detected lane by

itself, without domain knowledge.

4.2.3 Approaches for Lane Type Classification

Different types of lane markings exist. Generally, a lane marking is catego-

rized by its color, with dashed or solid, and single or double segments. In

[10], a method is presented for road lane detection that discriminates dashed

and solid lane markings. Their method outperformed conventional lane detec-

tion methods. Several other approaches such as [25], [24], and [1], recognize

five lane marking types including Dashed, Dashed-Solid, Double Solid, Solid-

Dashed, and Single Solid. In [25], a method that utilizes a two-layer classifier

was proposed to classify these lane markings using a customized Region of

Interest (ROI) and two derived features, namely; the contour number, and the

contour angle. In [24], the authors presented a method to detect lane markers

based on a linear parabolic model and geometric constraints. To classify lane

markers into the aforementioned five classes, a three-level cascaded classifier

consisting of four binary classifiers was developed. In [1], the ROI is divided

into two subregions. To identify the lane types, a method based on the Seed

Fill algorithm is applied to the location of the lanes. Lo et al. [19] proposed

two techniques, Feature Size Selection and Degressive Dilation Block to extend
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an existing semantic segmentation network called EDANet [18] to discriminate

the road from four types of lanes, including double solid yellow, single dashed

yellow, single solid red, and single solid white.

There has been little previous work done on lane type classification and

the majority of studies simply ignore the lane types. As mentioned, in [25],

[24], and [1], researchers recognized five lane marking types and in the works

[19] and [10], the authors recognized 4 and only 2 lane types, respectively. In

contrast, we classify eight different types of lanes. Unlike previous work on

classifying lane types, we specifically consider the road boundary as one type

of lane when an actual lane marking does not exist. Also, we apply our method

in both urban and suburban areas which have been also less studied in the

literature where much of the previous work has focused only on highways.

4.3 Proposed Method

In this section, we present our approaches to the problem of lane marking

recognition and classification, with their respective datasets extracted from

the RoadLAB experiments.

4.3.1 Lane Detection Stage

Regression-Based Lane Detection Model

To identify the ego lane boundaries in the road image, a regression-based net-

work is utilized that outputs two vectors representing the coordinate points of

the left and right boundaries from the ego lane. Each coordinate vector con-

sists of 14 coordinates (x, y) on the image plane indicating sampled positions

for the ego lane boundary. To construct this model, a pre-trained AlexNet
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architecture is utilized. First, the last two fully connected layers are removed

from the network and then four-level cascaded layers are added to the first

six layers of AlexNet to complete the lane detection model. These four-level

cascaded layers contain two branches of two back-to-back fully connected lay-

ers, a concatenation layer and a regression layer, as shown in Figure 4.1. This

branched architecture minimizes misclassifications of the detected lane points

[6]. Moreover, this architecture is capable of detecting the road boundary as an

assumptive ego lane left/right boundary when there is no actual lane marking.

Our Dataset for Lane Detection

In this section, we introduce our lane detection dataset extracted from the

driving sequences, captured with the RoadLAB instrumented vehicle [2], (see

Figure 4.2). Our experimental vehicle was used to collect driving sequences

from 16 drivers on a pre-determined 28.5km route within the city of London,

Ontario, Canada. (see Figure 4.3). Data frames were collected at a rate

of 30Hz with a resolution of 320 × 240. We used 12 driving sequences, as

described in Table 4.1, to derive our dataset containing 5782 images along

with their corresponding lane annotations. Figure 4.4 illustrates examples

from our derived dataset.

An essential element of any deep learning-based system is the availabil-

ity of large numbers of sample images. Data augmentation is a commonly

used strategy to significantly expand an existing dataset by generating unique

samples through transformations of images in the dataset. The exploitation

of data augmentation strategy reduces overfitting from the network. We em-

ployed data augmentation techniques to enrich the dataset, resulting in an

improved performance at the lane detection stage.
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Figure 4.1: The lane detection model provides two lane vectors, each consisting
of 14 coordinates in the image plane that represent the predicted left and right
boundaries of the ego lane.

4.3.2 Lane Type Classification Stage

Lane type information is of great importance in guiding drivers to safely decide

either to keep course in the ego lane, to change lane, to overtake, or to turn

around. Our goal is to classify the detected ego lane boundaries into eight

classes including dashed white, dashed yellow, solid white, solid yellow, double
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Figure 4.2: Forward stereoscopic vision system mounted on rooftop of the Road-
LAB experimental vehicle.

Figure 4.3: Map of the predetermined course for drivers, located in London,
Ontario, Canada. The path includes urban and suburban driving areas and is
approximately 28.5 kilometers long.

Figure 4.4: Examples of annotated samples of our lane detection dataset.
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Table 4.1: Summary of driving conditions of our data (Each row
belongs to one driver.)

Seq. # Capture Date Time Temperature Weather

2 2012-08-24 15:30 31 ◦C Sunny
4 2012-08-31 11:00 24 ◦C Sunny
5 2012-09-05 12:05 27 ◦C Partially Cloudy
8 2012-09-12 14:45 27 ◦C Sunny
9 2012-09-17 13:00 24 ◦C Partially Cloudy
10 2012-09-19 09:30 8 ◦C Sunny
11 2012-09-19 14:45 12 ◦C Sunny
12 2012-09-21 11:45 18 ◦C Partially Sunny
13 2012-09-21 14:45 19 ◦C Partially Sunny
14 2012-09-24 11:00 7 ◦C Sunny
15 2012-09-24 14:00 13 ◦C Partially Sunny
16 2012-09-28 10:00 14 ◦C Partially Sunny

solid yellow, dashed-solid yellow, solid-dashed yellow, and road boundary. The

road boundary type specifies the edge of the road when an actual lane marking

does not exist.

ResNet101-Based Lane Type Classification Model

The lane type classification stage receives the output of lane detection (14 co-

ordinates in the image plane for each predicted ego lane boundary) as input.

We first identify the ROI for each lane boundary separately. Each ROI fits

the detected ego lane boundary as per its corresponding predicted coordinates.

Next, we apply a projective transformation to each ROI to obtain an image

where the lane marking aligns in the center of the resulting image. Afterwards,

we crop the middle rectangular part of the transformed image that contains

the lane type information. Finally, we apply our trained ResNet101 network

to classify the resulting images obtained for each lane boundary into the afore-

mentioned eight classes. Figure 4.5 illustrates how the lane type classification
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stage performs the above steps on a sample road image.

Figure 4.5: Visualization of the lane type classification stage, from a sample
road image to the ego lane boundaries.

Our Dataset for Lane Boundary Types

In order to train and test our lane type classification model, we collected 10571

sample lane boundary images from the outputs of the lane detection model.

These samples are inputs to our ResNet101 model, as they contain the lane

type information. Figure 4.6 shows samples of our dataset for the eight lane

boundary types.

To further enrich our lane type dataset for training, we employed two dif-
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ferent techniques including data augmentation and a boosting method. By

means of data augmentation, we expanded our dataset by creating the trans-

lated, rotated, sheared, and scaled versions of our original samples. Table 4.2

represents the techniques we have used to augment our data with their descrip-

tions and ranges. To boost the performance of our trained model, we used an

advanced learning method called Hard Examples Mining (HEM). HEM refers

to the examples that have been misclassified by the current trained version of

the model. We trained the ResNet101 model in an iterated procedure, and at

each iteration, the model was applied to a number of new samples from the

training data. We then added the corrections of misclassified outputs to the

training set for the next iteration. Finally, the model is provided with more

key samples to increase its robustness.

Figure 4.6: Lane boundary samples of our train-and-test data a) Dashed White,
b) Dashed Yellow, c) Solid White, d) Solid Yellow, e) Double Solid Yellow f)
Dashed-Solid Yellow, g) Solid-Dashed Yellow, h) Road Boundary
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Table 4.2: Description of data augmentation

Augmentation
Method

Description Range

Translate Each image is translated in the h/v di-
rection by a distance, in pixels

[-20, 20]

Rotate Each image is rotated by an angle, in
degrees

[-25, 25]

Shear Each image is sheared along the h/v
axis by an angle, in degrees

[-25, 25]

Scale Each image is zoomed in/out in the h/v
direction by a factor

[0.5, 1.5]

4.4 Experimental Results

To perform the experiments, we applied the model to the unseen test data

extracted from our driving sequences [2]. To evaluate the performance of the

lane detection stage, we used a metric suggested by [6]: we compute the mean

error between the predicted lane coordinates generated by the lane coordinate

model with the corresponding ground truth values as a Euclidean distance (in

terms of pixels), for each lane boundary. For each single lane boundary, the

Mean Prediction Error (MPE) is computed as follows (see Figure 4.7):

MPE =
1

14

14∑
i=1

√
(xpi − xgi)2 + (ypi − ygi)2 (4.1)

where (xpi, ypi) and (xgi, ygi) indicate the predicted lane coordinates and

the corresponding ground truth coordinates respectively. Additionally, during

network training, we investigated the performance of the following two L1 and

L2 loss functions at the lane detection stage:

L1 =
14∑
i=1

|xpi − xgi| +
14∑
i=1

|ypi − ygi| (4.2)
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L2 =
14∑
i=1

(xpi − xgi)
2 +

14∑
i=1

(ypi − ygi)
2 (4.3)

where the L1 loss computes the absolute differences between the predicted

and actual values while the L2 loss, also known as the Squared Error Loss,

computes the squared differences between the predicted and actual values.

In Table 4.3, we report the performance of the lane detection stage de-

scribed in Section 4.3.1 for the ego lane left/right boundaries using the afore-

mentioned loss functions. As observed from Table 4.3, the L1 loss function is

superior to L2.

Table 4.3: Description of our lane detection results based on the
prediction error

Loss
Function

Ago Lane
Boundary

MPE Standard
Deviation

L1
Left 5.96 4.70
Right 5.79 4.85

L2
Left 7.39 5.55
Right 7.16 5.42

Figure 4.7: Visualization of the Euclidean error between the predicted lane
coordinates and the corresponding ground truth coordinates.

As described in Section 4.3.2, the lane type classification stage is applied to

the output of the lane detection stage to recognize the detected lane boundaries

and to provide a classification result. We trained a ResNet101 CNN using
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our dataset to verify and categorize the localized lane boundaries into eight

classes of lane types. To verify the accuracy of the lane type classification

stage, we computed the confusion matrix from the ResNet101 model on the

test data (See Figure 4.8). The results show that the model reaches 94.52% of

overall correct classification. This model is able to discriminate the eight lane

types with less than 4.2% of mislabeling error. The lowest degree of correctly

categorized classes belongs to class dashed-solid yellow, while class double

solid yellow obtained 97.7%. As mentioned, the authors in [24] recognized

five lane marking types including dashed, dashed-solid, double solid, solid-

dashed, and single solid. They applied their model to three different test data

and obtained three corresponding confusion matrices with the overall correct

classification of 71.53%, 77.27% and 85.42% which are all less than our overall

correct classification. Figure 4.9 displays small portions of the visual outputs

from our system for the eight classes of lane boundary types.

Figure 4.8: Confusion matrix from ResNet101 for lane type classification.
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Figure 4.9: Output samples of our experiments on the RoadLAB dataset.

4.5 Conclusions

In general, in the literature there are little works to classify lane types. In

this study, we presented a CNN-based framework to detect and classify lane

types in urban and suburban driving environments which have been also less

studied in comparison to highways. To perform lane detection and classifica-

tion stages, we created an image dataset for each from sequences captured in

different illumination conditions created by the RoadLAB initiative [2]. We

also enriched our training data using data augmentation and a hard example

mining strategy. To detect lanes, we used a network which generates lane

information in terms of image coordinates in an end-to-end way. In the lane

type classification stage, we utilized our trained ResNet101 network to cate-

gorize the detected lane boundaries into eight classes including dashed white,

dashed yellow, solid white, solid yellow, double solid yellow, dashed-solid yel-

low, solid-dashed yellow, and road boundary. Finally, our results showed that

the ResNet101 model achieved over 94% of correct lane type classifications,

which is higher than those of the previous work [24], in addition to the fact

that we can recognize three more classes of lane types, especially road bound-

ary type which can be taken into account in urban areas when there is no

actual lane marking.
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Chapter 5

Estimating Average Driver Attention Based

on the Visual Field

This Chapter is a reformatted version of the following article:

N. Khairdoost, S.S. Beauchemin, M.A. Bauer, An Analytical Model for

Estimating Average Driver Attention Based on the Visual Field. in 7th Inter-

national Conference on Signal and Image Processing (ICSIP), Suzhou, China,

2022.

The direction of a driver’s visual attention plays a crucial role in the con-

text of Advanced Driver Assistance Systems (ADASs) and semi-autonomous

driving. The way a driver monitors traffic scene objects partially indicates

the level of driver awareness. We propose an analytical method to estimate a

driver’s average traffic scene attention based on the attentional visual field of

the driver in urban and suburban areas. Three metrics are proposed to esti-

mate a driver’s average attention. Our model is capable of identifying driver

attention with respect to traffic objects including vehicles, traffic lights, traffic

signs, and pedestrians within the attentional visual field of the driver at any

moment while in the act of driving.
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5.1 Introduction

The number of vehicles on the roads increases every day. This fact makes

driving safety and road congestion two significant problems. Preventing fa-

talities and injuries from traffic accidents has become of great importance

for governments and vehicle manufacturers around the world. According to

the World Health Organization (WHO), the number of people killed in road

traffic accidents worldwide was approximately 1.25 million in 2013 and the

statistics show that higher-income countries have fewer road fatalities than

middle-income countries due to better emergency medical facilities, as well

as law enforcement [12]. According to previous studies, driver inattention is

one of the main causes of many accidents. Hence, in recent years, real-time

analysis of a driver’s gaze has attracted the attention of researchers looking

to predict driver behavior [9] in order to increase the safety of driving and

decrease the number of road accidents.

In this contribution, we propose a new analytical model to estimate a

driver’s average traffic scene attention. To do this, we utilize YOLOv5 to

identify traffic objects in the image plane of the forward stereo system located

on the roof of our instrumented vehicle. In addition, our presented model is

the first model of its kind that takes advantage of the attentional visual field of

the driver to perform its task. This is a significant aspect of a modern ADAS

since this allows for the identification of traffic objects seen by the driver.

The rest of this contribution is organized as follows: In Section 5.2, we re-

view the related literature. Section 5.3 explains our proposed method. Section

5.4 describes our instrumented vehicle, the dataset we used, and the results.

Finally, we summarize this paper in Section 5.5.
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5.2 Literature Survey

In this section, we survey both object detection and driver gaze methods.

5.2.1 Object Detection Methods

Object detection methods can be divided into two major types: traditional

and deep learning-based algorithms. Among the traditional object detectors,

the approach proposed by Viola and Jones is one that benefits from sliding-

windows and AdaBoost classifiers [22]. Another popular framework in this area

is Support Vector Machine (SVM) classifier with such features as Histograms

of Oriented Gradients (HOG) and Scale Invariant Feature Transforms (SIFT).

For example, in [4], authors employed SVM and a multi-scale searching frame-

work with HOG features to detect pedestrians.

Deep learning-based object detection approaches have attracted researchers’

attention since they have shown promising results in different applications. We

can divide deep learning-based object detection methods into two major cat-

egories: Region-based methods and Regression-based methods. The former

generates region proposals at the first step and then categorizes them into dif-

ferent object classes. Faster R-CNN [16], R-FCN [3] and SPP-net [5] are some

frameworks that follow this strategy. In our laboratory, we have utilized deep

neural networks (Faster R-CNN and ResNet) and classical machine learning

models (multi-scale HOG-SVM) to detect and recognize traffic objects includ-

ing traffic signs, vehicles, traffic lights, and pedestrians [21]. However, none

of this previous work has provided any analytical approaches related to the

traffic objects in the attentional visual field of the driver.

As mentioned, regression-based methods are the second category for object

detection based on deep learning, which view the object detection problem as
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a regression problem and predict locations of objects directly from the whole

image. The regression-based methods mainly include YOLOv3 [15], DSOD

[18], YOLOv4 [2] as well as YOLOv5 [8]. In this work, we employed YOLOv5

as a traffic object detector along with the attentional visual field of the driver

to analyze average driver attention.

5.2.2 Driver Gaze Methods

Driver gaze has been studied in real driving environments and driving simu-

lators for many years. Generally, the driver’s gaze is captured by two main

instruments including eye glasses/headband and eye trackers. In this section,

we provide a short summary of several applications which employed the afore-

mentioned instruments to capture driver gaze.

Eye Glasses/Headband

Some researchers worked on the driver gaze based on eye glasses or head-

bands. For instance, Jha et al. [6] presented an approach using headband

based on Gaussian Process Regression (GPR) that predicts the probability of

a given point where the driver is looking at. Deep learning-based models have

also been used for similar purposes. In [7], a deep learning-based method by

means of headband was proposed to predict the driver’s visual attention. By

gradually upsampling the resolution of the gaze region, the authors increased

the accuracy and resolution of the prediction. Palazzi et al. [13] introduced

the dataset called the DR(eye)VE which was created using eye glasses. They

presented a model based on a multi-branch deep network. This model is

composed of three branches of convolutional networks for color, motion, and

scene semantics and their predictions are integrated to create the final map.
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Moreover, using the DR(eye)VE dataset, Lv et al. [11] proposed a Reinforced

Attention (RA) model that is created directly on top of existing methods as

a regulatory mechanism to improve prediction density. Their results showed

that the RA model increases the accuracy of gaze prediction on top of existing

approaches.

Eye Tracker

Another group of researchers captured the driver gaze information using eye

trackers. For instance, a CNN-based model was proposed in [23] for driver gaze

estimation in a vehicle environment that combined image information acquired

from the front and side cameras into one three-channel image as an input to

the model to increase recognition reliability and decrease computational cost.

Moreover, in [27], a four-channel gaze estimation model was proposed based

on CNN, which was used to estimate the gaze zones of the driver. The au-

thors achieved considerable accuracy in comparison with several other gaze

estimation methods. In [24], a novel self-calibrated approach with driver’s

gaze pattern learning was proposed to automatically obtain the mapping re-

lationship of driver gaze estimation. The new gaze pattern learning algorithm

was employed to gradually find typical eye gaze calibration points in a natu-

ralistic driving environment. The authors in [17] proposed a new 3-step deep

learning-based method to detect driver head pose class and estimate eye gaze

directions. In the first step, the driver’s face is detected by a YOLO model.

Next, in the second and third steps, CNN-based models were employed to clas-

sify a head pose out of seven driver head poses and estimate the eye directions

respectively. Rangesh et al. [14] presented a method to improve the robustness

and generalization of driver gaze estimation on real-world data recorded under
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extreme conditions. To overcome issues caused by bad lighting, they utilized

an IR camera with a suitable equalization/normalization. For the frames that

include eyeglasses, the researchers proposed a pre-processing step to remove

eyeglasses. In the RoadLAB project, we employed the FaceLAB eye tracker

to capture driver gaze information. In our research group, Kowsari et al. [10]

presented a cross-calibration method to transform the aforementioned driver

gaze data from the reference frame of the gaze tracker onto the reference frame

of a forward stereoscopic imaging system. Moreover, Shirpour et al. [19] em-

ployed the RoadLAB gaze data to introduce an approach using a Gaussian

Process Regression (GPR) method to estimate the probability of the driver

gaze direction. In this work, we also employed the RoadLAB gaze tracker data

to analyze average driver attention with respect to traffic objects within the

attentional visual field of the driver.

5.3 Proposed Method

In this work, we present a new analytical vision-based model which measures a

driver’s average attention in their driving environment based on the attentional

visual field of the driver and traffic objects. To determine the attentional visual

field of the driver, we followed the techniques proposed in our laboratory which

are mentioned in Section 5.4. Fig. 5.1 illustrates the attentional visual field

of the driver for two sample frames.

In the first step, our model employs a YOLOv5 object detector network

to identify traffic objects of interest which are vehicles, traffic lights, traffic

signs, and pedestrians in the driving scene images. Afterward, if the object

detector identifies that there is at least one object in the image, we establish

the attentional visual area of the driver. Next, we can determine whether
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Figure 5.1: Two samples of attentional visual field of the driver

the driver is likely to have seen the object or not, namely, when the existing

object falls inside the attentional visual field of the driver (see Fig. 5.2). In

addition to the objects that are completely located inside the attentional area

of the driver, we also need to consider the situations where one or more traffic

objects is/are located partially inside the attentional area. In such cases, we

consider the object to be partially seen by the driver. Finally, for each object

in the frame, we find the percentage of the area of the object that is inside

the attentional area. The resulting amount for the Percentage of Inside Area

(PIA) for each object can be between 0 and 1. In other words, 0 means the

object is completely outside the visual field of the driver, 1 means the object

is completely inside the visual field and any other number for PIA means the

object is partially located in the visual field; obviously, higher numbers for

PIA mean higher overlaps with the visual field of the driver. Fig. 5.3 shows

the case of an object is partially located in the attentional area while the other

three objects are completely inside the area and our method has obtained 0.28,

1, 1 and 1 for their PIAs respectively.

Figure 5.2: Overview of our model using applying to a sample frame
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Figure 5.3: Determining the inside/outside area percentages of the objects
based on the attentional field of the driver

The overall average attention for a driver can be estimated in different ways.

We consider three different metrics each making use of the attentional data

extracted from an image in the driving sequence of a driver. These metrics

can vary between 0 and 1 and are described in the following.

Metric 1 (M1). As the first metric, separately for each of the aforemen-

tioned object types, we compute the average PIA of the objects of each type

for all frames. Thus we have this metric for each of the individual classes of

objects, i.e., since we have four classes of objects M1 will consist of 4 separate

measurements. M1 is computed for each object type separately as follows:

M1 =
Sum of PIA of Objects of Type i

Number of Detected Objects of Type i

i = vehicle, traffic light, traffic sign and pedestrian

(5.1)

Metric 2 (M2). As the second metric, we find the average PIA for all

objects ignoring the type of object. In other words, this metric works similar

to M1 but views the four traffic object types (vehicles, traffic lights, traffic

signs, and pedestrians) as one general traffic object type. M2 is computed as

follows:
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M2 =
Sum of PIA of Traffic Objects

Number of Detected Traffic Objects
(5.2)

Metric 3 (M3). This metric, similar to M2, views the four traffic object

types as one general traffic object type but unlike M2, determines the average

area percentages of the objects which are partially or completely outside the

attentional visual area of the driver while driving. This metric simply can be

computed as follows:

M3 = 1 −M2 (5.3)

5.4 Experimental Results

In this section, we provide our vehicle configuration, the data we used for our

experiments, and the result for six different drivers.

Our RoadLAB experimental vehicle is equipped with a non-contact gaze

tracker. This system consists of a pair of infrared stereo cameras mounted on

the dashboard, working at 60Hz. Our instrumented vehicle is equipped with

stereo cameras mounted on the vehicle’s roof to capture the forward driving en-

vironment at a rate of 30Hz. Fig. 5.4 depicts the configuration of the RoadLAB

experimental vehicle. Details concerning this configuration were described by

[1]. The instrumented vehicle was employed to record data sequences from 16

different drivers on a pre-determined 28.5km course around the city of London,

Ontario, Canada. As mentioned, we followed the techniques proposed in our

laboratory to establish the attentional visual field of the driver in the image

plane of the forward stereo vision system. These techniques have been used in
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several experiments for various purposes in our laboratory [10], [21], [25], [9],

[20], [26].

Figure 5.4: Vehicular instrumentation configuration. (left-top): Infra-red
gaze tracker located on the dashboard (left-bottom): Forward stereo vision
system mounted on the rooftop (right): The interface of FaceLAB system
from Seeing Machines

To estimate average driver attention based on the attentional visual field

of the driver with respect to traffic objects, we employ our method using a

YOLOv5 model trained on RoadLAB data and investigate the aforementioned

three different metrics for each driver. Table 5.1 provides the details on the

sequences that have been gathered by different drivers for our experiments.

Table 5.1: Summary of driving conditions of our data

Driver Capture Date Time Temp. Weather Age

3 2012-08-30 12:15 23 ◦C Sunny 41
8 2012-09-12 14:45 27 ◦C Sunny 21
9 2012-09-17 13:00 24 ◦C Partially cloudy 21
12 2012-09-21 11:45 18 ◦C Partially sunny 24
13 2012-09-21 14:45 19 ◦C Partially sunny 23
15 2012-09-24 14:00 13 ◦C Partially sunny 44

The analytical results of our experiments for the drivers have been provided

in Table 5.2. In this table, V, TL, TS, and P represent the object types

of vehicle, traffic light, traffic sign, and pedestrian, respectively. In general,
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driver attention while driving can be influenced by various factors such as

driving skills, driving habits, distractions, etc. Table 5.2 shows the results

for the estimation of average driver attention during driving based on the

metrics M1, M2, and M3 which are based on the attentional visual field of the

driver. For M1 and M2 which focus on the objects inside the attentional visual

field of the driver, higher amounts can indicate higher attentiveness of drivers

on average with respect to traffic objects during driving. As mentioned, M1

includes M1-V, M1-TL, M1-TS, and M1-P for four different object types while

M2 considers all object types as one object type for processing. As can be seen,

the maximum values for M1-V and M1-TL belong to driver 3 while driver 12

and driver 8 gained the maximum values for M1-TS and M1-P respectively.

On the other hand, driver 9 was ranked last in terms of two metrics of M1-TL

and M1-TS. Similarly, driver 13 placed last for two metrics of M1-V and M1-

P. With regarding metric M2, we observe that drivers 3 and 12 achieved the

first and second ranks respectively among others. As mentioned M3 similar

to M2 considers all object types as one object type but focuses on objects

outside of the attentional area of the driver; hence, higher amounts of M3 can

indicate higher inattentiveness for drivers. Driver 13 obtained the maximum

value for M3. According to Table 5.2, the average for M1-V, M1-TL, M1-TS,

M1-P, M2, and M3 are 56.27%, 53.58%, 49.35%, 46.65%, 54.24%, and 45.76%

respectively.

5.5 Conclusions

Nowadays, almost every modern vehicle is equipped with some type of ADASs,

ranging from collision avoidance system, alcohol ignition interlock devices,

anti-lock braking system, to parking assistance system. ADASs generally in-
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Figure 5.5: Output samples of our experiments on the RoadLAB dataset

crease car and road safety and assist a driver in driving tasks. In this research,

we presented an analytical model to estimate average driver attention based

on the attentional visual field of the driver using different metrics. For this,

we used the RoadLAB dataset obtained from our instrumented vehicle in our

experiments. Next, by establishing the attentional field of view of the driver

we were able to investigate the average area percentages of the traffic objects

including vehicles, traffic lights, traffic signs, and pedestrians, which are in-

side the driver gaze area while driving. By using our approach we are able

to infer the driver’s behavior in terms of the driver’s attentional visual area.

Ultimately, such an augmented approach could enable the driver’s gaze infor-

mation to be integrated into ADAS as a means to determine objects drivers

attend to, and those that they do not, and also to be used to predict driver

maneuver [9] as well as to detect driver distraction as part of ADASs in the

future.
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Chapter 6

What Has the Driver Gazed at in the Average

Percentage of the Driving Time?

In the area of intelligent transportation systems, the role of Advance Driver

Assistance Systems (ADASs) is of great importance. In ADAS, many efforts

have been done in different areas such as blind-spot detection, collision avoid-

ance systems, traffic sign recognition, lane departure warning systems, etc.

Studying how driver gaze information can be leveraged in ADAS is another

important area in driving to consider. A driver’s gaze during driving can pro-

vide an ADAS with insight into the driver’s intent or awareness of situations

enabling the system to assist the driver or avoid accidents. In this work, we

propose an analytical method to measure the percentage of time on average

that a driver gazes at different traffic objects in the course of driving including

urban and suburban areas. To do this, three metrics are proposed that benefit

from the gaze point of the driver with respect to four major types of traffic

objects including vehicles, traffic lights, traffic signs, and pedestrians.
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6.1 Introduction

Every year, the large number of car collisions leads to both tremendous human

and economic costs [39]. According to the global status report on road safety

2018, launched by World Health Organization (WHO) [29], approximately 1.35

million fatalities occur per year in the world because of road traffic accidents,

and up to 50 million people are injured. Now, road traffic injury is the leading

cause of death among young people and children aged 5-29 years and makes

road fatalities the eighth leading cause of death across all age groups. More-

over, drivers are less likely to be involved in an accident in the case of the

presence of one or more passengers who can warn them in advance [33]. Ob-

viously, driver error is the main reason for road accidents. To overcome this,

efforts are being made by both academic and industrial groups to develop

Advanced Driver Assistance Systems (ADASs) in different aspects. These sys-

tems attempt to assist the driver’s decision-making in the act of driving or

even take control of the vehicle by performing automatic actions, improving

car, and road safety in general.

In this contribution, we propose a new analytical model based on the Point

of Gaze (PoG) of the driver to find the percentage of the time on average in

which a driver has gazed at traffic objects in the course of driving. To do

this, we employ YOLOv5 to identify traffic objects in the imaging plane of

the forward stereo system located on the rooftop of our experimental vehicle.

Using our driving sequences, we present the results for percentages of time

determining whether a driver’s PoG has fallen on a traffic object or not. The

resulting insight can be useful in other scenarios involving the analysis of

driver gaze behavior and have implications for designing ADASs and for the

understanding of driver intent and awareness in the future.
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The rest of this contribution is structured as follows: In Section 6.2, we

review the related literature. Section 6.3 describes our proposed approach.

Section 6.4 explains our experimental vehicle, data, and the results. Finally,

we give a summary of this research study in Section 6.5.

6.2 Literature Survey

In general in the literature, many efforts and research have been performed

to analyze driver behavior with different views to achieve different goals such

as driver distraction detection, driver style identification, driver intent pre-

diction, traffic management, and so on. Here, we give an overview of driver

behavior methods and their applications and finally review various research

works performed in our research group in this research area.

According to [52], different driver behavior analysis methods based on

their applications can be categorized into three classes: vehicle-oriented appli-

cations, management-oriented applications, and driver-oriented applications.

Vehicle-oriented applications focus mainly on the vehicles to improve the driv-

ing task and reduce driver workload by creating advanced systems to assist

drivers in different driving situations. Google’s first fully autonomous car

prototype [8], emergency braking systems [15], [31], lane keeping assistance

systems [7], [43], and automatic accident detectors [11], [30], [12] are some

examples in this category. Management-oriented applications attempt to op-

timize vehicle usage mainly including fleet management and traffic modeling.

For this, they focus on the management of infrastructure and resources by

monitoring the road conditions and the vehicle. These systems identify road

conditions based on the driver maneuvers such as accelerations and brakings

as well as the data related to three-axes accelerations [34], [6].
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Driver-oriented applications consider the driver as the primary factor. Driver

attention evaluation, distraction detection, driving style assessment, and driver

intent prediction are the main areas of research in this category. Methods for

driver attention evaluation analyze the attention of the driver [36], [42], [46],

[51] and somnolence of the driver [25], [13]. Regarding distraction detection

systems, the degree of driver focus on the road is identified based on driver

reactions [18], [27]. Driving style identifiers aim to categorize the driving mode

based on a variety of features collected from the vehicle and the driver’s actions

such as acceleration, steering, speed, braking and GPS [41], [17], [45]. Aggres-

sive style and risky style are the two common styles in this area of research.

As for driver intent prediction, these applications aim to anticipate the most

probable next maneuver (overtaking, lane change, emergency braking, etc.) of

the driver using the methods of automatic prediction of maneuvers [26], [44],

[28].

Driver distraction and drowsiness are two main reasons for traffic crashes

and the related financial costs throughout the world. Hence, researchers and

car manufacturers have been working for more than a decade on analyzing

driver behavior to detect his/her inattention while driving. There are four

types of driver distraction: visual distraction (caused by driver’s eyes off the

road), manual distraction (caused by driver’s hands off the wheel), auditory

distraction (caused by acoustic stimuli or any kind of vocal utterance), and

cognitive distraction (caused by driver’s mind off the road) [21]. Identifying

cognitive distraction can be probably considered as the most difficult distrac-

tion type due to the problems related to observing what a driver’s brain (as

opposed to his/her eyes or hands) is doing [38]. A distracting activity can also

involve one or more of the aforementioned distraction types. For instance, the

use of a hand-held mobile phone, may involve the four distraction types [9]



162

and increases the risk of an accident significantly [35]. Moreover, regarding the

effects related to presence of passengers in the vehicle on driver’s performance,

there is a debate among researchers. Some of them concluded a reduction in

driver’s mistakes and violations [33] while some others reported an increase

for those [49], [50].

As mentioned, drowsiness detection is an important research area of driver

behavior analysis since it is one of the major reasons for road accidents. For

instance, according to the National Highway Traffic Safety Administration

(NHTSA) [1], approximately 8,000 deaths occur due to drowsy driving annu-

ally. Methods have been employed for detecting drowsiness of the driver can

be broadly grouped into two categories: methods based on visual features and

methods based on non-visual features [20]. Methods based on visual features

benefit from computer vision techniques for the detection of drowsiness. Visual

feature-based methods attempt to extract facial features such as face, eyes, and

mouth. These methods can be mainly divided into four categories including

eye state analysis [40], eye blinking analysis [19], mouth and yawning analysis

[5], and facial expression analysis [14]. Methods that use non-visual features

can be broadly divided into two categories: driver physiological analysis and

vehicle parameter analysis. The former usually refers to the brain activity and

heart rate of a driver such as electroencephalogram (EEG), heart rate (ECG),

and electrooculogram (EOG) [2], [16], [32], whereas methods based on vehicle

parameters analysis by analyzing vehicle features such as steering wheel move-

ment, lane keeping, the pressure exerted on the brake, and acceleration pedal

movement detect drowsiness of the driver [3], [10].

In the RoadLAB research project, we utilized the FaceLAB eye tracker to

record driver gaze data. In our research group, Kowsari et al. [24] introduced

a cross-calibration technique to transform the aforementioned driver gaze data
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from the reference frame of the gaze tracker onto the reference frame of a for-

ward imaging system. Moreover, the works which were presented in [22] and

[48] employed the RoadLAB gaze data to model driver behavior and predict

driver maneuvers using driver cephalo-ocular behavioral and vehicular dynam-

ics information. Also in [37] using the gaze data, we detected and recognized

four major types of traffic objects including vehicles, traffic signs, traffic lights

and pedestrians inside and outside the visual filed of the driver. Finally, in

[23], we studied the driver behavior with respect to the aforementioned traffic

objects in terms of the attentional visual field of the driver. In this work,

we also attempt to investigate driver behavior in terms of his/her PoG in the

course of driving with respect to the aforementioned major classes of traffic

objects in percentage of driving time.

6.3 Proposed Method

In this study, we propose a new analytical model which identifies the percent-

age of the time on average that a driver has gazed at different traffic objects

based on PoG of the driver in the course of driving. To determine the PoG of

the driver in the image plane of the forward stereo scene system, we followed

the techniques proposed in our laboratory. These techniques have been used

in different experiments with different purposes in our laboratory [24], [37],

[47], [22], [36], [48]. Figure 6.1 illustrates the PoG of the driver for two sam-

ple frames. In the first step, our model employs a YOLOv5 object detector

network to identify traffic objects of interest which are vehicles, traffic lights,

traffic signs, and pedestrians in the driving scene images. Afterward, if the

object detector identifies that there is at least one object in the image, we

obtain the PoG of the driver. Next, we can determine whether the driver’s
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PoG has fallen into the object or not. (See Figure 6.2.) To investigate driver

behavior in terms of PoG during driving with respect to traffic objects, we

present three different metrics each making use of the PoG and traffic objects

extracted from an image in the driving sequence of a driver. These metrics

can vary between 0 (i.e. 0% of driving time) and 1 (i.e. 100% of driving time)

and are explained in the following.

Figure 6.1: Two samples of PoG of the driver (the red point)

Figure 6.2: Overview of our model using applying to a sample frame

Metric 1 (M1) As the first metric, separately for each of the aforementioned

object types, we identify the average number of PoGs that have fallen onto the

objects of each type for all frames; As a result, since we have four classes of

objects M1 will consist of four separate measurements for each of the individual

classes of objects. To compute this metric, for each object type separately, we

consider the PoG as a circle with a radius of three pixels. Next, for each frame,

if the PoG has an overlap with an object bigger than a threshold, the PoG

is considered to have fallen onto the object. Otherwise, we conclude that the
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PoG is outside the objects. For our experiments, we employed the threshold

of five pixels. M1 is computed for each object type separately as follows:

M1 =
Number of Frames in which PoG Fell Into Object of Type i

Number of Frames

i = vehicle, traffic light, traffic sign and pedestrian

(6.1)

Metric 2 (M2) As the second metric, we obtain the average number of PoGs

that have fallen into any traffic objects ignoring the type of object. In other

words, this metric works similar to M1 but considers the four traffic object

types (vehicles, traffic lights, traffic signs, and pedestrians) as one general

traffic object type. M2 is computed as follows:

M2 =
Number of Frames in which PoG Fell Into Traffic Object

Number of Frames
(6.2)

Metric 3 (M3) This metric, similar to M2, views the four traffic object

types as one general traffic object type but unlike M2, focuses on the average

number of PoGs of the driver that have fallen outside all the detected traffic

objects while driving. In other words, in this kind of frames we do not know

where the driver is gazing at. This metric simply can be computed as follows:

M3 = 1 −M2 (6.3)



166

6.4 Experimental Results

In this section, we provide our vehicle configuration, the data we used for our

experiments, and the result for six different drivers.

Our RoadLAB experimental vehicle is equipped with a remote eye-gaze

tracker mounted on the dashboard and also stereo cameras placed on the roof

of the vehicle to record the frontal driving environment. Details related to this

configuration were explained in [4]. Figures 1.2 and 1.3 show the configuration

of the RoadLAB vehicle and the pre-determined path of driving respectively.

To investigate PoG behavior of driver with respect to the aforementioned

traffic objects during driving, we employ our method using a YOLOv5 model

trained on RoadLAB data and measure the aforementioned three different

metrics for each driver. Table 5.1 provides the details on the sequences that

have been gathered by different drivers for our experiments.

The analytical results of our experiments for the drivers have been provided

in Table 6.1. In this table, V, TL, TS, and P stand for the object types

of vehicle, traffic light, traffic sign, and pedestrian, respectively. In general,

various factors such as driving skills, habits, experience and driver distractions

can influence on PoG of the driver during driving. Table 6.1 shows the results

for the estimation of the percentage of the time on average in the path of

driving based on the metrics M1, M2, and M3 which are based on PoG of

the driver. M1 and M2 which focus on the frames in which the PoG has

fallen into the object, higher amounts can indicate the driver has spent more

percentage of his/her driving time gazing at four types of objects in the path

of driving on average. As mentioned, M1 includes M1-V, M1-TL, M1-TS, and

M1-P for four different object types while M2 considers all object types as

one object type for processing. As can be seen, considering the results related
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to four measures of M1, the drivers mostly gazed at vehicles in comparison

with other traffic objects that is a normal activity of drivers to do in driving

task. Regarding M1-V, driver 9 obtained the maximum value of this metric.

Controversy, for M1-TL driver 9 has spent almost the minimum amount (quite

similar to that of driver 8) as well as the minimum amount for M1-TS. Unlike

driver 9, we observe that the maximum values for metrics M1-TL and M1-TS

belong to driver 12. Regarding metric M1-P, driver 8 has gazed with more

percentage at pedestrians among other drivers while driver 12 performed this

as the last rank. Moreover, considering amounts for M1-TL, M1-TS and M1-

P (regardless of M1-V) for each driver, it can be seen drivers 8 and 9 have

gazed with more percentage at pedestrians in comparison with traffic lights

and traffic signs while drivers 3,12 and 13 spent more percentage gazing at

traffic lights in comparison with two other object types. In addition, driver

15 has gazed with more percentage at traffic lights and pedestrians (almost

equally on average) than traffic signs. With regarding metric M2, we observe

that driver 9 has spent more percentage of driving time gazing at traffic objects

in comparison with others. As another result for this metric, drivers 8 and

15 have gazed at traffic objects with very similar percentage amount to each

other and placed in the second rank among others. As mentioned M3 similar

to M2 considers all object types as one object type but focuses on the frames

in which the PoG has fallen outside the objects; hence, higher amounts of M3

can indicate higher percentage of the time that the driver has not gazed at

the aforementioned object types in the path of driving. Driver 3 obtained the

maximum value for M3. According to Table 6.1, the average for M1-V, M1-

TL, M1-TS, M1-P, M2, and M3 are 25.13%, 1.02%, 0.36%, 1.18%, 27.42%,

and 72.58% respectively. Finally, Figure 6.3 displays a small sample of the

visual outputs from the proposed method.
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Figure 6.3: Output samples of our experiments on the RoadLAB dataset

6.5 Conclusions

Evidence has shown driver error is the main cause of road accidents. In this

research, we presented an analytical model to estimate the percentage of time

on average in which a driver gazed at different traffic objects using three met-

rics. For this, we used the naturalistic on-road RoadLAB dataset obtained

from our experimental vehicle in our experiments. After obtaining the PoG

of the driver, we estimated the percentage of the experimental driving data

at which PoG fell into different traffic objects including vehicles, traffic lights,

traffic signs, and pedestrians. By using our approach, we can infer the driver’s

behavior in terms of the driver’s PoG in the course of driving. Ultimately,

such methods presented in this work can be useful in designing a future ADAS

system to understand driver intent in advance as well as to measure driver

awareness levels while driving.
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Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusion

Evidence has shown that drivers play a crucial role in most driving events,

and a significant number of vehicle accidents are due to driver error. Hence,

researchers and vehicle manufacturers are making efforts to analyze and model

driver behavior with different views in different driving situations as well as

to predict the most probable next maneuver and assist the driver in avoiding

unsafe maneuvers. In Chapter 2, we developed a deep learning-based model

to predict five types of driver maneuvers. For this, our model benefited from

driver cephalo-ocular behavioral and vehicular dynamics information to do its

task. Our experimental results in this work showed that our LSTM-based

model outperformed the traditional IO-HMM-based model. In order to pre-

vent potential accidents, this such a system can offer a possible solution for

allowing ADAS to alert the driver at an early stage before making a mistake

and performing a dangerous maneuver.

In Chapter 3, we developed a vision-based framework that simultaneously
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detects and recognizes four important classes of traffic objects including vehi-

cles, pedestrians, traffic signs, and traffic lights inside and outside the atten-

tional visual area of the driver. The object detection stage was constructed by

a combination of both traditional and deep learning-based models. Finally, the

recognition stage was implemented using ResNet101 models. Nowadays, ob-

ject detection is widely employed in designing ADASs for not only autonomous

driving but also ordinary vehicles. For example, the detection of vehicles can

avoid accidents and keep a safe distance from surrounding vehicles. Pedestrian

detection is significant in reducing fatalities and injuries. Recognition of traffic

signs and lights helps vehicles to comply with traffic rules.

In Chapter 4, we presented a CNN-based model to detect and verify lane

types in urban and suburban driving environments. We classified various types

of lanes as they provide contextual information and indicate traffic rules rel-

evant to driving. Following the detection stage, we used a two-step method

to classify the lane boundaries into eight classes, considering road boundaries

as one particular type of lane. These mechanisms can help us in designing

ADAS applications such as lane keeping assistance, lane departure warning,

overtaking assistance as well as intelligent cruise control.

It is generally accepted that a driver cannot attend to the whole traffic

environment because of his/her limited gaze area. Moreover, a driver may

miss some critical information because of inappropriate driving habits, driving

skills, or distractions that affect the choice of proper driving maneuver. In

Chapter 5, we developed an analytical vision-based model to estimate average

driver attention based on the attentional visual field of the driver by employing

several metrics. For this purpose, we also trained a YOLOv5 object detector

model on RoadLAB data to identify traffic objects. By utilizing our approach

and considering consecutive small periods of time while driving, it is possible to
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design an ADAS based on the driver’s attentional visual area to infer whether

the driver is paying enough attention to the traffic objects or whether he/she

has been distracted.

In Chapter 6, we presented an approach to measure an average percentage

of the time that a driver has gazed at different traffic objects in the course of

driving. To reach this purpose, we benefited from a YOLOv5 object detector

trained on RoadLAB data, PoG of the driver as well as our proposed metrics.

This approach helps us to understand the driver’s behavior in terms of the

driver’s PoG during driving.

Our contributions to the creation of next generation ADAS are summarized

as follows:

1. Developing a novel deep learning-based model to predict driver intent.

2. Developing a model to detect and recognize traffic objects within the

attentional visual field of the driver.

3. Collecting and annotating a large dataset for different traffic objects and

road lanes.

4. Creating a CNN-based method to detect and classify road lanes in urban

and suburban areas.

5. Develop an analytical approach to estimate average driver visual atten-

tion based on the visual field of the driver.

6. Introducing an analytical approach to measure the average percentage

of the time in which a driver has gazed at different traffic objects based

on the driver’s point of gaze (PoG).
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Collectively, our work addresses a number of related challenges in building

models of driver behavior for ADAS. Our maneuver prediction model outper-

forms, is competitive and more reliable in comparison to previous work. It does

this by employing an LSTM to keep long-term temporal dependencies, pre-

dicting five maneuver types (which are more than those of previous work), and

benefiting from gaze information (which is ignored in many previous works).

Our object detection and recognition framework was one of the first to simul-

taneously detect different major classes of traffic objects and, unlike previous

work, we also classify them into their own sub-categories. Our deep learning

lane detection and classification model is different from previous work in that

we consider urban and suburban roads and eight distinct lane types; most

previous studies applied their models to highways and had few types of lanes

as well as ignoring the road boundaries. To compute driver attention, in addi-

tion to the detection of more traffic object types in comparison to the previous

work, our model is the first model of its kind that takes advantage of the at-

tentional visual field of the driver to perform its task. Finally, we consider

the driver’s PoG behavior for multiple object classes, namely, vehicles, traffic

lights, traffic signs, and pedestrians. Our model gives us a better understand-

ing of driver visual behavior about what traffic object (or elsewhere) the driver

is gazing at directly while in the act of driving.

7.2 Future Work

Research on driver behavior, intent modeling, and their relationship to ADAS

has become of great interest in recent years. Our work has contributed in

several ways to methods which can be utilized in ADAS. Given our research,

we mention several additional possible research areas that may be undertaken
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in the future.

1. Objects detected inside the attentional visual field of driver can be em-

ployed to analyze driver attention in consecutive small periods of time

while driving instead of considering an entire sequence as one time unit.

For this, it is possible to define a sliding time period and compute driver

attention based on the visual field and investigate in what locations and

in what driving situations a driver strengthens his/her attention or is

distracted. Moreover, there is also an interest to monitor and analyze

the driver’s behavior using a dashboard camera observing driver’s ac-

tivities during driving to automatically detect driver distraction. More

specifically, these ADAS systems by means of analyzing the face and

hands of the driver could detect driver distraction and identify the cause

of distractions such as cell phone talking, texting, operating the radio,

eating, etc. As a result, for detecting driver distraction a future ADAS

which incorporates the two aforementioned methodologies to take ad-

vantage of both would be more practical and promising in real driving

environments.

2. To make the object detector model more comprehensive, bike and mo-

torcycle objects can be added to the dataset as well. As a result, it can

be possible to identify more other objects drivers encounter and attend

to while driving.

3. Employing a digital street map along with the vehicle’s GPS coordinates

can provide an intelligent ADAS with more contextual information. In

other words, augmenting the vehicle’s GPS coordinates with the street

map could enable the ADAS to detect upcoming road artifacts such as
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intersections and turns and determine whether a turn maneuver is pos-

sible or not. Obviously, this information could then enable a prediction

model to anticipate driver maneuvers more effectively and efficiently.

4. By employing the video from the forward imaging system and identifying

the side lanes in addition to the ego lane, a future ADAS could determine

whether a lane exists on the right side and also on the left side of the

vehicle. This contextual information would provide additional informa-

tion for the driver maneuver prediction system. For instance, when the

vehicle is moving in the left-most lane, the only safe maneuvers are going

straight and right lane change, unless it is approaching an intersection.

5. The limitations of the employed experimental instruments did not al-

low us to use them at night and in adverse weather conditions. Such

limitations can be eliminated by a proper choice of hardware, requiring

further research on driver behavior in these conditions. In other words,

to further put ADAS models into real-life use in the future, the mod-

els should be applicable and accurate at different times of day and in

different weather conditions.

6. Although the experimental instrumentation demonstrates a successful

proof of concept, the use of wider angles of viewing for stereo cameras

and eye-trackers may be very helpful in enhancing the analysis of gaze

across a wider area as well as compensating for head rotations which

could enable the system to track driver gaze more comprehensively. The

use of multiple cameras could also help in enhancing gaze tracking. Con-

sequently, future ADASs can use this valuable information in different

applications such as more accurately assessing the driver’s visual atten-
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tion.

7. Another direction is collecting a comprehensive and naturalistic dataset

to design future ADASs for applications such as driver maneuver pre-

diction and driver attention evaluation. Providing a larger volume of

naturalistic driving data should include at least three aspects. First,

the data used to build predictive driving models should include data

from a range of driving settings and scenarios, including downtown, ur-

ban, suburban, and highway (the RoadLAB dataset does not include

the highway scenarios). Second, the present studies in this thesis were

restricted to only one city (RoadLAB data was collected in London, On-

tario, Canada), therefore extending the data collection to other cities

would be a further enhancement of the dataset. Third, it would also be

interesting to comprehensively investigate the impact of different driving

styles. Behavioral modeling approaches could be applied to find driver

models considering different behavioral styles such as normal, aggressive,

inexperienced, etc. Of course, since such driving data cannot be easily

collected for some of those cases, employing realistic driving simulators

might need to be used. Collectively, more complex driver behaviors and

road structures can be included in the new dataset, making the improved

model more suitable and practical for real-world driving situations and

scenarios. This ability would be essential for future ADASs to under-

stand and predict driver behavior and accordingly provide the driver

with the proper assistance.
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