
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN TECNOLOXÍAS DA INFORMACIÓN

Mobile app with steganography
functionalities

Estudante: Jorge Rodríguez Vázquez

Dirección: Óscar Fresnedo Arias

A Coruña, September de 2023.

“Whether impossible or laughable, we continue to walk the path of men”

Kamina

Acknowledgements

To my parents, your love and support have been my bedrock. You ignited my curiosity and
fortified my determination. This accomplishment is yours as much as it is mine.
To my peers, friends and teachers, your influence on my journey has been indelible.
In deepest gratitude, thank you all. Here’s to the chapters yet unwritten.

Abstract

Steganography is the practice of hiding information within other data, such as images, audios,
videos, etc. In this research, we consider applying this useful technique to create a mobile
application that lets users conceal their own secret data inside other media formats, send that
encoded data to other users, and even perform analysis to images that may have been under
a steganography attack.

For image steganography, lossless compression formats employ Least Significant Bit (LSB)
encoding within Red Green Blue (RGB) pixel values. Reciprocally, lossy compression formats,
such as JPEG, utilize data concealment in the frequency domain by altering the quantized
matrices of the files.

Video steganography follows two similar methods. In lossless video formats that per-
mit compression, the LSB approach is applied to the RGB pixel values of individual frames.
Meanwhile, in lossy High Efficient Video Coding (HEVC) formats, a displaced bit modification
technique is used with the YUV components.

Resumo

A esteganografía é a práctica de ocultar determinada información dentro doutros datos,
como imaxes, audio, vídeos, etc. Neste proxecto pretendemos aplicar esta técnica como vi-
sión para crear unha aplicación móbil que permita aos usuarios ocultar os seus propios datos
secretos dentro doutros formatos multimedia, enviar eses datos cifrados a outros usuarios e
mesmo realizar análises de imaxes que puidesen ter sido comprometidas por un ataque este-
ganográfico.

Para a esteganografía de imaxes, os formatos con compresión sen perdas empregan a
codificación Least Significant Bit (LSB) dentro dos valores Red Green Blue (RGB) dos seus
píxeles. Por outra banda, os formatos de compresión con perdas, como JPEG, usan a ocultación
de datos no dominio de frecuencia modificando as matrices cuantificadas dos ficheiros.

A esteganografía de vídeo segue dousmétodos similares. En formatos de vídeo sen perdas,
o método LSB aplícase aos valores RGB de píxeles individuais de cadros. En cambio, nos
formatos High Efficient Video Coding (HEVC) con compresión con perdas, úsase unha técnica
de cambio de bits nos compoñentes YUV.

Keywords:

• steganography

• encoding

• decoding

• jpeg

• rgb

• lossy

• lossless

• image

• video

• bits

Palabras chave:

• esteganografía

• codificación

• decodificación

• jpeg

• rgb

• con perdas

• sen perdas

• imaxe

• video

• bits

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Memory structure . 3

2 Steganography: algorithms & solutions 4
2.1 Basic steganography overview . 4

3 Exploring other market options 6
3.1 Main alternatives . 6

3.1.1 PixelKnot . 6
3.1.2 NoClue . 6
3.1.3 StegDroid . 6
3.1.4 Steganography Master . 7
3.1.5 Pictograph . 7

3.2 Conclusion . 8

4 Development tools 9
4.1 Server side . 9

4.1.1 Python . 9
4.1.2 Flask . 10
4.1.3 Firebase . 10
4.1.4 Javascript . 11

4.2 Client side . 11
4.2.1 Flutter . 11

4.3 Development Tools . 12
4.3.1 Android Studio . 12
4.3.2 PyCharm . 12

i

CONTENTS Contents

4.3.3 Overleaf . 13
4.3.4 Balsamiq . 13
4.3.5 Git . 13
4.3.6 GitHub . 13
4.3.7 ffmpeg . 14
4.3.8 Jpegio . 14

5 Methodology and development 15
5.1 Development methodologies . 15
5.2 Scrum . 16
5.3 Kanban . 17
5.4 Scrum vs Kanban: Differences . 18
5.5 Methodology decision . 18
5.6 Application of Scrum to the project . 19

6 Strategic Planning and Requirements Analysis 20
6.1 Planning overview . 20

6.1.1 Sprint 1 (02/01/2023 - 20/01/2023) . 20
6.1.2 Sprint 2 (23/01/2023 - 10/02/2023) . 21
6.1.3 Sprint 3 (13/02/2023 - 24/02/2023) . 21
6.1.4 Sprint 4 (27/02/2023 - 17/03/2023) . 22
6.1.5 Sprint 5 (20/03/2023 - 07/04/2023) . 22
6.1.6 Sprint 6 (10/04/2023 - 21/04/2023) . 22
6.1.7 Sprint 7 (24/04/2023 - 05/05/2023) . 23
6.1.8 Sprint 8 (08/05/2023 - 26/05/2023) . 23
6.1.9 Sprint 9 (29/05/2023 - 09/06/2023) . 24
6.1.10 Sprint 10 (12/06/2023 - 30/06/2023) . 24
6.1.11 Sprint 11 (03/07/2023 - 21/07/2023) . 24
6.1.12 Sprint 12 (24/07/2023 - 18/08/2023) . 25

6.2 Project Costs . 25
6.2.1 Human Costs . 25
6.2.2 Technical Costs . 26
6.2.3 Indirect costs . 26
6.2.4 Total costs . 27
6.2.5 Project summary . 27

ii

CONTENTS Contents

7 Analysis 28
7.1 System actors identification . 28
7.2 Requirements analysis . 28

7.2.1 Functional requirements . 29
7.3 Use cases . 30

7.3.1 Non-functional requirements . 36
7.4 Diagrams . 36

8 System design and general structure 39
8.1 Arquitecture . 39

8.1.1 System global arquitecture . 39
8.1.2 Frontend design pattern . 40
8.1.3 API REST . 40

8.2 Database . 41
8.2.1 Realtime Database . 41
8.2.2 Cloud Firestore . 42

8.3 User Interface Design . 43
8.3.1 Mockups and Wireframes . 44
8.3.2 App general design . 44

8.4 Brand image . 44
8.4.1 App name . 44
8.4.2 App design . 45

9 Steganography methods 46
9.1 Steg’o seeding methods . 46
9.2 Image steganography . 48

9.2.1 Spatial domain steganography . 49
9.2.2 Frequency domain steganography . 51

9.3 Video steganography . 55
9.3.1 Lossless steganography . 56
9.3.2 Steganography in compressed lossy formats 56

10 Tests 60
10.1 HEVC encoding parameters testing . 60

11 Implementation 65
11.1 Sprint 1: Project Setup . 65

11.1.1 Frontend Setup . 65
11.1.2 Backend Setup . 66

iii

CONTENTS Contents

11.2 Sprint 2: Mockups, Firebase and Image steganography 67
11.2.1 Mockups creation . 67
11.2.2 Firebase data relations . 68
11.2.3 Image steganography: first prototype 68

11.3 Sprint 3-6: Frequency steganography, API and screens 69
11.3.1 Frequency domain image steganography 69
11.3.2 API development . 69
11.3.3 Screens creation . 70

11.4 Sprint 7: Screens changes and video steganography 72
11.4.1 Screens changes . 72
11.4.2 Lossless video steganography . 73

11.5 Sprint 8-10: Notifications, numpy and HEVC 73
11.5.1 Pushup notifications . 73
11.5.2 Numpy and algorithm optimization . 74
11.5.3 HEVC video steganography . 76

11.6 Sprint 10-12: Code refactoring and history . 76
11.6.1 Code refactoring . 76
11.6.2 Encoding/decoding history . 77

12 Conclusións 79
12.1 Future development . 80

List of Acronyms 86

Bibliography 88

iv

List of Figures

2.1 General steganography process functionality 5
2.2 Radar chart of a hypothetical steganographic process 5

3.1 Examples of the graphical interfaces for the different steganography apps . . . 7

7.1 Steg’o simplified flowchart . 37
7.2 Steg’o backend class diagram . 37
7.3 Steg’o spatial steganography sample sequence diagram 38

8.1 Visual explanation of client-server model [1] 39
8.2 Visual overview of Steg’o architecture . 40
8.3 Diagram of collection and document relationships in Steg’o Firestore enviro-

ment . 43
8.4 Steg’o logo . 45
8.5 Steg’o color palette . 45

9.1 Pixels modified without a randomization technique (left) and using a seed-
based randomization system (right) . 46

9.2 Visual explanation on RGB components modification 49
9.3 Spatial domain steganography performed at different bit levels 50
9.4 Overview for most relevant stages in JPEG compression 51
9.5 Example of the DCT and quantization operations 52
9.6 Procedure for last stages of JPEG compression with an example matrix 53
9.7 Frequency domain steganography performed with different configurations . . 54
9.8 Different schemes of chroma subsampling with different level of values re-

duction . 58
9.9 Sequence of steps for ensuring data recovery in the considered approach . . . 59

10.2 HEVC image encoding performed at different bit levels 64

v

LIST OF FIGURES List of Figures

11.1 Project structure in the different IDEs . 66
11.2 Examples of wireframes created at the start of the project 67
11.4 Before and after performance in spatial steganography 75
11.3 Steg’o screenshots . 78

1 Steg’o mockups . 82
2 Steg’o mockups . 83
3 Steg’o mockups . 84

vi

List of Tables

3.1 Measurement and comparison of steganographic application features 8

6.1 Salary calculation for each of the roles involved in the project 25
6.2 Technical cost analysis . 26
6.3 Indirect cost analysis . 26
6.4 Total cost analysis . 27
6.5 Steg’o project summary . 27

7.1 Register user . 30
7.2 Authentication . 30
7.3 Edit profile . 30
7.4 Send request . 31
7.5 Accept/Decline request . 31
7.6 Log out . 32
7.7 View chat . 32
7.8 Send message . 32
7.9 Send data . 33
7.10 Remove messages . 33
7.11 Copy messages . 33
7.12 Download encoded data . 34
7.13 Download decoded data . 34
7.14 Encode data . 34
7.15 Decode data . 35
7.16 Analyze image . 35
7.17 Non-functional requirements for Steg’o . 36

10.1 Statistic measures based on HEVC steganography testing 61

vii

Chapter 1

Introduction

SteganogRaphy, deriving its name from the Greek words στεγανος “steganos” meaning
“covered” or “hidden” and γραφος “graphos”, “writing” encompasses the investigation

and implementation of methodologies designed to conceal messages or entities within des-
ignated hosts, referred to as carriers. The main objective of steganography is to render the
presence of these concealed elements imperceptible to observers.

Although the term “steganography” is rather recent, dating back to the 16th century, the
practice itself in its various forms, is an art that has been in use for hundreds of years.
Perhaps one of its earliest appearances in our history is the one referred to by Herodotus in
“The Histories” [2]. This story narrates how the Athenian general Histieo asked Aristagoras

of Miletus to rebel against the king of Persia. To do so, Histieo shaved the head of a slave,
tattooed the message on his skull, and waited for the hair to grow back before sending it to
its destination. There, after shaving it a second time, the message could be revealed.

In contemporary times, steganographic techniques have significantly advanced to include
digital procedures, rendering analog steganography almost obsolete. The aim of this research
is to develop a user-friendly mobile application that provides an explicit and comprehensive
explanation of steganographic concepts while offering the ability to perform steganographic
operations on a reasonably wide range of media.

1.1 Motivation

In the current landscape, the availability of open source steganographic tools remains limited.
Moreover, the options for such tools that can be utilized by individuals without specialized
training are even scarcer. The primary objective of this project is not to introduce pioneering
or infallible steganographic techniques but rather to utilize existing ones in a controlled envi-
ronmentwhere the user has complete flexibility to customize the involved parameters without
encountering excessive complexity. Thus, this work aims to offer an accessible approach to

1

CHAPTER 1. INTRODUCTION 1.2. Objectives

the field of steganography, designed with default configurations to provide untrained users
with an aesthetically pleasing interface and moderate customization options.

Within the Steg’o platform, users are empowered to seamlessly embed images or text
into videos or images, subsequently transmitting them using the built-in chat functionality.
Additionally, the system incorporates features such as message decoding and a basic image
analysis system.

This journey originated as an initial concept, pursued as a personal project, yet it ex-
panded far beyond its original scope. The subject matter is highly captivating, and although
I acknowledge the current practical applications to be somewhat constrained, there is inher-
ent value in acquiring knowledge irrespective of temporal considerations. Over the course of
this project, I have expanded my initial idea to heights I would never have expected, greatly
surpassing my early expectations. I express sincere gratitude for this unforeseen trajectory
of growth and development.

1.2 Objectives

The main objectives of this project can be summarized as follows:

• Understanding the use of steganography in diverse environments and situations.

• Analysis of various methods and approaches to steganography by considering differ-
ent file formats and media types.

• Development of a front-end mobile app that serves both as a chat application and
steganography tool. The application should enable users to send encoded elements as
well as encode their own data and customize the encoding process.
Additionally, the application should provide functionalities for the analysis of potential
encoded data.
It should be aimed at both individuals knowledgeable in stenographic procedures and
those without prior education in this domain.

• Conception and refinement of an algorithm designed to enact diverse stegano-
graphic procedures across a wide range of media types, aiming to achieve unnoticeable
data concealment.

• Implementation of a back-end system that will enable the mobile app to process
the users requests and return the embedded data through an Application Programming
Interface (API).

2

CHAPTER 1. INTRODUCTION 1.3. Memory structure

1.3 Memory structure

This memory is organized as follows:

• Chapter 1 presents an introduction where the project theme, its motivation and objec-
tives are exposed.

• Chapter 2 presents an overview of the fundamental components involved in a stegano-
graphic process. Subsequently, in Chapter 3, an exploration of current market options
and the state of the art is conducted.

• The following chapter (4) elucidates the tools employed for the development, providing
concise explanations for each tool’s election and reasoning.

• Chapter 5 digs into the processes undertaken to establish an appropriate development
methodology.

• Chapters 6 and 7 illustrate the project planning approach employed, based on sprints,
along with an exhaustive analysis of requirements and use cases.

• Chapter 8 shows the design choices behind the architecture of Steg’o.

• Chapter 9 delineates the processes followed by the application in performing stegano-
graphic operations across diverse media formats.

• The next chapter (10) analyzes the steganographic processes to decide on optimum pa-
rameters.

• Lastly, Chapter 11 offers a comprehensive, step-by-step overview of the implemented
use cases and the sprints conducted throughout the development process.

3

Chapter 2

Steganography: algorithms &
solutions

The present work delves into the realm of steganography, which offers an abundance of
techniques for concealing information in numerous file formats. This chapter aims to

present a brief overview of fundamental concepts that underlie any steganographic process.

2.1 Basic steganography overview

Figure 2.1 presents the block diagram for any fundamental steganographic procedure that can
be divided into its several integrative components. This components are as follows:

• Payload: data that is covertly communicated.

• Carrier: data that conceals the Payload within itself.

• Embedding process: steganographic algorithm utilized to encode the Payloadwithin
the Carrier.

• Stego data: data that results from the Embedding process, which has the appearance
of the Carrier data, but containing the Payload.

• Communication channel: medium through which the Stego data will be transmit-
ted.

• Extracting process: steganographic algorithm used to decode the Stego data, which
retrieves the Payload and the Carrier data.

Note that the nomenclature used herein is subject to modifications, and there are numer-
ous synonyms of these fundamental components. However, for the purposes of this work,
only the names previously specified will be employed.

4

CHAPTER 2. STEGANOGRAPHY: ALGORITHMS & SOLUTIONS 2.1. Basic steganography overview

Figure 2.1: General steganography process functionality

According to Eric Cole in [3], in any steganographic methodology, three main security
goals should be pursued: privacy, robustness and undetectability. These properties are
interconnected and can be represented in a radar chart as Figure 2.2 shows:

• Privacy: refers to the capacity to maintain confidentiality such that unauthorized in-
dividuals are unable to access secret information.

• Robustness: refers to the ability of the system to maintain the integrity of any embed-
ded secret information without causing damage or corruption during the transmission
process.

• Undetectability: comprises two distinct requirements that are:

– Inability to detect the presence of a hidden secret message within a medium by
solely analyzing the characteristics of the medium.

– Impossibility of verifying or negating the presence of a secret message within the
Carrier.

A detailed explanation of how these concepts are implemented in Steg’owill be provided
in Chapter 9.

Figure 2.2: Radar chart of a hypothetical steganographic process

5

Chapter 3

Exploring other market options

This chapter aims to examine some representative steganography application proposals cur-
rently available in the market. Specifically, the study will focus on evaluating the main alter-
natives found within the Android and iOS application stores. Each app will undergo scrutiny
to determine if it offers all the necessary requirements considered for the application that will
be developed in this project.

3.1 Main alternatives

3.1.1 PixelKnot

PixelKnot [4] is probably the main steganography app for Android. Due to its easy-to-use
and user-friendly UI, it is by far the most popular app on this list. With over a hundred
thousand downloads, this app can perform steganographic operations as hiding and ex-
tracting text information inside an image. It cannot perform video or audio esteganography.
Data encryption is also avaliable for this app.

3.1.2 NoClue

Developed forAndroid, NoClue [5] is intended for concealing textual messageswithin im-
age and video files. This application makes use of various commonly used image formats
such as JPG, PNG, and ICO, as well as video formats includingMP4 and AVI, as carriers for
embedding textual information. Aditionally, NoClue offers the functionality to incorporate
password protection to safeguard the resulting carrier files from unauthorized access.

3.1.3 StegDroid

Android steganography tool designed to conceal encrypted messages within audio files.
StegDroid [6] employs a technique known as Echo Steganography to embed concealed mes-

6

CHAPTER 3. EXPLORING OTHER MARKET OPTIONS 3.1. Main alternatives

sages as an echo of the original audio.

3.1.4 Steganography Master

Steganography Master [7] is a free Android app designed for the concealment of text infor-
mation within images. This application provides users with the capability to encode and
decode hidden text information embedded within images. It also offers support for a large
range of image formats (PNG, JPG, ICO or BMP, among others).

3.1.5 Pictograph

Pictograph [8] is an iOS steganography tool that allows you to hide text information in
images by performing Least Significant Bit (LSB) spatial esteganography.

(a) Pixelknot (b) NoClue (c) StegDroid

(d) Steganography
Master

(e) Pictograph

Figure 3.1: Examples of the graphical interfaces for the different steganography apps

7

CHAPTER 3. EXPLORING OTHER MARKET OPTIONS 3.2. Conclusion

3.2 Conclusion

Based on the aforementioned analysis, a comprehensive summary table has been formulated,
showing the features and services offered by these applications. This analysis can be seen
in Table 3.2. Additionally, an evaluation of the User Experience (UX) has been incorporated,
measuring the applications’ behavior and the quality of their interfaces.

PixelKnot NoClue StegDroid Steganography
Master

Pictograph Steg’o

Android YES YES YES YES NO YES

IOS NO NO NO NO YES YES

Image
steganography

YES YES NO YES YES YES

Video
steganography

NO YES NO YES YES YES

Audio
steganography

NO NO YES YES YES PARTIAL

Encryption YES YES YES NO YES YES

Sharing
capabilities

NO NO NO NO NO YES

Analysis
capabilities

NO NO NO NO NO YES

UX rating 6 7.5 6 6.5 6 8.5

Table 3.1: Measurement and comparison of steganographic application features

After conducting an exhaustive analysis of the currently available applications in the mar-
ket, it is evident that a majority of them exhibit deficiencies in certain domains. Hence, it can
be inferred that users could benefit from an application that integrates most of their func-
tionalities into a singular entity, thereby simplifying the implementation of steganographic
procedures.

In this sense, Steg’o emerges as an application that meets the needs of users while in-
troducing novel functionalities alongside comprehensive explanations and guidance for less
experienced individuals.

8

Chapter 4

Development tools

This chapter will detail the technologies and tools used for the development of Steg’o, both
its front-end (client) and backend (server) sides.

4.1 Server side

For the creation of Steg’o backend, a combination of several technologies was used. The
programming language chosen for both the API and the processing of data sent was Python.
The database chosen to contain both the users’ information and their messages and processed
data was Firebase Firestore.

4.1.1 Python

Python [9] is a high-level interpreted programming language renowned for its emphasis on
code readability. It finds extensive utilization in the development of diverse applications,
including Instagram, Netflix or Spotify, among others. It is also widely used in web appli-
cations, software development, data science and Machine Learning (ML). Python exhibits a
multi-paradigm nature, offering support for object-oriented and imperative programming,
along with limited provisions for functional programming. Furthermore, Python is an inter-
preted, dynamic, and cross-platform language.

Languages such as C, Rust or C++ were also taked into account to develop the backend

of Steg’o, mainly because of speed and efficiency reasons; however, they were ultimately
discarded. The decision to adopt Python as the prevailing programming language for the
backend development primarily lies in its seamless integration with a wide range of data
processing and image manipulation libraries.

Python also enjoys widespread popularity, resulting in a vast community of users who
readily share extensive documentation and freely accessible code. Consequently, locating
relevant resources or concrete implementation use cases is comparatively not as complex

9

CHAPTER 4. DEVELOPMENT TOOLS 4.1. Server side

compared to faster languages like C or C++. In addition, the use of libraries such as numpy

provides a very significant speed increase while processing large amounts of data, which
further tipped the balance towards the use of Python.

4.1.2 Flask

Flask [10] is a Python-based web application framework, developed by Armin Ronacher and
his team, known as Poocco. It builds upon theWerkzeugWSGI toolkit and the Jinja2 template
engine, both of which are projects developed by Poocco.

The Flask framework stands out as a highly acclaimed and contemporary web application
framework, widely recognized for its popularity in its field. It offers seamless adaptability,
allowing for convenient expansion of its functionalities. Moreover, Flask is capable of accom-
modating intricate and sophisticated applications, rendering it a suitable choice for scaling
up to meet the demands of complex projects.

Web application framework

Aweb application framework, or simply a web framework, is a comprehensive set of libraries
and modules designed to facilitate web application development. It abstracts away low-level
intricacies such as protocols and thread management, enabling developers to focus on build-
ing applications.

In contrast to Django, another widely popular web development framework for Python,
Flask adheres closely to Pythonic principles. This makes it particularly great for small or
capacity-constrained projects. In this sense, Flask was chosen over other potential web frame-
works, such asDjango, due to its inherent simplicity. For the requirements in the development
of Steg’o, Flask proves to be more than sufficient, as it will solely be utilized for its API man-
agement capabilities.

4.1.3 Firebase

Firesbase Cloud Firestore [11] is a highly adaptable and scalable NoSQL database designed
for server-side development, mobile devices, and web applications.

Developed by Firebase and Google Cloud, it provides efficient data synchronization be-
tween client applications through real-time listener objects. It also offers offline functionality
for mobile devices and web applications, allowing the development of responsive applications
that work seamlessly even in scenarios with limited network latency and intermittent internet
connectivity. Furthermore, Cloud Firestore seamlessly integrates with other various Firebase
and Google Cloud products, including Cloud Functions, thus facilitating the integration of
other systems in the application like the push notification system employed in Steg’o.

10

CHAPTER 4. DEVELOPMENT TOOLS 4.2. Client side

Theadoption of a cloud-based database solutionwas driven by the considerablemagnitude
of data that may need to be stored for each individual user.

4.1.4 Javascript

The utilization of JavaScript [12] in this project is limited, as its purpose is solely to facil-
itate the administration of user notifications via the Firebase push notification system. In
this instance, the JavaScript environment employed operates within Node, an an independent
runtime environment separated from a web browser.

4.2 Client side

In this section, the tools employed for the development of Steg’o frontend will be presented.
The frontend codebase is built upon the Flutter framework in conjunction with the Dart
programming language.

4.2.1 Flutter

Flutter [13] is a free open-source mobile User Interface (UI) framework, developed and re-
leased by Google in May 2017. It enables the creation of native mobile applications using a
singular codebase, thereby removing the need of multiple codebases and languages to create
an app for different environments. Flutter is based on widgets. In Flutter, everything is a
widget. Widgets are basic building blocks that the developer can combine to build an entire
application. They represent UI components like buttons, text, sliders, and so on.

Dart, a programming language introduced byGoogle in 2011, is an imperative requirement
for Flutter development. Over the years, Dart has undergone significant advancements and
refinements, making it an essential prerequisite. According to [14], Dart is a client-optimized
language for developing fast apps on any platform. Its goal is to offer the most productive pro-
gramming language for multi-platform development, paired with a flexible execution runtime
platform for app frameworks.

It employs robust type safety with static type checking for variable-value alignment, com-
monly known as sound typing. Type annotations are optional due to type inference, en-
hancing flexibility. Additionally, Dart’s built-in sound null safety ensures non-null values by
default and guards against null exceptions using static code analysis.

When Flutter was launched, it primarily supported mobile app development. Now, it
supports app development on six different platforms: iOS, Android, web, Windows, macOS

and Linux.

11

CHAPTER 4. DEVELOPMENT TOOLS 4.3. Development Tools

4.3 Development Tools

This section will present the tools employed in the planning and development of Steg’oacross
the entirety of its development cycle.

4.3.1 Android Studio

Android Studio [15] is the official Integrated Development Enviroment (IDE) used for An-
droid application development. Based on the powerful IntelliJ IDEA code editor, it augments
its features with additional functionalities that enhance productivity during the creation of
Android apps. Some of these services are:

• A flexible build system based on Gradle.

• An efficient and comprehensive Android emulator.

• Seamless integration with GitHub.

• A wide collection of frameworks and testing tools.

• Real-time live edits facilitating immediate code updates on both emulators and physical
devices.

As the primary choice for Android application development, and considering the devel-
opment team’s prior familiarity with this platform, picking Android Studio as the main IDE
for the development of the app front-end was no challenge.

4.3.2 PyCharm

PyCharm [16], an IDE for Python, is a versatile platform developed by JetBrains. It is widely
recognized and employed for the purpose of Python application development.

PyCharm emerges as an optimal choice for backend Python development due to its robust
integrated development environment (IDE), which enhances coding efficiency. It offers ad-
vanced debugging capabilities, facilitates seamless integration with version control systems,
fosters collaborative coding practices, streamlines project management, and ensures codebase
consistency throughout the software development lifecycle.

Pycharm provides code analysis, a graphical debugger, an integrated unit tester, inte-
gration with version control systems, and support for Django web development. In the last
years, PyCharm has garnered significant adoption by renowned organizations including Twit-
ter, Facebook, Amazon, and Pinterest, who have chosen it as their preferred Python IDE.

12

CHAPTER 4. DEVELOPMENT TOOLS 4.3. Development Tools

4.3.3 Overleaf

Overleaf [17] is a web-based online editing tool for LaTeX documents. LaTeX is employed to
generate scholarly and scientific texts of superior typographic precision within academic and
research settings. Overleaf features an integrated compiler, ensuring near-instantaneous vi-
sualization of the document. It also provides a collaborative text editing platform that proves
highly advantageous for concurrent drafting and revision of documents. In this project, Over-
leaf was employed for writing this report.

4.3.4 Balsamiq

Balsamiq Wireframes [18] is a tool designed for creating visual prototypes for different
type of applications. With its intuitive interface and wide range of pre-designed objects to
choose from, Balsamiq is one of the best choices for an easy and fast approach to prototype
any kind of mobile or desktop app.

During the project’s mockup stage and its early development, Balsamiq was utilized to
generate basic designs, showing the essential information to be included in the different app’s
screens and its visual presentation.

4.3.5 Git

Git [19] is a distributed version control system that tracks changes in any set of computer files.
It is usually employed for coordinating work among programmers collaboratively developing
source code during software development.

In this project, Git was employed for managing both the front-end and backend source
code.

4.3.6 GitHub

GitHub [20] is a commercial enterprise owned by Microsoft that provides a cloud-based ser-
vice for hosting Git repositories. Primarily, it facilitates streamlined adoption of Git for an
efficient version control and collaborative work among individuals and teams. GitHub stands
as an exceptional choice for version control due to its seamless integration of collaborative fea-
tures, robust repository management, and extensive developer community. These attributes
collectively establish GitHub as the optimal solution for promoting a structured and collab-
orative environment throughout the software development cycle. During the development,
GitHub was used to manage code versions and commit information from the project’s Git
repositories.

13

CHAPTER 4. DEVELOPMENT TOOLS 4.3. Development Tools

4.3.7 ffmpeg

The toolffmpeg is a comprehensive, cross-platform software suite that allows users to record,
convert, and stream audio and video. It includes the command-line tool ffmpeg itself, as well
as associated libraries and utilities. The main components of the ffmpeg suite are:

• ffmpeg (command-line tool): Used for converting multimedia files between different
formats. It supports a vast number of audio and video codecs, making it a go-to tool
for many professionals and hobbyists alike.

• ffprobe: A tool for analyzing multimedia streams and extracting information about
them.

• ffplay: A simple multimedia player based on the ffmpeg libraries.

In the scope of this project, the use of ffmpeg proved to be extremely useful as a pivotal
instrument throughout the development and implementation phases for the diverse video
steganography methodologies integrated in Steg’o.

In the final version of the app, ffmpeg assumes a main role performing tasks such as
frame extraction, comprehensive frame analysis, format conversion, video import and export,
among others. For this purpose, the python subprocess module was employed, enabling the
seamless execution of Command Line Interface (CLI) commands within Python.

4.3.8 Jpegio

The Jpegio python package, authored by dwgoon [21], has been created to address the tasks
of importing, exporting, and manipulating JPEG files. This package facilitates the seamless
retrieval of quantized matrices inherent to JPEG files, enabling their modification without the
need for recompression.

This feature is extremely useful in steganographic contexts, where automated and fast data
insertion finds prominence. The efficacy of Jpegio is further accentuated by its integration
with the numpy package, enhancing the speed and efficiency of this process.

14

Chapter 5

Methodology and development

A software development methodology, as stated in [22], is “a set of rules and guidelines that
are used in the process of researching, planning, designing, developing, testing, setup and
maintaining a software product”. Hence, the adoption of a suitable work methodology is
imperative to ensure the successful development process and timely fulfillment of the product
requirements.

This chapter aims to explain the different available alternatives for software development,
and the reasons for the choice of a specific methodology according to the project character-
istics.

5.1 Development methodologies

Software development methodologies can be categorized into two primary groups: heavy-
weight (or traditional) methodologies and agile methodologies [23].

Traditional methodologies follow a disciplined and rigorous approach in the development
process. They are characterized by a comprehensive definition of all the requirements at the
project’s outset, resulting in limited flexibility for changes during the product development.
In [24], the author criticizes the bureaucratic nature of these methodologies, making the
development pace suffer as a consequence of their entanglement in their own rules. Moreover,
the numerous phases of the software development in heavy-weight methodologies follow a
sequential order, meaning that work on the next phase cannot commence until the previous
one is finished.

Some widely utilized heavy-weight methodologies include:

• Incremental: process of software development where requirements are divided into
multiple standalone modules of the software development cycle. In this model, each
module undergoes a comprehensive lifecycle encompassing the stages of requirement

15

CHAPTER 5. METHODOLOGY AND DEVELOPMENT 5.2. Scrum

analysis, design, implementation, and testing. Subsequent releases of the softwaremod-
ule introduce additional functionality, building upon the foundation established in the
previous release. This iterative process continues until the entire system is successfully
realized.

• Waterfall: sequential development process that progresses systematically through all
project phases. Each phase is executed in a complete and self-contained manner before
the subsequent phase commences, following a metaphorical waterfall-like flow.

• Spiral: development lifecycle approach employed to effectively manage risks. It inte-
grates iterative development principles with key components of theWaterfall model.
Widely utilized by software engineers, the spiral model is particularly advantageous for
addressing the challenges associated with sizable, costly, and intricate projects.

On the other hand, agile methodologies facilitate the seamless adaptation of work practices
to project circumstances at each phase of its development. In this sense, these approaches
enable a high level of flexibility and immediacy in customizing the project and its development
to the specific conditions of the environment. In this kind of methodologies, the development
cycle is structured in increments, with the deployment of a functional version of the product
at the end of each increment.

Agile methodologies offer several advantages, including cost reduction, enhanced prod-
uct quality, early error detection, more stable version control or the usage of more relevant
metrics. Two of the most commonly employed agile methodologies are Scrum and Kanban.

5.2 Scrum

Scrum is an iterative and incremental framework employed for product development and
work management. It focuses on prescribing effective team dynamics to foster system adapt-
ability within constantly changing environments. It follows a short number of management
practices and principles to help deliver a quality product. The main scrum elements are:

• Scrum roles: people who participate in a Scrum project. Scrum defines three roles:

– Development team: It only includes people who work to complete the tasks. Its
size can vary from project to project, but typically, it stands around 3 to 9 people,
which include roles such as developers, testers, designers, and sometimes others,
depending on the nature of the product.

– Product Owner: It is the voice of the stakeholders and is responsible for ensuring
that the team delivers value to the business.

16

CHAPTER 5. METHODOLOGY AND DEVELOPMENT 5.3. Kanban

– ScrumMaster: It makes sure that the Development team works by following the
values and practices of Scrum.

• Scrum artifacts: physical elements that help develop products according to the Scrum
methodology. The most important are:

– Product Backlog: refers to a dynamic list of features, requirements, enhance-
ments and fixes that must be completed for the project to succeed.

– Sprint Backlog: list of tasks that the Development Team must complete during a
specific sprint. It must be a sample of the entire Product Backlog list.

– The increment: is the current version of the product under development.

• Scrum events: meetings or temporal events that happen at a certain time and serve
specific purposes during the development. The most important ones are:

– Sprints: period during which the Scrum team works together to achieve an es-
tablished product goal.

– Daily Scrum: brief session in which the team members report back and plan for
the day.

– Sprint Planning: it is held at the begin of each Sprint. During this event, the
team estimates the work to be completed during the next Sprint.

– Sprint Review: it is held at the end of every Sprint. During this event, the team
runs through work items they completed during the Sprint. The product owner
discusses the current state of the backlog and the project’s delivery dates, incor-
porating the state of the market, technology, and the latest feedback.

5.3 Kanban

The Kanban method presents itself as a robust framework for designing, managing, and en-
hancing flow systems tailored to knowledge work environments [25]. By visually represent-
ing the flow of work, imposing limitations on the Work in Progress (WIP), and emphasizing
the completion of tasks before initiating new ones, organizations can effectively implement
the Kanbanmethod to foster continuous improvement. Some of the most important practices
in Kanban include:

• Limiting work in progress: create limits in the volume of WIP content, and use these
limits to determine when to initiate new tasks. This approach can optimize the flow of
work, reduce lead times, enhance quality, and achieve more frequent deliveries.

• Explicit policy formulation: clearly defined policies help elucidate the development
process rather than using a mere listing of different stages in the workflow. These

17

CHAPTER 5. METHODOLOGY AND DEVELOPMENT 5.4. Scrum vs Kanban: Differences

policies should be concise, straightforward, well-defined, visible, consistently enforced,
and easily modifiable by the individuals involved in the service.

• Implementation of feedback loops: feedback loops constitute an indispensable com-
ponent of any system that seeks to facilitate evolutionary change within variable envi-
ronments.

5.4 Scrum vs Kanban: Differences

According to Attlassian in [26], “Kanban is a project management framework that relies on
visual tasks tomanageworkflows, while Scrum is a projectmanagement framework that helps
teams structure and manage their work through a set of values, principles, and practices.”

Kanbanmethodology revolves around the visual representation of tasks, imposing lim-
its on work in progress and optimizing efficiency. Kanban teams prioritize minimizing the
duration of projects, aiming to streamline the entire process from initiation to completion.
It is particularly beneficial for teams facing numerous incoming requests of varying priority
and size. In contrast to Scrum, which demands a high level of control over the project
scope, Kanban allows for a more adaptable workflow.

On the other hand, Scrum teams commit to delivering a functional increment of work
within designated time intervals. Its objective is to establish iterative feedback loops that
enable acquisition and integration of customer insights. This approach allows obtaining an
expected and high-quality version of the final product.

5.5 Methodology decision

For the sake of flexibility with the project requirements, heavy-weight methodologies are not
the best choice, so in this case, it’s up to agile methodologies.

Among Scrum and Kanban, and considering the project’s scope and the need for compre-
hensive documentation and iterative evolution, Scrum emerges as the most suitable method-
ology.

The adoption of Scrum in this project is justified due to its ability to foster transparency,
focus, efficient time management, adaptability, continuous improvement, enhanced commu-
nication, and risk mitigation. Scrum facilitates continuous improvement through regular
feedback loops, allowing the developer to refine their skills and enhance productivity over
time, which can be very important in a project with a single developer.

18

CHAPTER 5. METHODOLOGY AND DEVELOPMENT 5.6. Application of Scrum to the project

5.6 Application of Scrum to the project

To effectively implement the Scrum methodology in the project, certain adaptations were
introduced to accommodate it to the specific circumstances and characteristics of this project.
These modifications take into consideration the fact that the Scrum team comprises only two
individuals: a tutor and a student.

Regarding the distribution of roles within the Scrum framework, they were allocated be-
tween the two team members as follows:

• Development team: this role was taken on by the student.

• Product owner: this role was assumed by the student, as he is responsible for the
project idea and managing the system requirements through the product backlog.

• Scrum Master: this role was played by the project tutor as the responsible person for
the supervision tasks and the proper application of the methodology’s principles.

The project lifecycle follows the principles outlined by Scrum, which involves dividing it
into multiple Sprints. In particular, the duration of each Sprint will be variable, ranging from
10 to 15 days, on average.

The inclusion of daily meetings in the project lifecycle is omitted due to factors as the
team size and project nature, which make this characteristic unnecessary.

Sprint Reviews are held up at the end of every Sprint, in which the Development team
shares its progress with the Scrum Master, and the functionalities to be implemented in the
next increment are programmed. Hence, the Sprint Review and the Sprint Planning have been
combined into a single meeting at the end of each Sprint for convenience.

During the project’s inception, the requisites were defined to compose an initial depic-
tion of the Product Backlog. Subsequently, this backlog underwent iterative enhancements
through a process of dynamic refinement.

19

Chapter 6

Strategic Planning and
Requirements Analysis

6.1 Planning overview

The project planning process involves a methodical organization of various tasks and allo-
cation of necessary resources to accomplish them. However, future planning can pose chal-
lenges and lead to frustration when the scope of the project is not fully defined. Scrum pro-
vides a solution for this problem as it introduces the term of Sprints and Sprint Plannings. As
described previously, the Scrum team collaboratively determines the incremental Sprint and
selects items from the Product Backlog to address in the new Sprint.

Each sprint was scheduled to have a duration of 10 to 15 work days approximately,
corresponding to an estimated completion time of 50-75 hours (calculated as 5 hours per
day, and assuming a standard 5-day work week). Over the course of the project’s progression,
a total of 12 sprints were executed. As a result, the initial projected duration for the project
was 750 hours, yet the actual duration extended close to 825 hours. This lengthening of the
estimated timeframe can be attributed to several factors, such as the creation of functional
prototypes and the adaptation to the employed technologies.

The following are the tasks scheduled to be performed in each sprint of the project.

6.1.1 Sprint 1 (02/01/2023 - 20/01/2023)

Tasks performed:

• Exploration of existing techniques for image steganography.

• Evaluation of diverse implementation approaches, weighing down associated difficul-
ties and prospects.

20

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.1. Planning overview

• Setup and construction of the project within the designated IDEs, namely PyCharm for
Python development and Android Studio for Android development.

• Inspection of prerequisites concerning communication between the frontend and back-
end components.

Estimated duration: 75 hours.
Real duration: 75 hours.
Notes: The project adhered to the estimated schedule without any deviations. While there
were initial challenges encountered during the project’s creationwithin Android Studio, these
issues were swiftly resolved within a short time.

6.1.2 Sprint 2 (23/01/2023 - 10/02/2023)

Tasks performed:

• Usage of the mock-up creation framework Balsamiq Wireframes to perform the design
and implementation of a prototype for the Android application Steg’o, which would
help the team to better visualize the development direction.

• Creation and configuration of a Firebase database, following the construction of a well-
structured diagram to ensure its proper implementation.

• Beginning of the development process for a image steganographic algorithm in the
spatial domain, resulting in the successful implementation of a basic operational frame-
work by the end of the Sprint.

Estimated duration: 75 hours.
Real duration: 75 hours.

6.1.3 Sprint 3 (13/02/2023 - 24/02/2023)

Tasks performed:

• Investigation into the operations required for the implementation of frequency domain
image steganographic algorithms.

• Beginning of preliminary development for a basic JPEG encoder/decoder in Python,
which would facilitate manipulation of the image quantization procedure for data em-
bedding.

• Beginning of Android application development, entailing the design and implementa-
tion of user registration and login interfaces.

21

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.1. Planning overview

Estimated duration: 50 hours.
Real duration: 50 hours.
Notes: Challenges arose in making the JPEG encoding prototype functional, needing a thor-
ough debugging process to achieve resolution.

6.1.4 Sprint 4 (27/02/2023 - 17/03/2023)

Tasks performed:

• Continuation of the development of frequency domain steganographic algorithms.

• Creation of the Flask API that will allow communication between frontend and backend.

• Conception of the application’s chat screen, where the user can add others and start a
conversation.

Estimated duration: 50 hours.
Real duration: 75 hours.
Notes: Complications were encountered during the optimization of the frequency steganog-
raphy algorithm. Through a process of trial and error, enhanced efficiency was achieved
through the utilization of numpy-optimized loops.

6.1.5 Sprint 5 (20/03/2023 - 07/04/2023)

Tasks performed:

• Conclusion of JPEG encoder/decoder development.

• Testing of the JPEG encoder/decoder.

• Development of the Operation Selection Screen and Image Analysis Screen in the fron-
tEnd.

• Enhanced database user management in Firebase through document relationships to
optimize efficiency.

Estimated duration: 75 hours.
Real duration: 75 hours.

6.1.6 Sprint 6 (10/04/2023 - 21/04/2023)

Tasks performed:

• Creation of Steganographic Options Screen for Steg’o Android application.

• Improvement of Image Analysis Screen for Steg’o Android application.

22

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.1. Planning overview

• Research of existing video steganographic procedures.

Estimated duration: 50 hours.
Real duration: 50 hours.

6.1.7 Sprint 7 (24/04/2023 - 05/05/2023)

Tasks performed:

• Replacement of Steganographic Options Screen for image Encoding Decoding Screen
for Steg’o Android application.

• Creation of Loading Screen for Steg’o Android application.

• Added customization options to Image Analsysis Screen for Steg’oAndroid application.

• Basic implementation of spatial domain video steganography.

Estimated duration: 50 hours.
Real duration: 50 hours.
Notes: Issues emerged when attempting to retrieve embedded data in video steganography,
and a viable solution was not attained within the sprint timeframe.

6.1.8 Sprint 8 (08/05/2023 - 26/05/2023)

Tasks performed:

• Development of notification system based on Firebase push system for Steg’o Android
application.

• Significant performance enhancement has been achieved in the already implemented
steganographic algorithms through the utilization of vector operations facilitated by
the numpy library.

• A comprehensive revision of the JPEG encoding/decoding algorithm has been under-
taken to optimize the speed of JPEG processing, employing the jpegio module. Con-
sequently, it is no longer mandatory to re-encode the image in order to modify the
quantized values.

Estimated duration: 75 hours.
Real duration: 75 hours.
Notes: Difficulties with the refactoring of JPEG quantized matrices, particularly in relation
to block division. However, these issues were successfully addressed in time.

23

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.1. Planning overview

6.1.9 Sprint 9 (29/05/2023 - 09/06/2023)

Tasks performed:

• The ffmpeg framework was used to implement the algorithm for steganography in High
Efficient Video Coding (HEVC) videos.

• Extensive experimentation was conducted to evaluate the impact of encoding variables
on the level of data loss during the video compression procedure.

• Noteworthy enhancements were made to the visual design of the Android application,
encompassing significant overhauls to the chat interface as well as the encoding and
decoding screens.

• Numerical data was incorporated into the analysis screen to augment image analysis
capabilities.

Estimated duration: 50 hours.
Real duration: 50 hours.
Notes: Several doubts surfaced during experiments with HEVC video encoding, especially
inquiries intowhy yuv420p exhibited less data loss than yuv444p during the encoding process.

6.1.10 Sprint 10 (12/06/2023 - 30/06/2023)

Tasks performed:

• Developed a basic audio steganography system for embedding seeds in videos.

• Enhanced the mobile application to provide comprehensive configuration options for
video steganography.

Estimated duration: 75 hours.
Real duration: 75 hours.

6.1.11 Sprint 11 (03/07/2023 - 21/07/2023)

Tasks performed:

• Refactoring of the backend source code, grouping operations in common classes and
testing API performance for greater maintainability and future codebase expansions.

• Beginning of code refactoring in frontend, where the performance of database calls
was improved, and a state management solution was implemented using the Provider
package for Flutter.

24

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.2. Project Costs

Estimated duration: 50 hours.
Real duration: 75 hours.
Notes: The code refactoring process extended beyond initial expectations due to the previous
code’s inadequate organization, making logical partitioning a challenging task.

6.1.12 Sprint 12 (24/07/2023 - 18/08/2023)

Tasks performed:

• Finished the refactoring of the frontend code. Improved the appearance of the user
menu, home screen, data encoding/decoding screens.

• Added history functionality, which allows the user to view the last encodings or de-
codings performed, access their details and download the data.

• Completed the documentation of the memory.

Estimated duration: 75 hours.
Real duration: 100 hours.
Notes: The memory took much longer than estimated due to constant changes in order not
to exceed page limit and to try not to remove relevant data for the reader.

6.2 Project Costs

This section explains the estimation of the project cost, which is derived from resources al-
location and committed times. The costs can be categorized into three distinct areas: human
costs, technical costs and indirect costs.

6.2.1 Human Costs

Junior
Programmer

Project
Manager

Scrum
Master

Total

Hours
worked

825 15 12 852

Salary
(€/hour)

11 21 12 44

Total 9.075 315 144 9.534

Table 6.1: Salary calculation for each of the roles involved in the project

25

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.2. Project Costs

In order to provide an accurate estimation for this kind of costs, we make the assumption
that the project was carried out by a junior programmer, one project manager and a
scrum master. The corresponding salaries (euros (€) per hour) and time (hours) devoted
to the project of each individual are outlined in Table 6.2.1. The hourly fees for the project
manager, scrummaster and junior fullstack developer were extracted from [27], [28] and [29],
respectively, assuming a 40 hour work week.

6.2.2 Technical Costs

This section will analyze the prices of the tools used during the development of the project
that had an expense and influenced its total cost. As seen in table 6.2.2, the total cost of
the technical resources is 195.93€, which results from the sum of 7 months of PyCharm
Professional license and Firebase Spark Plan.

Technical resource Monthly cost Total

PyCharm Professional 24,90€ 175€

Firebase Spark Plan 2,99€ 20,93€

Android Studio Free Free

Total cost 195,93

Table 6.2: Technical cost analysis

6.2.3 Indirect costs

Personal Laptop Desktop
Computer

Total

Used months 7 1 8

Price (€) 1.400 1.500 2.900

Lifespan
(months)

72 60 132

Total cost (€) 136,11 25 161,11

Table 6.3: Indirect cost analysis

26

CHAPTER 6. STRATEGIC PLANNING AND REQUIREMENTS ANALYSIS 6.2. Project Costs

Taking into account the indirect expenses, they primarily pertain to the cost of the utilized
computing devices, including a personal laptop (A) exclusively allocated for code develop-
ment, and a desktop computer (B) used primarily for conducting tests. Assuming a standard
lifespan of six years for system A, and five years for system B, their operational cost is calcu-
lated by dividing the purchase price by the lifespan in months and then multiplying it by the
duration of usage. These three measures are presented in terms of price and cost denominated
in euros (€), while time is measured in months (refer to Table 6.2.3).

6.2.4 Total costs

Based on the previous data, and considering the information provided in Table 6.2.4, the sum
of the three kinds of costs, outputs at 9.891,04€.

Expense Total (€)

Human costs 9.534

Technical costs 195,93

Indirect costs 161,11

Total cost (€) 9.891,04

Table 6.4: Total cost analysis

6.2.5 Project summary

Table 6.2.5 shows an abstract of the project, where the most important metrics are brought
into play. The project concluded in a satisfactorily, with various noteworthy achievements.
While there remain potential areas for enhancement, the overall conclusion is greatly positive.

The envisioned objectives have been successfully achieved, culminating in the develop-
ment of a steganographic application designed to serve a diverse spectrum of users. Steg’o
not only provides guidance for novice users but also empowers seasoned enthusiasts with a
high degree of flexibility.

Duration 228 days (02/01/2023 - 18/08/2023)

Development time 825 hours

Total costs 9.891,04 €

Table 6.5: Steg’o project summary

27

Chapter 7

Analysis

The analysis phase, an integral part of the software life cycle, encompasses the examination
of essential features and desired functionalities to be incorporated into the product under
development. Its primary objective is to exhaustively comprehend the system requirements.

7.1 System actors identification

In the process of addressing system requirements, it is crucial to identify potential users of
the system and their necessities, as they will interact with the application in distinct ways
depending on them.
An actor refers to any external entity that interacts with the system and requires specific func-
tionalities from it. This encompasses not only human operators but also external systems, as
well as abstract entities like time.
In this particular case, there are only four types of actors, the non-registered user, the reg-
istered user the Firebase Database and the API system.

7.2 Requirements analysis

Requirements analysis is a pivotal software engineering labour that serves as a critical link
connecting the system-level definition of software and its subsequent design.
This analytical process allows system engineers to precisely delineate the operational at-
tributes of the software, enclosing its functionality, data management, and performance con-
siderations.
Moreover, it eases the determination of the software’s interface with other system compo-
nents, while concurrently establishing essential constraints that must be taken into account
by the developers.

28

CHAPTER 7. ANALYSIS 7.2. Requirements analysis

7.2.1 Functional requirements

A functional requirement in software development defines a specific behavior that a software
system or component must be able to follow in order to perform correctly. It describes what
the system should do, in response to specific inputs or conditions.
In this case, the functional requirements of Steg’o will be presented by grouping them into
the various functionalities of the app.

• User management:

– Users can be registered in the system.
– Registered users can authenticate themselves.
– Registered users can view their profile.
– Registered users can edit their profile.
– Registered users must be able to log out.

• Chat functionality procedures:

– Registered users can send chat requests to other users.
– Registered users can accept or decline requests from other users.
– Registered users can view their chats into the chat screen.
– Registered users can send text, images or videos to other users.
– Registered users can copy messages from themselves or other users in their chats.
– Registered users can delete messages from themselves or other users in their chats.

• Steganographic procedures:

– Registered users can embed images into other images.
– Registered users can embed text into images.
– Registered users can embed images into videos.
– Registered users can embed text into videos.
– Registered users can decode embedded data from videos.
– Registered users can decode embedded data from images.
– Registered users can configure the embedding procedure.
– Registered users can see their encoding history.
– Registered users can see their decoding history.

• Image analysis procedures:

– Registered users can compare the pixel values of two images of the same size.
– Registered users can view the differences between the images in a heatmap.
– Registered users can perform changes in the heatmap, like changing its opacity, colours,…
– Registered users can view a numerical analysis of the comparison between the images.

29

CHAPTER 7. ANALYSIS 7.3. Use cases

7.3 Use cases

This section will detail the use cases of Steg’o according to the identified functional require-
ments.

Table 7.1: Register user

UC-01 Register user

Description Allows users to be registered within the system.

Involved actors App user

Pre-conditions -

Post-conditions The user is registered

Basic Path

1. The user fills the form with the required parameters.

2. The user presses the register button.

3. The system processes the information and displays a notification.

Exceptional Path 2. Any form field is empty or wrongly written: Exception

Table 7.2: Authentication

UC-02 Authentication

Description Allows users to be authenticated within the system

Involved actors App user

Pre-conditions UC-01: User needs to be registered in the system.

Post-conditions The user is authenticated

Basic Path

1. The user fills the authentication form with the required parameters.

2. The user presses the authenticate button.

3. The system processes the information and authenticates the user.

Exceptional Path 2. Any form field is empty or wrongly written: Exception

Table 7.3: Edit profile

UC-03 Edit profile

Description Allows users to see their personal info, as well as modify it

Involved actors Authenticated App user

Pre-conditions UC-02: User needs to be authenticated in the system.

. (continues on the next page) .

30

CHAPTER 7. ANALYSIS 7.3. Use cases

Table 7.3 – (continues from the previous page)

UC-03 Use Case

Post-conditions -

Basic Path

1. The user presses the profile button.

2. The user can see their personal info as well as edit it.

3. The user can return to the main page and the info is saved.

Exceptional Path 2. Username is too large or contains unsuported characters: Exception.

Table 7.4: Send request

UC-04 Send request

Description Allows users to send chat requests to other users

Involved actors Authenticated App user

Pre-conditions UC-02: User needs to be authenticated in the system.

Post-conditions -

Basic Path
1. The user presses the requests button.

2. The user can send requests by writing the email of the receiver.

Exceptional Path 2. Email does not exist or is wrongly formatted: Exception.

Table 7.5: Accept/Decline request

UC-05 Accept/Decline request

Description Allows users to accept or decline chat requests from other users

Involved actors Authenticated App user

Pre-conditions UC-02: User needs to be authenticated in the system.

Post-conditions If the chat request is accepted, the chat is added to the chat list.

Basic Path

1. The user presses the requests button.

2. The user scrolls to the received requests screen.

3. The user can accept or decline a request.

Exceptional Path

31

CHAPTER 7. ANALYSIS 7.3. Use cases

Table 7.6: Log out

UC-06 Log out

Description Allows users to log out of their account.

Involved actors Authenticated App user

Pre-conditions UC-02: User needs to be authenticated in the system.

Post-conditions The user is logged off the system and rerouted to the Login screen.

Basic Path 1. The user presses the log off button.

Exceptional Path

Table 7.7: View chat

UC-07 View chat

Description Allows users to enter a chat room where they can send messages to another
user.

Involved actors Authenticated App user

Pre-conditions UC-02: User needs to be authenticated in the system

Post-conditions

Basic Path
1. The user presses the respective chat.

2. The user is rerouted to the chat screen corresponding to that chat.

Exceptional Path

Table 7.8: Send message

UC-08 Send message

Description Allows to send a text message.

Involved actors Authenticated App user

Pre-conditions
1. UC-02: User needs to be authenticated in the system

2. UC-07: User needs to be within a chat room.
Post-conditions The message is sent to the receiver.

Basic Path

1. The user writes a message.

2. The user presses the send button.

3. The text message is sent via Firebase to the receiver.

Exceptional Path

32

CHAPTER 7. ANALYSIS 7.3. Use cases

Table 7.9: Send data

UC-09 Send data

Description Allows to send an image or a video.

Involved actors Authenticated App user

Pre-conditions
1. UC-02: User needs to be authenticated in the system

2. UC-07: User needs to be within a chat room.
Post-conditions The image or video is sent to the receiver.

Basic Path

1. The user selects the image/video message button.

2. The user selects a file to send.

3. The file is sent via Firebase to the receiver.
Exceptional Path

Table 7.10: Remove messages

UC-10 Remove messages

Description Allows users to remove messages

Involved actors Authenticated App user

Pre-conditions
1. UC-02: User needs to be authenticated in the system

2. UC-07: User needs to be within a chat room.
Post-conditions The selected messages are removed from the database.

Basic Path

1. The user selects the messages to remove.

2. The user presses the remove button.

3. The user accepts to remove the messages.

4. The messages are removed.

Exceptional Path

Table 7.11: Copy messages

UC-11 Copy messages

Description Allows users to copy messages

Involved actors Authenticated App user

Pre-conditions
1. UC-02: User needs to be authenticated in the system

2. UC-07: User needs to be within a chat room.
Post-conditions The selected messages are copied to the users clipboard.

. (continues on the next page) .

33

CHAPTER 7. ANALYSIS 7.3. Use cases

Table 7.11 – (continues from the previous page)

UC-11 Use Case

Basic Path

1. The user selects the messages to copy.

2. The user presses the copy button.

3. The messages are copied.

Exceptional Path

Table 7.12: Download encoded data

UC-12 Download encoded data

Description Allows users to download encoded data

Involved actors Authenticated App user

Pre-conditions 1. UC-02: User needs to be authenticated in the system.

Post-conditions The data is downloaded and saved in the local device.

Basic Path
1. The user opens an encoding history element.

2. The user selects the download button.
Exceptional Path 2. The data selected by the user is not encoded yet: Exception.

Table 7.13: Download decoded data

UC-13 Download decoded data

Description Allows users to download decoded data

Involved actors Authenticated App user

Pre-conditions 1. UC-02: User needs to be authenticated in the system.

Post-conditions The data is downloaded and saved in the local device.

Basic Path
1. The user opens a decoding history element.

2. The user selects the download button.
Exceptional Path 2. The data selected by the user is not decoded yet: Exception.

Table 7.14: Encode data

UC-14 Encode data

Description Performs esteganographic operations in the data provided

Involved actors Authenticated App user

. (continues on the next page) .

34

CHAPTER 7. ANALYSIS 7.3. Use cases

Table 7.14 – (continues from the previous page)

UC-14 Use Case

Pre-conditions 1. UC-02: User needs to be authenticated in the system

Post-conditions The data is processed and the user is directed to the encoded data screen.

Basic Path

1. The user picks the encoding options, payload and carrier data.

2. The user selects the encode button.

3. The user is directed to the loading screen.

Exceptional Path 2. The data selected by the user is not complete or is not compatible: Ex-
ception.

Table 7.15: Decode data

UC-15 Decode data

Description Performs esteganographic operations to decode data from the file provided

Involved actors Authenticated App user

Pre-conditions 1. UC-02: User needs to be authenticated in the system

Post-conditions The data is processed and the user is directed to the main screen.

Basic Path

1. The user selects the file to decode.

2. The user writes the password if there is any.

3. The user selects the decode button.

4. The user is directed to the loading screen.

Exceptional Path 2. The password written is not correct: Exception.

Table 7.16: Analyze image

UC-16 Analyze image

Description Analyze an image to search for esteganographic activity

Involved actors Authenticated App user

Pre-conditions 1. UC-02: User needs to be authenticated in the system

Post-conditions The data is processed and the user is directed to the analysis screen.

Basic Path

1. The user selects the files to analyze.

2. The user selects the analyze button.

3. The user is directed to the loading screen.

4. The user is directed to the analysis screen.

. (continues on the next page) .

35

CHAPTER 7. ANALYSIS 7.4. Diagrams

Table 7.16 – (continues from the previous page)

UC-16 Use Case

Exceptional Path 2. The images do not match in size or format: Exception.

7.3.1 Non-functional requirements

Non-functional requirements enclose a set of specifications clarifying the operational capa-
bilities and constraints of a system, with the primary aim of enhancing its functionality and
behaviour. These requirements delineate the system’s operational proficiency, encompassing
attributes such as performance, security, dependability, data integrity, and other factors. A
list of non-functional requirements has been created for Steg’o, as shown in table 7.17.

Table 7.17: Non-functional requirements for Steg’o

ID Requirement Description

NFR01 Steg’o chats shall have a response time of no more than 3 seconds for 95% of the
operations.

NFR02 Steg’o image steganographic functionalities shall be able to encode/decode a message
within 5 seconds for images up to 8MB in size.

NFR03 All transmitted data shall be encrypted usingmodern cryptographic standards to ensure
user privacy and data security.

NFR04 Steg’o app shall support concurrent usage by up to 1,000 users without significant per-
formance degradation.

NFR05 Steg’o chats shall store messages in Firebase with a retrieval time of no more than 6
seconds for recent messages (last 7 days).

NFR06 In the event of a failure in the API connection, the chat app shall notify users and
attempt to reconnect every 15 seconds.

NFR07 The app shall be compatible with the latest three versions of Android.

NFR08 All user passwords stored in Firebase shall be hashed and salted to ensure their security.

NFR09 Steg’o shall provide clear and concise error messages to users in the event of any fail-
ures or issues.

7.4 Diagrams

Figure 7.1 illustrates a simplified flowchart representing the application’s functionality. It is
important to note that this diagram provides a foundational overview and does not encom-
pass all potential scenarios within the realm of steganography. Nevertheless, it serves as an
adequate tool for gaining insight into the inner mechanisms of the application.

36

CHAPTER 7. ANALYSIS 7.4. Diagrams

Figure 7.1: Steg’o simplified flowchart

Figure 7.2 shows a class diagram depicting the architecture of the Steg’o backend sys-
tem. Within this diagram, two principal classes, named the “Obfuscator” and “Deobfuscator,”
assume responsibility for executing core operations and overseeing the management of API
handling. Additionally, the diagram showcases the presence of four different “codecs,” which
are dedicated to the implementation of separate encoding and decoding functionalities, each
tailored to specific steganographic requirements.

Figure 7.2: Steg’o backend class diagram

37

CHAPTER 7. ANALYSIS 7.4. Diagrams

The sequence diagram denoted as 7.3 describes a specific case involving the processing of
an image for performing spatial steganography on it.

As mentioned previously, within the application’s architecture, the Obfuscator class as-
sumes responsibility for overseeing the input and output procedures associated with the
encoding operations carried out within the API. In contrast, the codec module is dedicated
to the intricacies of the encoding process itself, immediately following a series of preliminary
actions involving format normalization and seed generation operations.

This ensures a clear distinction of roles and responsibilities within the system.

Figure 7.3: Steg’o spatial steganography sample sequence diagram

38

Chapter 8

System design and general structure

This chapter will explain the general design choices behind Steg’o, both in its backend and
frontend sections.

8.1 Arquitecture

8.1.1 System global arquitecture

The software solution utilize an architectural approach based on the client-server model. In
this model, a client program is responsible for making requests, while a server program han-
dles the corresponding responses. For visual representation of the client-server model, refer
to Figure 8.1.

Figure 8.1: Visual explanation of client-server model [1]

In the implemented project, the client component is an Android mobile app developed
in Flutter. Though the application can theoretically run in both Android and iOS, as it is
programmed entirely in a multiplatform language, only Android devices were tested.

Users can interact with the application through their respective mobile phones, initiating
requests that will then be received and processed by the server. The server makes use of
a REpresentational State Transfer (REST) API as the mechanism to access the application’s
functionality and business logic. Communication between the client and server is provided
through Hypertext Transfer Protocol (HTTP) requests.

39

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.1. Arquitecture

On the server side, the implementation was carried out by using Python and Firebase,
where the user data was stored.

Figure 8.2 presents an overview of the comprehensive architecture employed in the de-
veloped software solution.

Figure 8.2: Visual overview of Steg’o architecture

8.1.2 Frontend design pattern

The chosen design pattern for the frontend was the Provider pattern [30], which enables
state management in applications via a cohesive system of models and views. This pattern
is incorporated within the Flutter framework and can be accessed through the “provider”
package.

This design pattern is grounded in the utilization of models and views to establish an
abstraction layer between the application and the underlying data. The views gain access
to the data intended for visual representation on the device through an intermediary entity
referred to as the “provider”. As suggested by its name, the provider provides the screens
with processed data to ease their accurate visualization.

Upon themodification of the data within its correspondingmodel, all current views with a
provider of that kind undergo state updates. This mechanism produces a highly adaptable and
effortless approach to state management in mobile applications. Such an approach improves
system scalability and promotes the potential for code reusability within models, either via
inheritance or direct integration within alternative views.

8.1.3 API REST

The backend of the system utilizes a REST API architecture, which serves as an access point
for the application to access its implemented functionality. This type of architecture was
chosen because of its versatility and speed, as it provides access points to business logic that
can be used by a wide variety of systems. The REST application is organized according to a
layered system, which is prevalent in architectures of this nature.

The application exposes the following endpoints: “/deobfuscate” and “/obfuscate”

40

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.2. Database

These endpoints facilitate the encoding and decoding of diverse data types, as the partic-
ular data type and encoding configuration is specified within the HTTP packet body. Upon
completing this initial step, the required class is instantiated and executed,depending on
whether it is an encoding or decoding operation.

The data sourced from Firebase is downloaded by using a path specified within one of
the parameters. Subsequently, invocations to the codecs are made. These codecs assume
responsibility for the encoding and decoding processes associated with each specific data
type.
There are currently four codecs: JpegCodec, PngCodec, Ffv1Codec and HevcCodec.

Each of the aforementioned codecs is versatile, performing both encoding and decoding
operations relating to any compatible data format, as long as it is in byte format. Subsequent
to the successful execution of the operation, the resultant outcome is uploaded to Firebase.

Furthermore, the document detailing the executed operation is updated to ensure acces-
sibility for users through Firebase’s historical interface. Additionally, users are alerted of the
completed operation via a push notification system.

8.2 Database

Firebase, a cloud database managed by Google and implemented using NoSQL [31], was
chosen for the administration of this system. This choice was mainly due to the ease of Fire-
base to manage user data, profile pictures and other relevant elements natively, in addition to
providing several complementary systems such as Push Notifications for Android and iOS.
Firebase is widely used in mobile development due to its flexibility, ease of management, and
offline caching and data management systems.

Firebase provides two types of NoSQL databases: Realtime Database and Cloud Fire-
store. These databases differ from traditional relational databases in terms of their data mod-
eling approach.

8.2.1 Realtime Database

Firebase’s original database offer is Realtime Database. It stores data as JavaScript Object
Notation (JSON) objects, enabling real-time synchronization among connected devices. Some
of its features are:

• Offline support: When offline, anymodifications made are automatically synced once
the client regains an internet connection.

• JSON data structure: Data is organized hierarchically, resembling a tree structure
where nodes represent objects.

41

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.2. Database

• Real-time updates: Changes made to the data are immediately synchronized across
all connected clients.

8.2.2 Cloud Firestore

Cloud Firestore is a more advanced database provided by Firebase. It also operates as a
NoSQL database, but it utilizes a document-based approach for data storage. Some of its fea-
tures are:

• Document-based data model: Data is organized into collections of documents, with
each document containing key-value pairs.

• Offline support: Clients can perform read, write, and query operations on data even
when offline, ensuring uninterrupted functionality.

• Real-time updates: Similar to the Realtime Database, data changes are instantly prop-
agated to all connected clients.

In this project, Firestore Database was chosen as the preferred solution due to its status
as the most recent offering from Firebase for managing document-based databases, coupled
with the development team’s prior experience with it.

Theoretically, within a document-oriented database, each document within a collection
has the potential to possess unique characteristics that distinguish it from all other docu-
ments. Consequently, the utilization of a Unified Modeling Language (UML) class diagram
becomes impractical, as classes assume shared attributes and behaviors among their instances.
However, in real scenarios, documents belonging to the same collection often exhibit common
elements. In such cases, a UML diagram can be employed to represent these shared elements
and relationships.

In the subsequent diagram (Figure 8.3), nested collections are depicted using one-to-
many relationships (for instance, between the Chat collection and the Message collec-
tion), while reference relationships are represented by one-to-one relations.

In the context of the users collection, each user is assigned a collection of chats and a
collection of requests. Each of these collections contains documents that reference specific
chats and requests. This design choice is built on the need to store user-specific data along-
side references, exemplified by the inclusion of metrics such as unread message counts for
distinct user-chat pairs.

The references in this context point to singular documents, with each document within
the Chats collection containing a reference to a corresponding User document. So, for each
document in the Chats collection within a User document, there is only one Chat to which
it refers.

42

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.3. User Interface Design

Conversely, each user maintains an exclusive collection of encoding and decoding oper-
ations. This collection houses documents generated as users execute operations, containing
data assigned to individual encoding or decoding processes, encompassing factors such as
implicated files, bit allocation, bit shifts, and so forth.

In contrast to the previous examples, these collections operate under distinct principles,
since they do not have to be shared among more than one user. Consequently, the reliance
on references for storage is not needed within these contexts.

Figure 8.3: Diagram of collection and document relationships in Steg’o Firestore enviroment

8.3 User Interface Design

The UI design plays a crucial role in the success of mobile applications within the current
market landscape. Theway inwhich data is presented to users through theUI can significantly
influence the adoption and popularity of an application. However, in chapter 3 was observed
that many existing steganography applications prioritize functionality over design, resulting
in usable yet aesthetically unappealing products.

To address this issue, Steg’o aims to give a twist to the conventional approach by offering
an application that not only boasts visually appealing design but also provides a seamless
and comfortable user experience. Furthermore, Steg’o is committed to supporting users with
comprehensive manuals and explanations to facilitate their understanding and utilization of
the application’s core features.

43

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.4. Brand image

8.3.1 Mockups and Wireframes

In the initial stage of the development process, Balsamiq Wireframes was employed to cre-
ate several mockups for visualizing the intended appearance of the UI across various screens
within themobile application. This approach enables a simplified representation of the overall
screen design, also facilitating effective client-developer communication.

8.3.2 App general design

The application’s development adhered to the established principles of mobile application
design. The following list highlights some of them:

• Identify the target customer: The design of user interactions should account for
the diverse requirements and preferences of distinct user groups. In Steg’o, the target
customers are both experienced steganography enthusiasts and people that just want
to have fun using its features, without prior knowledge of its inner workings.

• Prompt and guide the user: Prompting user feedback and providing guidance are
crucial for ensuring satisfactory user interaction outcomes and fulfilling user needs in
subsequent operations.

• Maintain consistency: The application must demonstrate consistency in its design,
appearance, and behavior throughout its various elements. Steg’o reflects this principle
by utilizing Material Design [32], developed by Google, which enables developers to
have a cohesive design in all their screens, by using the packages provided.

8.4 Brand image

Corporate identity encompasses the distinctive attributes that distinguish a company or per-
sonal brand, from others. These attributes comprise various elements, including corporate
design, nomenclature, fonts, logos and colours.

In the preceding section, the general design principles followed by Steg’owere explained.
Now, the focus shifts to the specifically crafted name and logo, which form integral compo-
nents of its corporate identity.

8.4.1 App name

The selection of an application’s name holds significant importance as it serves as first im-
pression for users when searching in app stores. Therefore, it is crucial for the name to be
both simple and clear. Additionally, it is imperative for the app name to be original in order
to differentiate the application from competitors.

44

CHAPTER 8. SYSTEM DESIGN AND GENERAL STRUCTURE 8.4. Brand image

After conducting an extensive study involving various alternatives, the chosen name for
the application is Steg’o. The rationale behind the selection of this nomenclature encompasses
multiple factors:

• The initial component, “Steg” alludes to the field of steganography, which involves the
concealment of information within other media.

• The subsequent element, represented by the letter “o” draws inspiration from the Stegosaurus,
an ancient dinosaur species.

The branding identity embodies a fusion of these two concepts, with a predominant green
color scheme evoking associations with dinosaurs. Moreover, a deeper connection exists be-
tween the realms of steganographic procedures and paleontology, as the user metaphorically
excavates hidden elements or data from an ostensibly deserted setting.

8.4.2 App design

Steg’o is designed with simplicity in mind, aiming to ensure user-friendliness even for indi-
viduals lacking prior experience. However, it also provides a large variety of functionalities
to satisfy the needs of advanced users.

To facilitate the user’s interactions, drop-down menus and information icons have been
strategically incorporated into the application, serving as guidance and assistance tools for
users during their interactions with the system. Additionally, the color palette employed in
the interface features two variations of green, purple and a dark gray shade, imparting a
visually appealing and approachable appearance. The Steg’o logo (Figure 8.4) was conceived
by Skygge [33], a proficient illustrator with a great background in design and logo creation.

Figure 8.4: Steg’o logo
Figure 8.5: Steg’o color
palette

45

Chapter 9

Steganography methods

This chapter will provide a comprehensive description of the different procedures imple-
mented in the Steg’o’s back-end, as well as the steganographic methods and strategies that
were investigated for possible development, and subsequently chosen for the current project.

9.1 Steg’o seeding methods

The steganographic techniques employed by Steg’o utilize a seed-based system to produce
pseudo-random values that determine the location for data insertion. Below, a more spe-
cific explanation of this seed-based system is provided, together with a couple of illustrative
examples for better comprehension.

The following figures depict the pixels that have been subjected to steganography in an
illustrative image. In Figure 9.1 (left), the pixel modifications are conducted in a linearmanner,
resulting in an alteration that is easily discernible to an external observer.

Figure 9.1: Pixels modified without a randomization technique (left) and using a seed-based
randomization system (right)

In contrast, Figure 9.1 (right) demonstrates a different approach, as the same number of
modifications have been applied to the image pixels but have been distributed in a pseudo-

46

CHAPTER 9. STEGANOGRAPHY METHODS 9.1. Steg’o seeding methods

random manner via a seeding system. This results in a more intricate and elusive alteration
that is less evident and more challenging to detect.

It is noteworthy that this methodology can be applied to any data format characterized by
values arranged in a mesh structure. This randomization technique described can be extended
not only to image steganography approaches that do not directly alter pixel values (e.g., fre-
quency domain steganography), but also to individual frames within video sequences.

In image steganography using Steg’o, the image encoding seed plays a crucial role. The
seed consists of 12 bytes that are partitioned and used to generate a list of pseudo-random
values for data insertion.

Specifically, the image encoding seed has the following structure:

dataLen + controlByte0 + JPEGspecs + controlByte1 + X + numBitsString + controlByte2

Therefore, an example of possible seed would be the following:
x03,x17 / EÝÃ$ F 5 x02 1

• The dataLen field is composed of 3 bytes that indicate the length in bytes of the data
to be encoded. In the case of data encoded as RGB values, it specifies the width and
height of the image in 12 bits per component. In this example, the value is ‘x03,x17’,
which, when translated to an integer number, reveals that the lenght of the encoded data
is 207.895 bytes.

• The JPEGspecs field is composed of 4 bytes and only used in frequency domain encod-
ing. It specifies the minimum and maximum number of AC coefficients to be encoded,
with values ranging from 1 to 63. The concept for AC coefficients is explained on fur-
ther detail in page 52.

In the seed example, the value of JPEGspecs is ‘EÝÃ$’, which can be represented as a
32-bit value. Then, the last 12 bits can be extracted and divided into two 6-bit values,
that when converted to integer numbers show that the range of modifiable DC elements
is between 12 and 36 per quantized JPEG matrix.

• The numBitsString field is a 1-byte value that contains various parameters such as the
number of bits per byte that are modified, the bit shift of the modified bits, or whether
the image has been encoded using spatial or frequency domain steganography.

Using the previous example, the numBitsString has a value ‘x02’, i.e., its binary value
can be represented as 00000010. If split correctly, the values for the different parameters
can be disclosed. Beginning by the most significant bit (left):

– Bit shift value. This variable can range from 0 to 7 and represents the shift of the
bits in the encoding. For example, with a bit shift of 3, the encoded (modified) bit

47

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

will be the fourth less significant bit within each byte (i.e, 11110111). In the pre-
vious example, the bit shift was 000, so the encoded bit will be the less significant
bit of each byte.

– RGB boolean value. A single bit that specifies if the encoding is done in the
spatial or frequency domain, respectively. In this example, the RGB boolean bit is
set to 0, so the encoding is done in the frequency domain.

– Number of bits to encode per byte of original data. This variable is composed by
four bits and can range from 0 to 8, specifying how many bits will be encoded
per byte of original data. In the current example, its value is 0010, so the number
of bits that will be modified per byte will be 2, thus, 11111100.

• The controlBytes field consists of 3 bytes with a constant value that is inserted in
specific positions to detect whether the seed has undergone modifications. In this case,
the control bytes are set to ‘/F1’.

Even if a seed is employed to generate a series of positions for data insertion, the question
is how we can accurately determine the location of the seed (see Figure 9.1). To address this
concern, the metadata associated with the respective image or video is brought into play.
Specifically, by extracting the creation date of the image or video and converting it into a
string representation in the form of a timestamp, this ‘primordial seed’ can be utilized in a
similar way to the ordinary seed to determine its position within the data.

The proposed solution exhibits high flexibility by enabling the generation of diverse ‘pri-
mordial seeds’ based on the image metadata. Furthermore, it can be seamlessly applied to
any constant component involved in image creation and transmission, such as the password
employed for data encryption, if used.

9.2 Image steganography

Image steganography can be divided into two major groups:

• Spatial domain steganography: changes made to the image are carried out directly on
the pixel values of the image.

• Frequency domain steganography: changes made to the image are carried out on the
frequency values of an image that allows it, such as those using JPEG format.

In this application, both of these techniques were performed for different image file formats.

48

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

9.2.1 Spatial domain steganography

Steganography in the spatial domain involves the manipulation of the Red Green Blue (RGB)
values of pixels in a given image to embed data at specific bit locations. This technique is
also called Least Significant Bit (LSB) because the modification is often performed in lower
significance bits, which minimizes possible detection. Given this direct modification of the
pixel values, this technique can only be performed in lossless image formats, such as PNG.

An example of applying modifications to the RGB values in a image is showed in Figure
9.2, with the extent of alteration in the pixel values being influenced by the number ofmodified
bits per byte and their shift.

This particular form of steganography is vulnerable to both visual detection by a third
party and steganographic analysis. Additionally, if any modifications are made to the image,
such as applying filters or recompressing, it is much less likely that the information concealed
within the image is retrievable than if using frequency domain steganography.

Figure 9.2: Visual explanation on RGB components modification

On the other hand, this strategy is a simpler and a much more useful way of concealing
data if the user prioritizes the data insertion size over the undetectability of the data. Each
pixel can be modified using LSB techniques and visual detection is only likely to happen if
the number of bits modified surpasses 2 bits / byte. For example, in an 1920x1080 image,
there are 2.073.600 pixels, which mades up 6.220.800 RGB components that can be modi-
fied. Assuming a bit depth of 8 bits per component, if a 2 bit LSB steganography attack is
performed in this image, the potential data insertion could be up to 1,55 MB.

The following figure (9.3) illustrates various forms of data insertion applied to an image.
The leftmost picture (9.3a) depicts an image in which 7 bits per byte have been modified. In
the middle figure (9.3b), the modification consists of 2 bits per byte, while the figure on the

49

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

right side (9.3c) represents the original one, unmodified image.
It is clearly discernible that the image with 7-bitmodification exhibits prominent artifacts

that are totally visible to the human eye. On the other hand, the imagewith 2-bitmodification
displays artifacts that, while present, are scarcely perceptible.

(a) 7 bits / byte modifications (b) 2 bits / byte modifications (c) Original image

Figure 9.3: Spatial domain steganography performed at different bit levels

The following Python code exemplifies the deployment of bit shifting and masking tech-
niques to recreate a steganographic procedure on an integer array, utilizing theNumpy python
package [34] for array manipulation.

1 rgbVa lue s [s h u f f l e d I d x] = (rgbVa lue s [s h u f f l e d I d x] & mask |
d a t a T o I n s e r t << s h i f t)

Listing 9.1: Python code for replacing bits of data with other data

In this particular case, the array should be derived from the RGB color values of the im-
age pixels. Nevertheless, this methodology can be suitably adapted to manage diverse data
representations, with the only requirement of being an 8-bit depth data format, for shifting
and masking purposes.

This steganography method is probably the simplest of all implemented, since the en-
coded values are stored in the RGB components of the image itself in a clear and visible form
for a thorough analysis. The evaluation of the security level encompasses three parameters,
previously explained in Chapter 2.

In this case, we can conclude that:

• Privacy: By introducing the option to encrypt the inserted data, the method ensures
maximum data privacy.

• Robustness: This particular steganography method exhibits limited robustness due to
the susceptibility of the encoded information to even minor alterations in pixel values.
Consequently, when anti-steganographic attacks are employed by the use of filters,
subtle distortions, or the addition of noise layers to images or videos, the use of this
method to perform a lossless steganographic process becomes unfeasible.

50

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

• Undetectability: Aswith any steganographic process, the ability to remain undetected
is inversely proportional to the volume of data inserted. For instance, if we embed a
50-character sentence into a 1920x1080 pixel image using 1 bit per component,
the proportion of modified pixels would be approximately 1×10−6% of the total pixels,
an minuscule quantity that significantly inhibits data detection. However, it is worth
noting that this spatial steganography method is relatively susceptible to detection, and
therefore its rating in this regard may not be high.

9.2.2 Frequency domain steganography

Frequency domain steganography takes the basic operations that occur in spatial steganog-
raphy one step further. This approach is commonly employed in file formats that utilize
mathematical transformations for compression purposes. In this case, the transform used is
the Discrete Cosine Transform (DCT). The DCT is prominently employed in compression al-
gorithms such as JPEG, where its primary function is to represent the visual data of an image
as a function of cosine waves. This section aims to provide a concise explanation of JPEG
compression algorithm and its implications for image steganography.

Figure 9.4: Overview for most relevant stages in JPEG compression

JPEG: A brief insight

JPEG employs a series of procedures to compress an image file effectively. (Figure 9.4 Initially,
the RGB components of the image are converted to the YCrCb (or YUV) color space, which
represents the luminance, red chrominance, and blue chrominance of each individual
pixel. This representation is widely used in various compressed formats, as it allows the
luminance component to be separated from the chrominance components. This separation
enables further optimization in compression, as human visual perception is more sensitive
to changes in luminance than in color variations. By leveraging this characteristic, chroma
subsampling can be applied to the YCrCb image (refer to page 58), resulting in not only

51

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

reduced file size but also decreased bandwidth consumption during transmission.
Once the image is transformed into the YCrCb color space and the chrominance sub-

sampling procedure is applied, the resulting image components are then partitioned into
Minimum Coding Units (MCUs), consisting of 8× 8 pixel blocks. When the image MCUs are
set, the compression process begins.

In this sense, a series of sequential steps are undertaken with the objective of reducing the
file size through the implementation ofmultiple techniques. To beginwith, a two-dimensional
DCT is applied to every MCU of each component. This transformation operation aims to
convert the luminance and chrominance blocks containing the physical image data into
numerical blocks that represent the pixel information in the frequency domain. It is important
to note that this step does not result in any loss of information. After theDCT application,
a frequency 8× 8 block is obtained for each spatial 8× 8 MCU.

Upon the completion of the frequency domain conversion, the quantization process is ini-
tiated. To accomplish this, an 8×8 quantization matrix of predetermined values is employed,
although the specific matrix utilized for this step may vary depending on the encoder or file
under consideration. The purpose of this matrix is to eliminate (or represent with less ac-
curacy) the values linked to the higher frequencies, which are positioned in the lower-right
section of the frequency blocks for the MCUs (Figure 9.4). This strategy holds significant
importance as high-frequency values exhibit minimal perceptibility to the human visual
system. Consequently, their removal from an image does not affect substantially to its visual
quality, but it does in its size.

Typically, the maximum value within each frequency block corresponds to the lowest
frequency component, positioned in the upper left corner. This particular value is denoted as
the DC coefficient. In contrast, the remaining values corresponds to higher frequencies and
consequently contribute less significantly to the final representation of the image, resulting in
smaller numbers. These values are commonly referred to as AC coefficients. For an illustrative
example of the DCT application and quantization process in a real MCU, refer to Figure 9.5.

(a) DCT matrix (b) Quantization matrix (c) Result of quantization

Figure 9.5: Example of the DCT and quantization operations

In the quantization process, the DCT matrix values are divided by quantization matrix
values, resulting in a removal of almost every high frequency value in the original data, as

52

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

they are all converted to zero elements.
Figure 9.6 illustrates the utilization of the techniques used in the last stages of the JPEG

compression procedure. Firstly, Zig-Zag rearranging is performed for each of the individual
quantized MCUs to group the zero values generated in the previous step (quantization). This
technique is based on ordering the frequency coefficients within each MCU according to their
frequency relevance (from low to high frequencies). Then, Delta encoding (also known as
Differential Pulse-Code Modulation) is applied to normalize the encoded values with respect
to the initial DC value of the first MCU. Following the Delta encoding procedure, a Run
Length Encoding (RLE) technique is carried out, which allows to reduce the size of the grouped
values generated in the previous Zig-Zag encoding step.

Figure 9.6: Procedure for last stages of JPEG compression with an example matrix

As the last step, a Huffman tree is employed to allow variable-length encoding, thereby
achieving a further reduction in the overall file size. For a detailed explanation of Huffman
coding and Huffman trees, please refer to the work in [35].

Following with the explanation on frequency domain steganography, in this particular
scenario, the alterations are applied to the MCU components which are obtained after the
quantization process. This approach ensures that the loss of data experienced during quan-
tization is not propagated to the data to be concealed, resulting in a lossless steganographic
procedure.

However, this methodology presents certain drawbacks. Given that the highest frequency
components of the image have already been eliminated, modifications made to quantized
matrices will be more discernible.
Hence, two main problems arise:

1. Firstly, if data is embedded in the high frequency values (bottom right) of each MCU,
the compression process carried out by the aforementioned algorithms will not perform
correctly since quantization-removed values may regain non-zero status. As a result,

53

CHAPTER 9. STEGANOGRAPHY METHODS 9.2. Image steganography

this can significantly increase the file size and arouse suspicions regarding a possible
analysis.

2. Alternatively, when data is inserted into low frequency values, evenminor alterations
(1 or 2 bits) may be distinctly noticeable in the visual representation of the compressed
image. The impact becomes more pronounced if the DC coefficient of the MCUs is
modified, as this change propagates throughout the entire file.

(a) 7 bits / byte modifications with 12-16 mod-
ified elements per block

(b) 2 bits / byte modifications with 18-32 mod-
ified elements per block

(c) Original image

Figure 9.7: Frequency domain steganography performed with different configurations

Therefore, the optimal solution to this issue is to abstain from modifying the DC coeffi-
cients and instead limit the alterations on a few elements with medium or low frequencies
that already possess moderate values. By restricting the modifications to 1 or 2 bits in these
elements, the visual impact becomes practically imperceptible.

Thereby, the number of elements to be modified per MCU must be determined. Through
extensive experimentation, a consensus has been established, indicating that an optimal range
of modifications lies between 16 and 30 elements per block (each block comprises 64 ele-
ments). This range has been proven to be effective in minimizing artifacts while concurrently
maximizing the capacity for insertable data. For visual reference, Figure 9.7 presents various
examples illustrating several bit levels and quantities of modified elements.

The following fragment of code (9.2) illustrates a simplified implementation of the fre-
quency domain steganographic procedure in images.

54

CHAPTER 9. STEGANOGRAPHY METHODS 9.3. Video steganography

1 yB locks = yQuantMatr ix [: yRows − yColumns % A, : yColumns − yColumns %
8] . r e shape (−1 , 8 , 8)

2 y S hu f f l e = v i r t u a l S h u f f l e (xBlockNum ∗ yBlockNum − 1 , xBlockNum ∗
yBlockNum − 1 , seed , s e edB lock)

3 yBlocksEncoded = encodeE lements (dataToEncode , yBlocks , b lockChanges ,
y Shu f f l e , dataToEncodeLenght , mask , s h i f t)

Listing 9.2: Python code for performing frequency domain steganography in an image

As observed, line 1 performs the task of partitioning the quantized values drawn from the
image into distinct matrices of dimension 8 × 8. Following that, line 2 initiates the creation
of an insertion list, which is constructed by employing the seed. This list will subsequently
be utilized to embed the data at its respective positions. At last, line 3 consequently invokes
the function responsible for executing the steganographic process. This function replaces a
predefined number of bits in the selected coefficients of the quantized arrays that correspond
to the indexes in the insertion list.

Frequency domain steganography presents a greater level of difficulty in data detection
and removal compared to its spatial domain counterpart. The following points highlight its
efficacy:

• Privacy: Similar to spatial steganography, frequency domain steganography enables
encryption of the embedded data, thereby maximizing data privacy.

• Robustness: In this form of steganography, robustness significantly improves com-
pared to spatial steganography. Accessing the data becomesmore complex, and mod-
ifying the encoded data values is not as straightforward as applying filters to the image
or altering specific pixels. Through the utilization of DCT and subsequent division into
blocks, a substantial change in the image is required to modify quantized values, tran-
scending the simpler approach of spatial steganography.

• Undetectability: As previously mentioned, the detectability is directly linked to the
amount of data being inserted. However, this technique presents greater difficulty in
conducting conclusive analysis, thereby enhancing its resistance against potential
attackers and increasing its undetectability.

9.3 Video steganography

Video steganography has witnessed a surge in its utilization partially due to the sudden emer-
gence of new methods for generating and sharing video content such as social networks and
video sharing platforms.

55

CHAPTER 9. STEGANOGRAPHY METHODS 9.3. Video steganography

Most of the variants of video steganography are derived from the “simple” principles of
image steganography. By employing analogous techniques, the capacity for embedding data
within a video is substantially augmented, while concurrently making use of a lower propor-
tion of the carrier data for payload insertion. It is important to mention that in the case of
video steganography in Steg’o, each frame is encoded with its own seed, as individual im-
ages, and the “primordial seed” is encoded in the audio of the file, using an LSB technique (as
explained in section 9.1, the primordial seed is just a seed used to recall the exact position of
the main seed in the encoded data).

In Steg’o, two different strategies can be found when performing steganography in a
video: lossless and lossy steganography.

9.3.1 Lossless steganography

Lossless steganography involves directly modifying the pixel RGB values of video frames.
This process closely resembles spatial domain image steganography, but it presents an addi-
tional challenge regarding the remarkable increase of the video size compared to the original.
This size increase is due to the requirement of a lossless encoding of the carrier video, which
should ensure the preservation of the pixel values during the encoding process.

Lossless encoding in videos is not commonly employed because it results in an output
media that is impractically large for most purposes. To illustrate this, consider a 4-second
video consisting of 43 frames in the .mp4 format (a lossy format), with an original size of
451kB. If this video is recompressed using the lossless FFV1 codec, its size expands up to 7MB.
This represents a size increase of nearly 1400%, rendering it unfeasible for general usage on
longer videos.

On the other hand, employing lossless video formats for encoding payloads offers the
advantages of speed and efficiency, particularly when working with short videos. In such
cases, where the carrier video is not lengthy, this approach can be a more viable solution, as
it avoids introducing losses and enables encoding of substantial payload sizes.

9.3.2 Steganography in compressed lossy formats

Performing steganography in lossy video formats entails greater complexity compared to its
application on images. As exposed in Section 9.2.1, this form of steganography involves mod-
ifying the RGB values of an image to embed data while minimizing perceptible artifacts.

In the video realm, the process is relatively similar, although much more arduous. Video
codecs such as High Efficient Video Coding (HEVC) (also called H.265) employ a large variety
of techniques to compress video media while minimizing data loss from the perceptual per-
spective. Next, a brief overview of two of the main techniques employed for video encoding
is provided.

56

CHAPTER 9. STEGANOGRAPHY METHODS 9.3. Video steganography

Inter-Frame Coding overview:

Among these techniques, we can stand out the Inter-Frame Coding, where “key” frames,
also known as intra-frames or I-frames, are selected and completely encoded using a lossy
algorithm like JPEG while the remaining frames are encoded as motion vectors, attempting to
accurately predict the motion within each frame relative to the “key” frame or frames. There
are two types of “non-key” frames, the so called B and P frames.

Each P-frame is generated through forward prediction, utilizing a preceding I or P-
frame. B-frame creation also employs backward prediction, which combined with forward
prediction results in a method called “bidirectional interpolation prediction”. In this kind
of interpolation, the forward prediction is determined first, followed by the backward predic-
tion. Subsequently, the encoder determines the weighting ratio to calculate the average of
both predictions. However, due to the significant number of errors introduced by B-frames
(larger than those in I and P frames), they are not employed for subsequent predictions in
the video frames.

The set of consecutive frames positioned between two keyframes is commonly referred
to as a Group of Pictures (GOP). Typically, the number of frames per group ranges from nine
to sixteen or even more, although this parameter can be adjusted by the user during the
encoding procedure.

Consequently, in the present context, modifying each frame individually is unfeasible,
since most of the frames lack explicit pixel information. Therefore, the most viable solution is
to modify the frames that are fully encoded, i.e. the intra-frames. Although these frames are
subject to lossy compression, frequency domain steganographic techniques can be performed
in them, as previously done in images, to embed data in lossy formats.

However, in this case, this specific approach has not been considered for the implementa-
tion of Steg’o application. Making use of this technique would involve modifying the H.265
standard itself to introduce a backdoor in the quantization process, enabling data insertion.
Given the complexity and time-consuming nature of this process, coupled with the require-
ment of modifying an established and extensively tested standard, we have opted to disregard
this path.

Instead, an alternative approach that aligns more closely with the basis of the spatial do-
main steganography has been followed. This technique, inspired by the work of Dr. Galiano
in [36], involves modifying the luminance and chrominance values of intra-frames in a
video before the encoding takes place.

This process bears a strong resemblance to the previously explained method for spatial
steganography involving RGB values, but with an important distinction: the modified values
pertain to the luminance (Y) as well as the blue and red chrominances (Cb and Cr) of
the frames, rather than color values per se. As explained before in page 51, the human brain

57

CHAPTER 9. STEGANOGRAPHY METHODS 9.3. Video steganography

exhibits lower sensitivity to chrominance values, particularly in the red component. This
understanding can be exploited to execute chroma subsampling in both images and videos,
removing a large number of chrominance values with minimal discernible impact.

Chroma subsampling overview:

A prevalent form of chroma subsampling is exemplified by the 4:2:0 scheme, where the lu-
minance component is fully sampled, while the chrominances are sampled at half the
resolution. Consequently, for every four luminance samples, two chrominance samples
are selected, both horizontally and vertically. Thus, the number of values for the chrominance
components will be four times smaller than in the luminance one after the subsampling.

Something similar happens in the case of 4:2:2 subsampling, with the distinction that
two samples of Cr and Cb chrominances are acquired for every four samples of luminance
(the reduction factor is hence two instead of four). This results in halving the chrominance
resolution horizontally, while preserving the full resolution vertically. Thus, the number of
values for the chrominance components will be two times smaller than in the luminance one.
In 4:4:4 chrominance subsampling, the entire image (both luminance and chrominances) is
sampled in its entirety. Figure 9.8 shows the results of performing this three different chroma
subsampling procedures in a pixel grid.

Figure 9.8: Different schemes of chroma subsampling with different level of values reduction

The level of chroma subsampling should be taken as a relevant factor, as it directly impacts
on the amount of data lost during the encoding process. A lower subsampling rate, implying
a reduced capacity for sample collection, results in a greater loss of data due to compression
artifacts introduced by the encoder. In contrast to previous techniques that offered lossless
data insertion, the current approach entails the risk of irreversible data loss, thus making it
impossible to retrieve the payload information.

58

CHAPTER 9. STEGANOGRAPHY METHODS 9.3. Video steganography

To address this challenge, several measures can be implemented:

• Firstly, data is inserted into the YCbCr components of the video rather than into the
RGB components. This choice is motivated by the observation that color RGB values
experience more substantial losses compared to luminance and chrominance values
during the compression procedure.

• Secondly, data insertion occurs exclusively in the intra-frames. Naturally, this has an
impact on the data capacity available for insertion, which depends on the GOP size. The
larger the GOP size, the lower the capacity to conceal data, but the smaller the file size.

• Thirdly, data insertion employs a shifting-based technique. This shift is utilized to
mitigate data loss during encoding, as themost significant bits of a byte are less sus-
ceptible to be removed during compression. In the opposite site, modifying the most
significant bits can introduce visual distortions that can be perceptible for other users.
Although the shift value can be user-defined, empirical testing indicates that a shift of 4
bits for luminance and 5 bits for chrominance is theminimumacceptable choice
for minimizing data loss.

• Lastly, redundancy techniques can be applied to data insertion. The payload can be
replicated in the insertion procedure, therefore increasing the probability of successful
data recovery. In conjunction with a data recovery technique based on loss per-
centages derived from numerous tests, this redundancy-based approach significantly
enhances the likelihood of recovering the inserted data.

Figure 9.9: Sequence of steps for ensuring data recovery in the considered approach

Without the combined use of these methodologies, the data loss rate stands at approxi-
mately 80%. However, by employing the aforementioned preventive approaches, it is possible
to significantly diminish the data loss to approximately 3% or even less, contingent upon the
specific video being encoded.

59

Chapter 10

Tests

This chapter focuses on the analysis of steganographic algorithms implemented at the
functional level.

In implementations such as steganography in HEVC videos, it is crucial to have a compre-
hensive understanding of how different video export and encoding configurations are inter-
connected and how they affect the potential recovery of the inserted data depending on the
considered parameters. The interrelationships between encoding variables become particu-
larly important for optimal decision-making to minimize losses and file sizes while maximiz-
ing the possible data insertion, considering that this steganographic functionality in Steg’o
does not allow for lossless data recovery due to video compression.

10.1 HEVC encoding parameters testing

A total of 650 testswere conducted for this analysis, making use of 5 video files of different
resolutions and formats. These tests measured the execution time of data encoding and
decoding processes in HEVC video steganographic procedures, as well as the percentage of
data loss with andwithout redundancy, and other significant variables. The collected data
was then saved in an Excel file for detailed analysis.

Several relevant configurations were evaluated for HEVC video encoding:

1. Firstly, the chrominance subsampling, specifically yuv420, yuv422, or yuv444, was
modified. This variable determines the type of subsampling used in video encoding,
which has a substantial impact on both the video’s size and its visual quality.

2. Additionally, the Constant Rate Factor (CRF) was tested, as it determines the visual
quality value of the exported video. This variable values range from 0 to 51 and can
significantly affect the video’s size.

3. The Quantization Parameter (QP) was another variable inspected in the tests. This pa-
rameter determines the level of spatial detail retained in the final video. Lower values

60

CHAPTER 10. TESTS 10.1. HEVC encoding parameters testing

of QP indicate higher video quality at the expense of larger file size.

4. Lastly, the GOP variable controls the size of the frame groups, as explained in page 57.
This variable greatly influences the size of the encoded file, as a lower GOP value
results in more intra frames being encoded in the video, leading to a significant increase
in the number of bytes used.

Variable Value Data loss rate (%) File size change (%)

Median Std Median Std

CRF

0 0.34 5.61 145.30 147.46

4 1.69 5.51 108.65 108.00

8 5.84 11.30 75.50 77.65

QP

0 1.71 8.63 87.05 119.87

4 2.02 8.85 86.03 104.08

8 3.35 9.03 82.10 99.97

GOP
3 2.04 9.61 95.95 116.22

6 1.32 7.41 83.20 123.23

Format

yuv420p 0.66 4.83 87.95 114.31

yuv422p 1.10 5.61 96.85 126.20

yuv444p 5.71 11.50 87.05 118.41

Table 10.1: Statistic measures based on HEVC steganography testing

Based on prior experimental findings, it was determined that in order to attain a suitably
diminished data loss, certain trade-offs, such as compromising QP and CRF, must be made,
consequently leading to an augmented file size. As seen in table 10.1, when the CRF surpasses
4, the data losses increase very fast, leading to a potential doubling or tripling of losses in
certain cases.

During these experiments, a counter-intuitive observation emerged: elevating the chromi-
nance subsampling rate to preserve more chrominance values (yuv422 and yuv444) re-
sulted in a significant data loss increase. This finding contradicts all expectations, as theory
suggests that reducing the amount of removed coefficients during the subsampling should
retain more chrominance values in the final image, thereby enhancing data recovery. The
main hypothesis for this fact is that the encoding process amplifies overall losses in yuv444
and yuv422 encoded videos to compensate for the file size increase associated with these
encoding formats.

61

CHAPTER 10. TESTS 10.1. HEVC encoding parameters testing

Regarding the Group of Pictures (GOP) size, two different alternatives were examined: 3
and 6 frames. These values are relatively small compared to the standard GOP range of 16
to 21 frames for HEVC video (see Section 9.3.2). Although the reduction in GOP value was
optional, it was aimed at holding larger data insertions within the video files. The GOP size
should not significantly impact the data losses; however, these tests revealed that a GOP of 3
is excessively small, adversely affecting both the final file size and data loss.

Analyzing the data in table 10.1, and given the range of the file size change, the observed
standard deviations in this context (which are around 77,6 to 147,4 for different groupings)
appear to be reasonable. The standard deviations represent a spread of values, and given the
high volatility of change in file size values, the calculated standard deviations don’t seem
unusually high.

In the context of data loss rate, the standard deviation ranges from 4,83 to 11,5. This
difference in losses is due to different file configurations and videos. For a video where the
modified frames contain a lot of different colors and shapes, the data loss will be significantly
higher than for a smoother video where the colors do not change much. This is because of
the optimizations used in the encoding process to remove irrelevant information and reduce
file size, which can lead to some colors not being represented as faithfully.

The analysis of data loss also contemplates the shift of the inserted bits with respect to the
less significant bit in each byte, a crucial factor to be taken into consideration. In this research,
the conducted tests considered various bit shifts, namely 4, 5, and 6 bits for chrominance,
and 3, 4, and 5 bits for luminance. For instance, when the bit shift is set to 5 and the
original byte is 00000000, the modified bit will be the sixth bit from the right, as the first bit
is considered the number 0. Consequently, the resulting byte would be 00100000.

(a) Graphical measure of bit shift relation with
data losses

(b) 3D representation of encoding variables and
data losses/file sizes

62

CHAPTER 10. TESTS 10.1. HEVC encoding parameters testing

This information holds significant importance as higher bit shifts make the steganography
process more discernible to potential observers.

Conversely, excessively deep shifting may render most of the data recovery unattainable,
leading to substantial data losses. Figure 10.1a illustrates the data loss percentages encoun-
tered when employing various levels of bit shift in a conventional approach and, employing
data recovery techniques based on redundancy.

The results indicate that the incorporation of redundancy significantly mitigates data
loss, reducing it from an average of 26% to a mere 2% in the scenario involving 3 bits of
bit depth for luminance and 4 bits for chrominance. This represents a reduction above
1000% in terms of data loss.

Figure 10.1b presents the three-dimensional graphical representation of the interplay among
video encoding variables (QP, CRF, GOP and chrominance subsampling), in relation to data
loss percentage and the corresponding increase in file size.

For a comprehensive exploration of this dataset, three interactive plots are available as
follows:

• To observe the three-dimensional representation illustrating the effects of data loss
and file size alterations, employing a 4-bit depth for chrominances and a 3-bit depth
for luminance, please click here.

• To observe the three-dimensional representation illustrating the effects of data loss
and file size alterations, employing a 5-bit depth for chrominances and a 4-bit depth
for luminance, please click here.

• To observe the three-dimensional representation illustrating the effects of data loss
and file size alterations, employing a 6-bit depth for chrominances and a 5-bit depth
for luminance, please click here.

The concept of data loss percentages might seem highly abstract at first glance; therefore,
an illustrative visual representation has been incorporated below, presenting the result of
inserting an image within a HEVC video by employing different levels of bit shifts.

The impact of the insertion process according to different shift levels significantly influ-
ences the amount of retrievable data. This phenomenon can be visualized more effectively
through graphical representations. In this sense, the differences in color of some pixels
in figure 10.2 represent instances of decoding failures, indicating errors introduced during
the process of recompression of the Carrier video, which inevitably affects the amount of
recoverable data.

As seen in 10.2, by inserting the information in bits farther away to the most significant
bit of each byte, the information retrieved after the re-encoding process will have a greater
amount of random colored pixels, which implies that a bigger quantity of information is lost.

63

https://jorge-vrod.github.io/stego_plots/3dplot_shift_u_4_shift_v_4_shift_y_3.html
https://jorge-vrod.github.io/stego_plots/3dplot_shift_u_5_shift_v_5_shift_y_4.html
https://jorge-vrod.github.io/stego_plots/3dplot_shift_u_6_shift_v_6_shift_y_5.html

CHAPTER 10. TESTS 10.1. HEVC encoding parameters testing

The encoding process for the frames shown in Figure 10.2 has been performed with the fol-
lowing configuration: GOP: 6 frames, CRF: 4, QP: 8, Subsampling format: yuv420p.

(a) 2 bit shift encoding for chrominance (1 for
luminance)

(b) 4 bit shift encoding for chrominance (3 for
luminance)

(c) 6 bit shift encoding for chrominance (5 for
luminance)

Figure 10.2: HEVC image encoding performed at different bit levels

64

Chapter 11

Implementation

11.1 Sprint 1: Project Setup

The first sprint began with a thorough investigation to identify existing steganography meth-
ods suitable for different types of media, as well as those that could be applied to this specific
project. It was determined that spatial and frequency steganography were the most viable
techniques capable of enabling the required volume of data insertion necessary for the ap-
plication to be practically useful, as these methods enable the incorporation of a significant
amount of data into carriers with relatively small dimensions.

Upon the study completion, the subsequent course of action involved the creation of two
Github repositories dedicated to storing the project’s codebase for the Front and Back ends.
These repositories also serve the purpose of maintaining a version control system to track the
evolution of the project during its development phase.

11.1.1 Frontend Setup

The next phase involved the development of the basic Flutter framework. By default, Flutter
generates a sample application that serves as a integer counter, with a button that modifies
the counter each time it’s tapped.

Figure 11.1a illustrates the folder structure established by Flutter, which determines the
organization of the project files.

The most important components within this structure encompass:

• android: Folder containing the code for the Android application.

• build: Folder consisting of Flutter dynamics and the translation of Dart code to Kotlin
for Android and Swift for iOS.

• ios: Folder that contains the application code for iOS. Modifications to these files are
necessary only for specific configurations on this operating system, as Flutter does not

65

CHAPTER 11. IMPLEMENTATION 11.1. Sprint 1: Project Setup

offer native support.

• lib: Folder that serves as the central directory for the project, housing the entire file
structure used in its development.

• pubspec.yaml: This file serves as the backbone of the Flutter framework, as it allows
for comprehensive configuration of the application’s behavior. It eases the addition of
external media files and third-party packages employed during development.

Now, it’s time to create a Firebase instance and connect it with the app. To accomplish
this, a Firebase project needs to be created on the Firebase web service, specifying the required
components. In this particular case, the utilized Firebase components include Cloud Storage,
Cloud Firestore and Firebase Authentication. Following the completion of these configurations,
the following packagesmust be added to pubspec.yaml: firebase_core [37], firebase_auth [38],
cloud_storage [39], cloud_firestore [40].

(a) Android Studio file structure (b) Pycharm project structure

Figure 11.1: Project structure in the different IDEs

11.1.2 Backend Setup

After the completion of the frontend and Firebase configuration, the next step involves creat-
ing a PyCharm project for backend development. To accomplish this, a new project is created
with a hierarchical structure of folders.

Within this structure, a main file (main.py) is established to execute the API, while sub-
folders contain code executed by the available application services. The file structure can be
observed in Figure 11.1b.

Once this is done, it is necessary to access the main.py file to enable the server-side Fire-
base configuration. To achieve this, the Firebase project keys must be exported via its web

66

CHAPTER 11. IMPLEMENTATION 11.2. Sprint 2: Mockups, Firebase and Image steganography

service and securely stored in the server file system. By safeguarding these keys from ex-
traction or unauthorized modifications, real-time access to Firebase service data is facilitated.
Such access enables seamless file uploads and downloads for frontend and backend communi-
cation. Integrating the Firebase keys into the code merely requires the addition of a few lines
in the main.py file specifying their location within the file system.

11.2 Sprint 2: Mockups, Firebase and Image steganography

11.2.1 Mockups creation

In order to ensure the development of coherent and realistic mockups, it is essential to con-
sider the user requirements and proposed functionalities of the app. Thus, the functionalities
were categorized into four primary groups:

• The first group encompasses chat mockups, which visually represent the screens as-
sociated with the chat functionalities of the application.

• The second group consists of configuration mockups, responsible for visually repre-
senting the screens related to the application’s settings.

• The third group comprises encoding/decoding mockups, which visually depict the
screens related to the application’s steganographic functionalities.

• Lastly, the fourth group encompasses analysis mockups, which visually represent the
screens associated with the application’s steganographic analysis functionalities.

The mockups were developed using Balsamiq Wireframes(Figure 11.2).

Figure 11.2: Examples of wireframes created at the start of the project

67

CHAPTER 11. IMPLEMENTATION 11.2. Sprint 2: Mockups, Firebase and Image steganography

11.2.2 Firebase data relations

Once the initial mockups of the application’s visual design and core functionalities are created,
the next step involves designing the relationships between collections and documents within
Firebase Firestore for the project.

In Firebase, data is stored in collections, which are essentially lists of documents repre-
senting objects with distinct values for their attributes. For instance, the “users” collection
may consist of three documents identified by the IDs 1, 2, and 3, each containing attributes
such as “first name”, “last name”, and “phone”. In addition, documents can be intercon-
nected through references, that essentially act as foreign keys in relational databases. These
references establish connections to other documents or collections located elsewhere in the
database. As an illustration, a user document within the “users” collection might contain a
reference to a document in the “chats” collection, representing a chat created by that partic-
ular user.

Following these basic principles, an initial model for the database to be used in Steg’owas
designed. The graphical representation of this model can be found in page 42, showcasing
various collections such as “users”, “chat”, “request”, and “message”.

Steg’o users possess the ability to create chats, and upon creation, a reference to these
chats is added to their respective user document. Moreover, each chat haswithin it a collection
of “message” documents, which represent the different types of items exchanged between
users in a specific chat.

Another essential collection in this model is “request”, which contains chat requests
initiated by users. Once created (accepted by the recipient), these requests are referenced in
the documents of both the requester and the receiver users involved in the exchange.

11.2.3 Image steganography: first prototype

In this sprint, development of a basic prototype for steganographic operations in images in
the spatial domain was started. As explained in section 9.2, this approach involves replacing
RGB values in an image to encode data within it.

The initial iteration of the algorithm focused on testing the feasibility of performing these
modifications using the designated image manipulation libraries. As a result, the algorithm
operated at a basic level, and the execution speed of this initial iteration was significantly
poor compared to subsequent versions, with a performance lag of up to 50 times slower.
As the number of pixels in an image increases, the execution time grows exponentially when
iterating through each RGB component. Although the efficiency was not entirely unsatisfac-
tory, it fell short of desired expectations. Furthermore, this version does not incorporate a
seeding system, resulting in a sequential modification of the pixels.

68

CHAPTER 11. IMPLEMENTATION 11.3. Sprint 3-6: Frequency steganography, API and screens

11.3 Sprint 3-6: Frequency steganography, API and screens

11.3.1 Frequency domain image steganography

In the subsequent phases, the research and development labours concerning frequency do-
main steganographywere initiated. As explained in subsection 9.2.2, this particular technique
involves the manipulation of frequency domain values of image blocks, making the detection
and protection against potential attacks much harder, while also increasing the complexity of
its implementation.

The initial stage of this process encompassed an exploration of potential libraries or freely
available code capable of encoding and decoding JPEG images. This necessity arises from the
fact that altering the quantized matrices of an image needs intervention during the image
encoding process, thereby requiring low-level access to specific procedures executed during
the JPEG encoding.

During the first iteration, it was decided to utilize the implementation by Github user
fangwei123456 [41] for encoding JPEG images. This code was modified to acquire a more
profound and comprehensive understanding of the encoding process, enabling precise mod-
ifications at appropriate points to persist in the final image. Once the functionality of this
code was comprehended, steganographic encoding capabilities were incorporated within the
iterative loop responsible for processing the image in blocks and performing the DCT.

For the JPEG decoding process in this iteration, the code provided by Yasoob Khalid at [42]
was employed. By making some changes at specific locations, access to the decoding system
was obtained, allowing for data extraction as an archaic steganographic decoding process.

The code employed in these sprints was mainly utilized to understand the inner workings
of frequency domain steganography, and was not followed upon in later sprints. Instead, a
completely new implementation was used, involving the use of jpegio (subsection 4.3.8).

It also should be noted that the encoding and decoding methods employed in this sprint
for JPEG implementation are basic and lack customization. Ideally, an external JPEG encoder
optimized for this task would be preferable. In any way, modifications of this nature should
not be expected to yield comparable efficiency to that of a genuine JPEG encoder.

11.3.2 API development

Simultaneously, while working on frequency domain steganography, the development of an
API that will establish the connection between the frontend and backend components was ini-
tiated. Flask, a Python library specializing in creating and managing REST APIs, was utilized
for this purpose (for more info about Flask, refer to page 10).

To configure the endpoints, several functions were implemented, eachwith different input

69

CHAPTER 11. IMPLEMENTATION 11.3. Sprint 3-6: Frequency steganography, API and screens

parameters. These functions receive data from the mobile app and determine the appropriate
action to execute based on the context. For instance, if an HTTP request with the destination
“/obfuscate” is sent, the code responsible for encoding the data sent into another format
will be executed, and the corresponding codec will be initiated (for more info about codecs,
refer to page 41). The remaining parameters, such as the input data type or the data type to
encode, are obtained from the HTTP request body. Reader can look up Figure 8.2 for a visual
representation of this process.

After considering all possible scenarios for encoding and decoding, the definition of the
required endpoints are complete, making the API fully functional.

11.3.3 Screens creation

During the implementation of the front-end using the Flutter framework, a basic user reg-
istration and login screen were developed, incorporating email and name as authentication
mechanisms. This approach is supported by Firebase Auth, enabling direct integration with
the employed database. Such integration simplifies the login and logout processes, allows for
user status tracking, and providing access to other user-related data on the client side.

Once the initial screens were implemented, a main screen was designed to accommodate
various application functionalities. Users can navigate through this screen to the different
options by using a drop-down floating menu.

The first section to be implemented was the chat section, drawing inspiration from exist-
ing applications such asWhatsApp [43], Telegram [44], and Discord [45]. A list with the active
chats for the user was created, displaying user profile pictures, user names, the most re-
cent message sent, and the timestamp of the message. To enhance the user experience,
modifications were made to the chat list display. When a new message is received, a no-
tification bubble is generated alongside the corresponding chat, indicating the number of
unreadmessages. Additionally, the chat associated with a received message is automatically
displaced to the top of the list, helping the user to locate current conversations.

Following the successful implementation of chat listing functionality, development be-
gan on the individual chat screen. This screen presents messages sent between two users,
arranged in chronological order from most recent to least recent, emulating the behavior of
other popular chat applications. In this user interface, the message list functions as a pagi-
nated list, enabling the initial loading of a predetermined number of messages. As the user
scrolls up the list, additional messages are dynamically loaded, ensuring a seamless user ex-
perience without any disruptions such as stuttering, lag, or unnecessary updates.

Each message is treated as an independent entity, facilitating the implementation of
features like message selection. Messages can be enclosed within a colored area to enable
bulk operations such as copying or deletingmultiple messages simultaneously. The profile

70

CHAPTER 11. IMPLEMENTATION 11.3. Sprint 3-6: Frequency steganography, API and screens

picture and name of the other user involved in the chat are displayed at the top of the screen,
allowing for easy identification of the ongoing conversation. Additionally, a back arrow is
provided to enable users to navigate back to the list of chats.

Messages sent on different days are visually differentiated by the inclusion of date indica-
tors positioned between them. These indicators provide a clear reference to the chronological
order of the messages. Please refer to Figure 11.3a for an illustration of these features.

Other screens developed during these sprints include the encoding/decoding screen and
the analysis screen. In an initial iteration, a user interface featuring selectable buttons was
introduced to facilitate the selection between various media encoding and decoding options.
However, this approach was quickly discarded in favor of a more integrated solution, where
all encoding and decoding functionalities were consolidated into two distinct screens.

The encoding screen offers users the option to select between images/video and text using
a top-mounted slider. When images are selected, users can choose an image to embed within
another image or video. The encoding process also allows for the configuration of various
parameters, such as the number of bits to be inserted, their shift, the type of steganography
to be employed, or if the data will be encrypted, among others.

After selecting the necessary elements, users can proceed with the encoding process or
view an estimate of the data insertion capacity available for the selected values, represented
as a percentage.

Estimating the data insertion capacity for a given image is a relatively straightforward
process.

• In the context of spatial steganography, the method begins by first calculating the total
number of RGB components within the image. This count is then multiplied by the
user-specified number of bits designated for insertion.

Consequently, this computation yields the total number of bits available for insertion.
To convert this figure into bytes, a simple division by 8 is performed, providing the byte
capacity for embedding data within the image.

• However, in frequency domain steganography, the process becomes somewhatmore in-
tricate. Initial calculations involve dividing the image size by 8 to determine the number
of MCU required for JPEG compression.

Subsequently, a series of calculations follows, beginning with the multiplication of a
randomly selected value within the range defined by the minimum andmaximum num-
ber of elements designated for encoding within eachMCU.This value is then multiplied
by the number of bits allocated for insertion for each respective element. As in spatial
steganography, the result must be divided by 8 to show the encoding capacity in bytes.

71

CHAPTER 11. IMPLEMENTATION 11.4. Sprint 7: Screens changes and video steganography

Please refer to Figure 11.3b for visual representation of this screen. The text insertion
screen provides a simpler interface. Users have the option to select a text file from their device
or manually enter the text to be encoded into a text box. Once the text input is finalized, users
can customize encoding parameters and receive an estimate of the data insertion capacity
achievable with the chosen values.

Regarding the image analysis screen, a basic implementation was created, enabling users
to select two images from their device for pixel-value comparison. Further exploration and
enhancement of this functionality were planned for subsequent development sprints.

11.4 Sprint 7: Screens changes and video steganography

11.4.1 Screens changes

During this sprint, a loading screen was implemented for Steg’o in order to establish a seam-
less transition between the offline and online functionalities of the application. This loading
screen serves as visual feedback during encoding, decoding, and data analysis processes. It in-
corporates an animated logo, providing users with reassurance that the application is actively
performing an online operation that may require some time.

Another notable modification was made to the analysis screen. Previously, the visual
appearance of this screen was not well-defined as its implementation was still under consid-
eration. In this sprint, a heatmap-style representation was selected, presenting image modi-
fications through a range of colors. For reference, see Figure 11.3f.

When an image is subjected to analysis, it is divided into two layers: the original image
layer and the modification layer. The modification layer consists of pixels with predefined
values corresponding to specific ranges of pixel modifications. For instance, if a pixel value
varies (with respect to the original value) within the range of 1 to 8 bits (where each pixel
is represented as a 24-bit value with 8 bits allocated to each component), it will be depicted
as green within the heatmap layer. Likewise, if the modifications fall within the range of 9
to 16 bits, the color representation will be orange. Conversely, modifications falling within
the range of 17 to 24 bits will be depicted as red.

By default, pixels that have not undergone any modifications are represented as trans-
parent. This visual representation enables users to easily discern and comprehend the extent
of modifications applied to an image by comparing it with an unaltered reference image. By
examining the positions of these modified pixels and other distinctive characteristics, expe-
rienced users can determine whether the image has been subjected to steganography or,
alternatively, a form of recompression.

In addition to this feature, the sprint introduced the capability to customize the range of
modified bits. For example, users can adjust the range associated with the green color repre-

72

CHAPTER 11. IMPLEMENTATION 11.5. Sprint 8-10: Notifications, numpy and HEVC

sentation from 1 to 8modified bits to 1 to 4modified bits using a slider located at the bottom
of the image. Furthermore, users now have the option to customize the colors representing
each range, providing enhanced flexibility for personalization and improved visualization.
For instance, the user can choose to assign blue as the color representation for modifications
falling within the range of 17 to 24 bits, rather than the default red.

These enhancements significantly increases the analysis capabilities of the application
and facilitate the identification of patterns or other distinct characteristics associated with
steganographic algorithms.

11.4.2 Lossless video steganography

Following the development of these new screens, research began on steganographic algo-
rithms in video formats. Initially, this functionality was considered optional, as its feasibility
within the given timeframe was uncertain during the planning phase. The divergence in the
analysis arose due to the intricate nature of estimating such task without the beginning of its
development.

Upon completion of the investigation into video steganographic algorithms, a decision
was made to practically implement a basic algorithm for embedding data into videos utilizing
spatial domain steganography. To accomplish this, it was imperative to export the video in a
lossless format. Consequently, the FFV1 codec with AVI format was chosen for this purpose.
By introducing several modifications to the code used for spatial steganography in images, an
algorithm capable of modifying specific pixels within particular frames of a video to embed
data was successfully implemented.

In this initial iteration, the seeds employed to randomize the positioning of frames and
pixels were consistently encoded in a sequential manner within the first frame of the video.
Although thismay not be the optimal approach, it proved sufficiently effective for basic testing
and performance evaluation.

Once the encoding process was completed, the subsequent step involved implementing
the decoding algorithm. This algorithm extracted the seeds, subsequently utilized to locate the
embedded data within the video frames and pixels. To extract the data, a properly modified
version of the image spatial steganography algorithm was employed.

11.5 Sprint 8-10: Notifications, numpy and HEVC

11.5.1 Pushup notifications

The initial objective of this sprint involved configuring push notifications to enable the trans-
mission of notifications to Steg’o users. This functionality allows users to receive notifications

73

CHAPTER 11. IMPLEMENTATION 11.5. Sprint 8-10: Notifications, numpy and HEVC

upon completion of specific operations or when they receive messages/requests from other
users. To achieve this, the Firebase Spark plan was activated, enabling remote operations
through the utilization of Firebase Functions triggered by specific events within the managed
applications. These operations encompass a range of actions such as sending notifications,
executing customized code to modify the database, or performing more intricate tasks. For
the purpose of this project, the focus was on implementing push notifications.

The first step involved configuring push notifications within the Firebase web interface.
Then, a basic code snippet was developed and implemented to test the functionality. This
code is executed whenever there is a change in a “chat” document, and subsequently sends
a notification to the intended receiver/s if they are disconnected from the application. Two
distinct use cases were considered for this functionality:

• Firstly, when the application is in the foreground, notifications should only be dis-
played if the user is not actively using the chat screen.

• Secondly, when the application is in the background, notifications should always be
received by the user.

However, an implementation challenge arises in the second scenario. In the tested version
of Firebase, incorporating the functionality of receiving push notifications while the applica-
tion is in the background results in the creation of a duplicate instance of the application.
This issue leads to significant memory consumption and causes performance issues, such as
slow response times and lag across various screens within Steg’o. To mitigate these problems,
the utilization of background push notifications has been temporarily disabled until Google
resolves the bug responsible for the creation of duplicate application instances.

11.5.2 Numpy and algorithm optimization

After implementing push notifications, the next step involves enhancing the efficiency of
the steganographic algorithms employed in the backend. To achieve this objective, a complete
evaluation of the algorithms was conducted, resulting in substantial code revisions for both
spatial and frequency steganography.

The updated code now employs libraries such as numpy, facilitating batch operations on
arrays with a large amount of elements. This modification yields efficiency improvements
ranging from a tenfold to fiftyfold decrease in runtime, depending on the specific image.

The benefits of these modifications are particularly pronounced for large images, as cer-
tain operations exhibit constant execution time regardless of array size. However, without
the utilization of numpy, the computational speed experiences a significant slowdown when
dealing with larger arrays.

74

CHAPTER 11. IMPLEMENTATION 11.5. Sprint 8-10: Notifications, numpy and HEVC

During this evaluation, techniques like bulk masking were also employed to quickly
apply a mask to all elements of a numpy array.

Therefore, bit substitution operations, previously executed individually by converting
numbers into binary representation, eliminating specific bits, and performing subsequent sub-
stitutions, have now been condensed into a few basic AND-OR operations. This facilitates
the instantaneous removal and replacement of bits across all array elements.

Figure 11.4: Before and after performance in spatial steganography

The discernible discrepancy in execution time between the two algorithm versions is vi-
sually depicted in graph 11.4, which presents the mean pixels/second processed from five
carefully selected images.

In the case of frequency domain steganography, the complexity of the problem becomes
more evident. In addition to employing the numpy library for enhanced execution efficiency,
it was noticed that the main challenge was lying not in the steganographic operations them-
selves, but rather in the JPEG encoding process. Consequently, alternative approaches had to
be explored, since the extensive execution times rendered steganographic operations on large
images virtually impractical. During the course of this research, a Python library called jpegio
[46] was located, which specializes in the manipulation of internal values within JPEG files.
Initially, this library was overlooked due to limited documentation and relative obscurity.

To evaluate its runtime improvements and customization capabilities, tests were con-
ducted using this library. The results concluded that it represents a significant enhance-
ment over the previous solution (subsection 11.2.3). Following numerous tests and experi-
ments, an initial version of frequency domain steganography for images utilizing jpegio was
implemented. This version employs jpegio to read and export the array of quantized values
from the image file to a numpy array, thereby facilitating convenient manipulation. Subse-
quently, the array is divided into 8x8 blocks to enhance visualization and aid in debugging.
While this division process may marginally slow down the overall procedure, its adoption
was justified by the numerous benefits it offered to developers.

75

CHAPTER 11. IMPLEMENTATION 11.6. Sprint 10-12: Code refactoring and history

Once the division is completed, the quantized values are modified by using vectorial
numpy operations. Afterwards, these matrices are reassembled and exported as a new im-
age. Comparatively, this process exhibits significantly improved speed when compared to
the previous version. In the various tests conducted, the speed increase was estimated to be
approximately 25,000%, which is a massive improvement.

This sprint’s outcome is a completely new codebase, greatly enhanced in comparison to
its previous iteration. The final result bears no resemblance to the initial implementation
illustrated in page 69.

11.5.3 HEVC video steganography

Finally, an algorithmwas created to perform steganographic operations on lossy videos, using
the H265 codec. The rationale behind this decision, as illustrated in section 9.3, stems from
the limitations of resulting video sizes for steganography in lossless videos. Consequently,
the algorithm focuses on modifying the luminance and chrominance values of the intra
frames of a video to embed data within specific pixels. The development of these operations
drew inspiration from the research conducted by Dr. Galiano and his colleagues [36], where
similar techniques were applied to HEVC videos by altering the chrominance values within
4x4 pixel matrices.

One of the targets behind the development of this algorithm was driven by the interest
surrounding its efficacy in the context of data loss. As the algorithm is implemented on a
lossy video codec, a certain amount of data is inevitably lost during the encoding process.
The student was particularly interested in determining the compression and encoding pa-
rameters that had the greatest impact on observed data losses. To address this, an extensive
investigation was undertaken, and the outcomes of which were detailed in section 10.1.

11.6 Sprint 10-12: Code refactoring and history

11.6.1 Code refactoring

This sprint began with a complete refactoring embracing both frontend and backend code-
bases, aimed at enhancing maintainability and code readability.

In Steg’o frontend, the decision was made to implement a state management solution
utilizing the Provider package. This particular solution empowers developers with the abil-
ity to effectively compartmentalize logic and interface components by employing observers,
which, in turn, signal application screens to refresh as necessary, facilitating the presentation
of updated data. For an in-depth exploration of the Provider pattern, refer to subsection 8.1.2.

76

CHAPTER 11. IMPLEMENTATION 11.6. Sprint 10-12: Code refactoring and history

On the backend, the work was partitioned into distinct classes, which were named as
“codecs”. This technique not only allows for a finer-grained approach to task allocation but
also encourages the sharing of common functionalities across various components. Moreover,
it represents an optimal approach when employed in an API supporting concurrent users, as
each objectmaintains its ownmemory space, mitigating data conflictswith other operations.

11.6.2 Encoding/decoding history

Thenext task was creating a new screen within Steg’o, designed to facilitate user access to en-
coding and decoding operations performed lately. This screen serves the purpose of presenting
users with detailed information regarding these operations, including configuration parame-
ters and data type employed in the encoding process. Furthermore, users can download the
encoded/decoded data to their personal devices and even delete it from the database.

To facilitate these functionalities, two distinct collections, namely “enc_history” and
“dec_history”, were created within Firebase Storage. These collections are intended to en-
capsulate the encoding and decoding activities conducted by individual users. Within these
collections reside documents containing essential data, including encoding/decoding set-
tings, the file path for the data subject to encoding, and the resulting output of the encod-
ing/decoding process.

When an encoding/decoding operation is initiated, an HTTP request is transmitted to the
backend API. This requests holds the configuration parameters and the data path marked for
processing. Next, the API undertakes a validation procedure to ensure the integrity of the
configuration and proceeds to retrieve the data, which is then stored as a variable within the
Obfuscator/Deobfuscator object. Following this, the data undergoes processing. In the event
of a successful processing operation, the resultant data is uploaded to Firebase Storage, and
the associated history document in Firestore is updated to include the path leading to the
processed data. Upon confirmation that the operation has ended adequately, a notification is
dispatched to the user through Firebase Push Notification system.

77

CHAPTER 11. IMPLEMENTATION 11.6. Sprint 10-12: Code refactoring and history

(a) Chat screen (b) Encoding screen (c) Steganography config

(d) Decoding history screen (e) Login screen (f) Heatmap image analysis

Figure 11.3: Steg’o screenshots

78

Chapter 12

Conclusións

Upon the project finalization, a complete analysis can be conducted to evaluate the achieved
objectives and identify potential paths for future enhancements. The key conclusions

can be summarized as follows:

• The inception of this project stemmed from a personal initiative driven by a profound
interest in the practical application of steganography in everyday scenarios. Conse-
quently, a mobile app was developed to empower users to unleash their creativity and
resourcefulness through the utilization of this practice.

• The project successfully accomplished its initially established objectives, resulting in
the creation of a fully functional mobile application capable of executing scripts to
perform steganographic processes on diverse file formats.

• Steg’o, as the resultant product, demonstrates impressive capabilities by combining a
lot of features found in existing market solutions. This blend of characteristics makes
Steg’o an adaptable and remarkably efficient application.

• We seamlessly integrated a comprehensive array of steganographic functionalities into
an intuitive user-oriented interface. This interface facilitates message transmission
and reception, image analysis, and various customization options, all presented
within a contemporary and visually appealing design that adheres to the latest User
Experience (UX) and User Interface (UI) standards.

• The study of the Information Technologies (IT) branch played a pivotal role in the
project’s development, enabling a comprehensive grasp of the fundamental aspects un-
derlying steganographic processes.

79

CHAPTER 12. CONCLUSIÓNS 12.1. Future development

12.1 Future development

In this section, we propose several future enhancements for Steg’o:

• Internationalization: Incorporating internationalization efforts into the development
process of the application, enabling its accessibility to a broader user base. This involves
the addition of alternative language options in menus and textual content, facilitating
user comprehension.

• Expanded steganography capabilities: Enhancing Steg’osteganography function-
ality by introducing support for embedding data into more file formats. For instance,
enabling the insertion of data into PDF documents or the insertion of RAR or ZIP
compressed files within images.

• Group chat functionality: Introducing a group chat system to facilitate efficient file
sharing among multiple participants. Currently, Steg’o only supports individual chats,
and the inclusion of group chats would facilitate collaborative interactions.

• Enhanced customization options: Providing users with greater flexibility to per-
sonalize the UI elements of the application. This could include options to customize
wallpapers, primary color schemes, or other visual aspects according to individual pref-
erences.

80

Appendices

81

(a) Analysis wireframes

(b) Encoding wireframes

Figure 1: Steg’o mockups

82

(a) Login wireframes

(b) Chat wireframes

Figure 2: Steg’o mockups

83

(a) Configuration wireframes

Figure 3: Steg’o mockups

84

chats (c o l l e c t i o n)
$chatID (document)

members (array) : [
users /hENA5o6EagOFrmzabqBjFjaFyGM2 (re fe rence)
users /LrRAeq5L0Leq4dIzGXPFBYNlGR42 (re fe rence)

]
messages (c o l l e c t i o n)

$messageID (document)
message (s t r ing) : ”hola ”
sendBy (re fe rence) : users /hENA5o6EagOFrmzabqBjFjaFyGM2
time (timestamp) : 10 de marzo de 2023 , 00:21:13 UTC+1
type (s t r ing) : ” text ”

users (c o l l e c t i o n)
$userID (document)

email (s t r ing) : ”user@email . com”
name (s t r ing) : ” user0 ”
prof i lePhoto (s t r ing) : ” https :// f i r ebase s to rage /image”
status (s t r ing) : ” Unavaliable ”
userToken (s t r ing) : ”covwblCISDWTsIaoHBfkk8 . . . ”
chats (c o l l e c t i o n)

$chatID (document)
chatRef (re f e rence) : chats /03002e00 - bea8 -11 ed
unreadMessages (number) : 0

requests (c o l l e c t i o n)
$requestID (document)

requestRef (re f e rence) : requests /YHImN9D2c5ncUluoXbZ6
isAct ive (boolean) : true

enc_history (c o l l e c t i o n)
$encodingID (document)

images_url (array) : [”path1” , ”path2”]
parameters (map) : { b i t s : 2 , mode : PNG}
r e s u l t (s t r ing) : ” result_path”
time (timestamp) : 10 de marzo de 2023 , 00:21:13 UTC+1

dec_history (c o l l e c t i o n)
$decodingID (document)

decoded_data_type (s t r ing) : image
images_url (array) : [”path1” , ”path2”]
parameters (map) : { is_video : f a l s e }
r e s u l t (s t r ing) : ” result_path”
time (timestamp) : 10 de marzo de 2023 , 00:22:15 UTC+1

requests (c o l l e c t i o n)
$requestID (document)

sentByRef (re f e rence) : users /LrRAeq5L0Leq4dIzGXPFBYNlGR42
sentToRef (re f e rence) : users /hENA5o6EagOFrmzabqBjFjaFyGM2
state (s t r ing) : ”pending”
time (timestamp) : 9 de marzo de 2023 , 11:12:13 UTC+1

Listing 1: Example of structure and contents of collections and documents in Steg’o database

85

List of Acronyms

API Application Programming Interface. iii, 2, 9, 10, 22, 24, 37–40, 66, 69, 70, 77

CLI Command Line Interface. 14

CRF Constant Rate Factor. 60, 61, 63

DCT Discrete Cosine Transform. v, 51, 52, 55, 69

DPCM Differential Pulse-Code Modulation. 53

GOP Group of Pictures. 57, 59, 61–63

HEVC High Efficient Video Coding. iii, v, vii, 1, 24, 56, 60–64, 76

HTTP Hypertext Transfer Protocol. 39, 41, 70, 77

IDE Integrated Development Enviroment. vi, 12, 21, 66

IT Information Technologies. 79

JPEG Joint Photographic Experts Group. 1, 21–23, 48, 51, 53, 57, 69, 71, 75

JSON JavaScript Object Notation. 41

LSB Least Significant Bit. 1, 7, 49, 56

MCU Minimum Coding Unit. 52–54, 71

ML Machine Learning. 9

PNG Portable Network Graphics. 49

86

List of Acronyms List of Acronyms

QP Quantization Parameter. 60, 61, 63

REST REpresentational State Transfer. iii, 39, 40, 69

RGB Red Green Blue. v, 1, 47, 49–51, 56, 57, 59, 68, 71

RLE Run Length Encoding. 53

UI User Interface. 11, 43, 44, 79, 80

UML Unified Modeling Language. 42

UX User Experience. 8, 79

WIP Work in Progress. 17

87

Bibliography

[1] “Client-server model.” [Online]. Available: https://commons.wikimedia.org/wiki/File:
Client-server_model.svg

[2] Google, “The histories of herodotus wikipedia page.”

[3] E. Cole, Hiding in plain sight. Wiley Hoboken, 2002.

[4] G. Project, “Pixelknot app store page.” [Online]. Available: https://play.google.com/
store/apps/details?id=info.guardianproject.pixelknot&hl=es&gl=US&pli=1

[5] 9iNe, “Noclue app store page.” [Online]. Available: https://play.google.com/store/apps/
details?id=hamza.app.steganography&hl=en_US

[6] T. Medley, “Stegdroid apk page.” [Online]. Available: https://apkpure.com/
stegdroid-alpha/uk.ac.cam.tfmw2.stegdroid

[7] D. Trnka, “Steganography master apk page.” [Online]. Available: https://m.apkpure.
com/es/steganography-master/com.dinaga.photosecret

[8] A. Boyd, “Pictograph apple store page.” [Online]. Available: https://apps.apple.com/us/
app/pictograph-steganography/id1051879856

[9] P. S. Foundation, “Python web page.” [Online]. Available: https://www.python.org/

[10] Flask, “Flask project page.” [Online]. Available: https://flask.palletsprojects.com/en/2.3.
x/

[11] Google, “Firestore docs web page.” [Online]. Available: https://firebase.google.com/
docs/firestore?hl=es-419

[12] Mozilla, “Javascript mozilla dev web page.” [Online]. Available: https://developer.
mozilla.org/es/docs/Web/JavaScript

[13] Flutter, “Flutter dev web page.” [Online]. Available: https://flutter.dev/

88

https://commons.wikimedia.org/wiki/File:Client-server_model.svg
https://commons.wikimedia.org/wiki/File:Client-server_model.svg
https://play.google.com/store/apps/details?id=info.guardianproject.pixelknot&hl=es&gl=US&pli=1
https://play.google.com/store/apps/details?id=info.guardianproject.pixelknot&hl=es&gl=US&pli=1
https://play.google.com/store/apps/details?id=hamza.app.steganography&hl=en_US
https://play.google.com/store/apps/details?id=hamza.app.steganography&hl=en_US
https://apkpure.com/stegdroid-alpha/uk.ac.cam.tfmw2.stegdroid
https://apkpure.com/stegdroid-alpha/uk.ac.cam.tfmw2.stegdroid
https://m.apkpure.com/es/steganography-master/com.dinaga.photosecret
https://m.apkpure.com/es/steganography-master/com.dinaga.photosecret
https://apps.apple.com/us/app/pictograph-steganography/id1051879856
https://apps.apple.com/us/app/pictograph-steganography/id1051879856
https://www.python.org/
https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/
https://firebase.google.com/docs/firestore?hl=es-419
https://firebase.google.com/docs/firestore?hl=es-419
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://flutter.dev/

BIBLIOGRAPHY Bibliography

[14] Dart, “Dart web page.” [Online]. Available: https://dart.dev/

[15] Google, “Android studio web page.” [Online]. Available: https://www.educative.io/
answers/how-huffmans-algorithm-works

[16] Jetbrains, “Jetbrains pycharm web page.” [Online]. Available: https://www.jetbrains.
com/es-es/pycharm/

[17] Overleaf, “Overleaf web page.” [Online]. Available: https://es.overleaf.com

[18] L. Balsamiq Studios, “Balsamiq wireframes web page.” [Online]. Available: https:
//balsamiq.com/wireframes/

[19] Git, “Git web page.” [Online]. Available: https://git-scm.com/

[20] Google, “Material design web page.” [Online]. Available: https://m3.material.io/

[21] M. Rehkopf, “Kanbanize web page.” [Online]. Available: https://github.com/dwgoon/

[22] M. L. Despa, “Comparative study on software development methodologies,” Database

Systems Journal, vol. 5, no. 3, pp. 37–56, 2014.

[23] M. Awad, “A comparison between agile and traditional software development method-
ologies,” University of Western Australia, vol. 30, pp. 1–69, 2005.

[24] M. Fowler, “The new methodology.” [Online]. Available: https://www.martinfowler.
com/articles/newMethodology.html

[25] M. Rehkopf, “Kanbanize web page.” [Online]. Available: https://kanbanize.com/
kanban-resources/getting-started/what-is-kanban

[26] ——, “Kanban vs scrum,” last accessed September 11, 2023. [Online]. Available:
https://www.atlassian.com/agile/kanban/kanban-vs-scrum

[27] ——, “Kanbanize web page.” [Online]. Available: https://www.glassdoor.es/Sueldos/
project-manager-sueldo-SRCH_KO0,15.htm

[28] ——, “Kanbanize web page.” [Online]. Available: https://www.glassdoor.es/Sueldos/
junior-scrum-master-sueldo-SRCH_KO0,19.htm#:~:text=En%20Espa%C3%B1a%2C%
20el%20sueldo%20medio,master%20es%20de%20%E2%82%AC24.828%20.

[29] ——, “Kanbanize web page.” [Online]. Available: https://www.glassdoor.es/Sueldos/
desarrollador-full-stack-junior-sueldo-SRCH_KO0,31.htm#:~:text=El%20sueldo%
20medio%20para%20el,450%20%E2%82%AC%20y%202507%20%E2%82%AC.

89

https://dart.dev/
https://www.educative.io/answers/how-huffmans-algorithm-works
https://www.educative.io/answers/how-huffmans-algorithm-works
https://www.jetbrains.com/es-es/pycharm/
https://www.jetbrains.com/es-es/pycharm/
https://es.overleaf.com
https://balsamiq.com/wireframes/
https://balsamiq.com/wireframes/
https://git-scm.com/
https://m3.material.io/
https://github.com/dwgoon/
https://www.martinfowler.com/articles/newMethodology.html
https://www.martinfowler.com/articles/newMethodology.html
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.glassdoor.es/Sueldos/project-manager-sueldo-SRCH_KO0,15.htm
https://www.glassdoor.es/Sueldos/project-manager-sueldo-SRCH_KO0,15.htm
https://www.glassdoor.es/Sueldos/junior-scrum-master-sueldo-SRCH_KO0,19.htm#:~:text=En%20Espa%C3%B1a%2C%20el%20sueldo%20medio,master%20es%20de%20%E2%82%AC24.828%20.
https://www.glassdoor.es/Sueldos/junior-scrum-master-sueldo-SRCH_KO0,19.htm#:~:text=En%20Espa%C3%B1a%2C%20el%20sueldo%20medio,master%20es%20de%20%E2%82%AC24.828%20.
https://www.glassdoor.es/Sueldos/junior-scrum-master-sueldo-SRCH_KO0,19.htm#:~:text=En%20Espa%C3%B1a%2C%20el%20sueldo%20medio,master%20es%20de%20%E2%82%AC24.828%20.
https://www.glassdoor.es/Sueldos/desarrollador-full-stack-junior-sueldo-SRCH_KO0,31.htm#:~:text=El%20sueldo%20medio%20para%20el,450%20%E2%82%AC%20y%202507%20%E2%82%AC.
https://www.glassdoor.es/Sueldos/desarrollador-full-stack-junior-sueldo-SRCH_KO0,31.htm#:~:text=El%20sueldo%20medio%20para%20el,450%20%E2%82%AC%20y%202507%20%E2%82%AC.
https://www.glassdoor.es/Sueldos/desarrollador-full-stack-junior-sueldo-SRCH_KO0,31.htm#:~:text=El%20sueldo%20medio%20para%20el,450%20%E2%82%AC%20y%202507%20%E2%82%AC.

BIBLIOGRAPHY Bibliography

[30] ——, “Kanbanize web page.” [Online]. Available: https://pub.dev/packages/provider

[31] Amazon, “Nosql databases.” [Online]. Available: https://aws.amazon.com/nosql/

[32] Google, “Material design web page.” [Online]. Available: https://m3.material.io/

[33] “Skygge twitter page.” [Online]. Available: https://twitter.com/JustSkygge?t=
Dafc6NaQGsXUj1kGibiJjw&s=08

[34] “Numpy web page.” [Online]. Available: https://numpy.org/

[35] U. of Indiana, “Huffman coding explanation.” [Online]. Available: https://cgi.luddy.
indiana.edu/~yye/c343-2019/huffman.php

[36] D. R. Galiano, A. A. Del Barrio, G. Botella, and D. Cuesta, “Efficient embedding and
retrieval of information for high-resolution videos coded with hevc,” Computers & Elec-

trical Engineering, vol. 81, p. 106541, 2020.

[37] Google, “Firebase core package.” [Online]. Available: https://pub.dev/packages/firebase_
core

[38] ——, “Firebase auth package.” [Online]. Available: https://pub.dev/packages/firebase_
auth

[39] ——, “Firebase storage package.” [Online]. Available: https://pub.dev/packages/firebase_
storage

[40] ——, “Firebase firestore package.” [Online]. Available: https://pub.dev/packages/cloud_
firestore

[41] fangwei123456, “Python jpeg encoder.” [Online]. Available: https://github.com/
fangwei123456/python-jpeg-encoder

[42] Y. Khalidd, “Understanding and writing a jpeg decoder using python.” [Online]. Avail-
able: https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-python/

[43] Meta, “Whatsapp web page.” [Online]. Available: https://www.whatsapp.com/?lang=
es_LA

[44] Telegram, “Telegram web page.” [Online]. Available: https://weba.telegram.org/

[45] D. Inc., “Discord web page.” [Online]. Available: https://discord.com/

[46] dwgoon, “Jpegio github page.” [Online]. Available: https://github.com/dwgoon/jpegio

90

https://pub.dev/packages/provider
https://aws.amazon.com/nosql/
https://m3.material.io/
https://twitter.com/JustSkygge?t=Dafc6NaQGsXUj1kGibiJjw&s=08
https://twitter.com/JustSkygge?t=Dafc6NaQGsXUj1kGibiJjw&s=08
https://numpy.org/
https://cgi.luddy.indiana.edu/~yye/c343-2019/huffman.php
https://cgi.luddy.indiana.edu/~yye/c343-2019/huffman.php
https://pub.dev/packages/firebase_core
https://pub.dev/packages/firebase_core
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_auth
https://pub.dev/packages/firebase_storage
https://pub.dev/packages/firebase_storage
https://pub.dev/packages/cloud_firestore
https://pub.dev/packages/cloud_firestore
https://github.com/fangwei123456/python-jpeg-encoder
https://github.com/fangwei123456/python-jpeg-encoder
https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-python/
https://www.whatsapp.com/?lang=es_LA
https://www.whatsapp.com/?lang=es_LA
https://weba.telegram.org/
https://discord.com/
https://github.com/dwgoon/jpegio

	Introduction
	Motivation
	Objectives
	Memory structure

	Steganography: algorithms & solutions
	Basic steganography overview

	Exploring other market options
	Main alternatives
	PixelKnot
	NoClue
	StegDroid
	Steganography Master
	Pictograph

	Conclusion

	Development tools
	Server side
	Python
	Flask
	Firebase
	Javascript

	Client side
	Flutter

	Development Tools
	Android Studio
	PyCharm
	Overleaf
	Balsamiq
	Git
	GitHub
	ffmpeg
	Jpegio

	Methodology and development
	Development methodologies
	Scrum
	Kanban
	Scrum vs Kanban: Differences
	Methodology decision
	Application of Scrum to the project

	Strategic Planning and Requirements Analysis
	Planning overview
	Sprint 1 (02/01/2023 - 20/01/2023)
	Sprint 2 (23/01/2023 - 10/02/2023)
	Sprint 3 (13/02/2023 - 24/02/2023)
	Sprint 4 (27/02/2023 - 17/03/2023)
	Sprint 5 (20/03/2023 - 07/04/2023)
	Sprint 6 (10/04/2023 - 21/04/2023)
	Sprint 7 (24/04/2023 - 05/05/2023)
	Sprint 8 (08/05/2023 - 26/05/2023)
	Sprint 9 (29/05/2023 - 09/06/2023)
	Sprint 10 (12/06/2023 - 30/06/2023)
	Sprint 11 (03/07/2023 - 21/07/2023)
	Sprint 12 (24/07/2023 - 18/08/2023)

	Project Costs
	Human Costs
	Technical Costs
	Indirect costs
	Total costs
	Project summary

	Analysis
	System actors identification
	Requirements analysis
	Functional requirements

	Use cases
	Non-functional requirements

	Diagrams

	System design and general structure
	Arquitecture
	System global arquitecture
	Frontend design pattern
	api rest

	Database
	Realtime Database
	Cloud Firestore

	User Interface Design
	Mockups and Wireframes
	App general design

	Brand image
	App name
	App design

	Steganography methods
	Steg'o seeding methods
	Image steganography
	Spatial domain steganography
	Frequency domain steganography

	Video steganography
	Lossless steganography
	Steganography in compressed lossy formats

	Tests
	hevc encoding parameters testing

	Implementation
	Sprint 1: Project Setup
	Frontend Setup
	Backend Setup

	Sprint 2: Mockups, Firebase and Image steganography
	Mockups creation
	Firebase data relations
	Image steganography: first prototype

	Sprint 3-6: Frequency steganography, API and screens
	Frequency domain image steganography
	API development
	Screens creation

	Sprint 7: Screens changes and video steganography
	Screens changes
	Lossless video steganography

	Sprint 8-10: Notifications, numpy and HEVC
	Pushup notifications
	Numpy and algorithm optimization
	HEVC video steganography

	Sprint 10-12: Code refactoring and history
	Code refactoring
	Encoding/decoding history

	Conclusións
	Future development

	List of Acronyms
	Bibliography

