64 research outputs found

    A New Optimization Strategy for Solving the Fall-Off Boundary Value Problem in Pixel-Value Di®erencing Steganography

    Get PDF
    In Digital Image Steganography, Pixel-Value Di®erencing (PVD) methods use the di®erence between neighboring pixel values to determine the amount of data bits to be inserted. The main advantage of these methods is the size of input data that an image can hold. However, the fall- o® boundary problem and the fall in error problem are persistent in many PVD steganographic methods. This results in an incorrect output image. To ¯x these issues, usually the pixel values are either somehow adjusted or simply not considered to carry part of the input data. In this paper, we enhance the Tri-way Pixel-Value Di®erencing method by ¯nding an optimal pixel value for each pixel pair such that it carries the maximum input data possible without ignoring any pair and without yielding incorrect pixel values

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general

    Image steganography based on color palette transformation in color space

    Get PDF
    In this paper, we present a novel image steganography method which is based on color palette transformation in color space. Most of the existing image steganography methods modify separate image pixels, and random noise appears in the image. By proposing a method, which changes the color palette of the image (all pixels of the same color will be changed to the same color), we achieve a higher user perception. Presented comparison of stegoimage quality metrics with other image steganography methods proved the new method is one of the best according to Structural Similarity Index (SSIM) and Peak Signal Noise Ratio (PSNR) values. The capability is average among other methods, but our method has a bigger capacity among methods with better SSIM and PSNR values. The color and pixel capability can be increased by using standard or adaptive color palette images with smoothing, but it will increase the embedding identification possibilityThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The research had no specific funding and was implemented as a master thesis in Šiauliai Univesity with the supervisor from Vilnius Gediminas Technical Universit

    Mobile app with steganography functionalities

    Get PDF
    [Abstract]: Steganography is the practice of hiding information within other data, such as images, audios, videos, etc. In this research, we consider applying this useful technique to create a mobile application that lets users conceal their own secret data inside other media formats, send that encoded data to other users, and even perform analysis to images that may have been under a steganography attack. For image steganography, lossless compression formats employ Least Significant Bit (LSB) encoding within Red Green Blue (RGB) pixel values. Reciprocally, lossy compression formats, such as JPEG, utilize data concealment in the frequency domain by altering the quantized matrices of the files. Video steganography follows two similar methods. In lossless video formats that permit compression, the LSB approach is applied to the RGB pixel values of individual frames. Meanwhile, in lossy High Efficient Video Coding (HEVC) formats, a displaced bit modification technique is used with the YUV components.[Resumo]: A esteganografía é a práctica de ocultar determinada información dentro doutros datos, como imaxes, audio, vídeos, etc. Neste proxecto pretendemos aplicar esta técnica como visión para crear unha aplicación móbil que permita aos usuarios ocultar os seus propios datos secretos dentro doutros formatos multimedia, enviar eses datos cifrados a outros usuarios e mesmo realizar análises de imaxes que puidesen ter sido comprometidas por un ataque esteganográfico. Para a esteganografía de imaxes, os formatos con compresión sen perdas empregan a codificación Least Significant Bit (LSB) dentro dos valores Red Green Blue (RGB) dos seus píxeles. Por outra banda, os formatos de compresión con perdas, como JPEG, usan a ocultación de datos no dominio de frecuencia modificando as matrices cuantificadas dos ficheiros. A esteganografía de vídeo segue dous métodos similares. En formatos de vídeo sen perdas, o método LSB aplícase aos valores RGB de píxeles individuais de cadros. En cambio, nos formatos High Efficient Video Coding (HEVC) con compresión con perdas, úsase unha técnica de cambio de bits nos compoñentes YUV.Traballo fin de grao (UDC.FIC). Enxeñaría Informática. Curso 2022/202

    Natural Image Statistics for Digital Image Forensics

    Get PDF
    We describe a set of natural image statistics that are built upon two multi-scale image decompositions, the quadrature mirror filter pyramid decomposition and the local angular harmonic decomposition. These image statistics consist of first- and higher-order statistics that capture certain statistical regularities of natural images. We propose to apply these image statistics, together with classification techniques, to three problems in digital image forensics: (1) differentiating photographic images from computer-generated photorealistic images, (2) generic steganalysis; (3) rebroadcast image detection. We also apply these image statistics to the traditional art authentication for forgery detection and identification of artists in an art work. For each application we show the effectiveness of these image statistics and analyze their sensitivity and robustness

    OPTIMAL PIXEL ADJUSTMENT BASED REVERSIBLE STEGANOGRAPHY

    Get PDF
    A novel prediction-based reversible steganographic scheme based on image in-painting is used to embed the secret information. First, reference pixels are chosen adaptively according to the distribution characteristics of the image content. Then, the image in-painting technique based on partial differential equations (PDE) was introduced to generate a prediction image that has similar structural and geometric information as the cover image. Finally, by using the two selected groups of peak points and zero points, the histogram of the prediction error is shifted to embed the secret bits reversibly[1]. Since the same reference pixels can be exploited in the extraction procedure, the embedded secret bits can be extracted from the stego image correctly, and the restoration of the cover image is lossless. Through, the use of the adaptive strategy for choosing reference pixels and the in-painting predictor, the more embeddable pixels are acquired.However, PDE based in-painting algorithm is computationally complex and requires more execution time. Also, the quality of the stego image is not considered in the in-painting algorithm. To improve the visual quality of the stego image Optimal Pixel Adjustment algorithm (OPA) can be used. The OPA is applied after embedding the message. The frequency domain is employed to increase the robustness of the steganography method. OPA algorithm is to minimize the error difference between the original coefficient value and the altered value by checking the right next bit to the modified LSBs so that the resulted change will be minimal. This research work uses OPA to obtain an optimal mapping function to reduce the difference error between the cover and the stego-image which increases the hiding capacity with low distortions and Peak Signal to Noise Ratio (PSNR)

    An Efficient Data Security System Using Reserve Room Approach on Digital Images for Secret Sharing

    Get PDF
    This paper presents enhancement of d ata protection system for secret communication through common network based on reversible data concealment in encrypted images with reserve room approach. In this paper was implemented for true color RGB image and reserve room approach under multi scale decomposition. The Blue plane will be chosen for hiding the secret text data. Then image is then separated into number of blocks locally and lifting wavelet will be used to detect approximation and detailed coefficients. Then approximation part is encrypted using chaos encryption method. The proposed encryption technique uses the key to encrypt an image and not only enhances the safety of secret carrier informa tion by making the information inaccessible to any intruder having a random method. After image encryption, the data hide r will conceal the secret data into the detailed coefficients which are reserved before encryption. Although encryption achieves certain security effects, they make the secret messages unreadable and unnatural or meaningless. This system is still enhanced with encrypt messages using a symmetric key method. This is the reason a new security approach called reversible data hiding arises. It is the art of hiding the existence of data in another transmission medium to achieve secret communication. The data hidi ng technique uses the adaptive LSB replacement algorithm for concealing the secret message bits into the encrypted image. In the data extraction module, the secret data will be extracted by using relevant key for choosing the encrypted pixe ls to extract th e data. By using the decryption keys, the image and extracted text data will be extracted from encryption to get the original informatio n. Finally the performance of this proposal in encryption and data hiding will be analyzed based on image and data recovery
    corecore