79 research outputs found

    Quantum Multiplexers, Parrondo Games, and Proper Quantization

    Get PDF
    A quantum logic gate of particular interest to both electrical engineers and game theorists is the quantum multiplexer. This shared interest is due to the facts that an arbitrary quantum logic gate may be expressed, up to arbitrary accuracy, via a circuit consisting entirely of variations of the quantum multiplexer, and that certain one player games, the history dependent Parrondo games, can be quantized as games via a particular variation of the quantum multiplexer. However, to date all such quantizations have lacked a certain fundamental game theoretic property. The main result in this dissertation is the development of quantizations of history dependent quantum Parrondo games that satisfy this fundamental game theoretic property. Our approach also yields fresh insight as to what should be considered as the proper quantum analogue of a classical Markov process and gives the first game theoretic measures of multiplexer behavior.Comment: Doctoral dissertation, Portland State University, 138 pages, 22 figure

    A structure-preserving one-sided Jacobi method for computing the SVD of a quaternion matrix

    Get PDF
    Abstract(#br)In this paper, we propose a structure-preserving one-sided cyclic Jacobi method for computing the singular value decomposition of a quaternion matrix. In our method, the columns of the quaternion matrix are orthogonalized in pairs by using a sequence of orthogonal JRS-symplectic Jacobi matrices to its real counterpart. We establish the quadratic convergence of our method specially. We also give some numerical examples to illustrate the effectiveness of the proposed method

    The full integration of black hole solutions to symmetric supergravity theories

    Get PDF
    We prove that all stationary and spherical symmetric black hole solutions to theories with symmetric target spaces are integrable and we provide an explicit integration method. This exact integration is based on the description of black hole solutions as geodesic curves on the moduli space of the theory when reduced over the time-like direction. These geodesic equations of motion can be rewritten as a specific Lax pair equation for which mathematicians have provided the integration algorithms when the initial conditions are described by a diagonalizable Lax matrix. On the other hand, solutions described by nilpotent Lax matrices, which originate from extremal regular (small) D = 4 black holes can be obtained as suitable limits of solutions obtained in the diagonalizable case, as we show on the generating geodesic (i.e. most general geodesic modulo global symmetries of the D = 3 model) corresponding to regular (and small) D = 4 black holes. As a byproduct of our analysis we give the explicit form of the Wick rotation connecting the orbits of BPS and non-BPS solutions in maximally supersymmetric supergravity and its STU truncation.Comment: 27 pages, typos corrected, references added, 1 figure added, Discussion on black holes and the generating geodesic significantly extended. Statement about the relation between the D=3 geodesics from BPS and non-BPS extreme black holes made explicit by defining the Wick rotation mapping the corresponding orbit
    • …
    corecore