
Applied Numerical Mathematics 147 (2020) 101–117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

A structure-preserving one-sided Jacobi method for computing

the SVD of a quaternion matrix

Ru-Ru Ma a,1, Zheng-Jian Bai b,∗,2

a School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
b School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling & High Performance Scientific Computing,
Xiamen University, Xiamen 361005, People’s Republic of China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2019
Received in revised form 29 May 2019
Accepted 19 August 2019
Available online 27 August 2019

Keywords:
Quaternion matrix
Singular value decomposition
One-sided cyclic Jacobi method

In this paper, we propose a structure-preserving one-sided cyclic Jacobi method for
computing the singular value decomposition of a quaternion matrix. In our method,
the columns of the quaternion matrix are orthogonalized in pairs by using a sequence
of orthogonal JRS-symplectic Jacobi matrices to its real counterpart. We establish the
quadratic convergence of our method specially. We also give some numerical examples
to illustrate the effectiveness of the proposed method.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The concept of quaternions was originally introduced by Hamilton [9,10]. Quaternions and quaternion matrices arise in
various applications in applied science such as quaternionic quantum mechanics [1,3,6], color image processing [12,15,16,
21,28,36], and field theory [23], etc. The quaternion matrix singular value decomposition (QSVD) was studied theoretically
in 1997 by Zhang [38]. Recently, the QSVD has been an important tool in many applications such as color image processing
[7,26], signal processing [20,37], and electroencephalography [5], etc. In particular, in [5], a QSVD analysis was used to sleep
analysis, which involved quaternion operations. In [7], a color-image-denoising algorithm was proposed by using QSVD
where only complex operations were involved. In [26], a QSVD-based blind watermarking with quaternion operations was
applied to color images. In [37], a convex optimization based QSVD method was proposed for fault diagnosis of rolling
bearing.

Various numerical methods have been proposed for computing the QSVD. In [19,20,28], some algorithms were provided
to calculate the singular value decomposition (SVD) of a quaternion matrix via utilizing its equivalent complex matrix.
In [31], Sangwine and Le Bihan proposed a method for computing the QSVD based on bidiagonalization via quaternionic
Householder transformations. In [22], Le Bihan and Sangwine gave an implicit Jacobi algorithm for computing the QSVD
where the quaternion arithmetic was employed instead of a complex equivalent representation. In [4], Doukhnitch and Ozen
presented a coordinate rotation digital computer algorithm for computing the QSVD. In [13], Jia et al. gave a Lanczos-based
method for calculating some dominant SVD triplets of a large-scale quaternion matrix.

* Corresponding author.
E-mail addresses: maruru7271@126.com (R.-R. Ma), zjbai@xmu.edu.cn (Z.-J. Bai).

1 The research of this author is partially supported by the Fundamental Research Funds for the Central Universities (No. 20720180008).
2 The research of this author is partially supported by the National Natural Science Foundation of China (No. 11671337) and the Fundamental Research

Funds for the Central Universities (No. 20720180008).
https://doi.org/10.1016/j.apnum.2019.08.017
0168-9274/© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/343509252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:maruru7271@126.com
mailto:zjbai@xmu.edu.cn
https://doi.org/10.1016/j.apnum.2019.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2019.08.017&domain=pdf

102 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
In this paper, we propose a structure-preserving one-sided cyclic Jacobi method for computing the QSVD. This is moti-
vated by the recent structure-preserving methods related to quaternion matrices. In particular, in [11], Jia et al. designed a
real structure-preserving method for quaternion Hermitian eigenvalue problems by using the structure-preserving tridiago-
nalization of the real counterparts for quaternion Hermitian matrices. In [24,25], Li et al. presented a structure-preserving
algorithm for computing the QSVD, which used the structure-preserving bidiagonalization of the real counterpart of quater-
nion matrices via Householder-based transformations. In [27], Ma et al. proposed a structure-preserving Jacobi algorithm for
quaternion Hermitian eigenvalue problems. In this paper, the columns of a rectangular quaternion matrix are orthogonalized
in pairs by using a sequence of orthogonal JRS-symplectic Jacobi matrices to its real counterpart. When the updated quater-
nion matrix has sufficiently orthogonal columns, the SVD is obtained by column scaling. Specifically, we show the quadratic
convergence of the proposed structure-preserving one-sided cyclic Jacobi method. Finally, we give some numerical examples
to show that our method is effective for computing the QSVD. There exist some differences between our method and the
Lanczos QSVD in [13]. For an m-by-n quaternion matrix, the Lanczos QSVD only computes the k dominant SVD triplets, the
total computational cost is O (kt̂n2) quaternion operations, and the convergence analysis is not provided, where t̂ means the
frequency of restarting the Lanczos bidiagonalization, while our method computes the complete QSVD, the computational
complexity is of O (mn2) real flops for each sweep, and the quadratic convergence is established. As argued heuristically in
[2], the number of sweeps is of O (log(n)).

The rest of this paper is organized as follows. In section 2 we give necessary preliminaries used in this paper. In sec-
tion 3 we propose a structure-preserving one-sided cyclic Jacobi algorithm for computing the QSVD and we also derive its
quadratic convergence. In section 4 we present some numerical examples to indicate the effectiveness of our algorithm.
Finally, some concluding remarks are given in section 5.

2. Preliminaries

In this section, we briefly review some necessary definitions and properties of quaternions and quaternion matrices. For
more information on quaternions, one may refer to [18,38] and references therein.

Throughout this paper, we need the following notation. Let R and Rm×n be the set of all real numbers and the set of all
m ×n real matrices, respectively. Let H and Hm×n be the set of all quaternions and the set of all m ×n quaternion matrices,
respectively. Let In be the identity matrix of order n. Let AT , Ā and A∗ stand for the transpose, conjugate and conjugate
transpose of a matrix A accordingly. ‖ · ‖F means the Frobenius matrix norm.

A quaternion a ∈H takes the form of

a = a0 + a1i + a2j + a3k,

where a0, a1, a2, a3 ∈R and the quaternion units i, j, k satisfy the following rules

i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k.

The conjugate of a ∈ H is given by ā = a∗ = a0 − a1i − a2j − a3k. For two quaternions a = a0 + a1i + a2j + a3k ∈ H and
b = b0 + b1i + b2j + b3k ∈H, their product (i.e., the Hamilton product) is given by

ab = a0b0 − a1b1 − a2b2 − a3b3

+(a0b1 + a1b0 + a2b3 − a3b2)i

+(a0b2 − a1b3 + a2b0 + a3b1)j

+(a0b3 + a1b2 − a2b1 + a3b0)k.

The modulus |a| of a = a0 + a1i + a2 j + a3k ∈H is defined by

|a| =
√

a2
0 + a2

1 + a2
2 + a2

3 = √
aā = √

āa.

The multiplicative inverse of any nonzero quaternion 0 �= a ∈ H is given by a−1 = ā/|a|2. The Hamilton product is not
commutative but associative and thus H is an associative division algebra over R.

For an n × n quaternion matrix A = (apq), we define

off(A) :=
√√√√√√

n∑
p=1

n∑
q=1
q �=p

|apq|2,

where |apq| denotes the modulus of apq .
Suppose A = A0 + A1i + A2j + A3k ∈ Hm×n is a quaternion matrix, where A0, A1, A2, A3 ∈ Rm×n . A real counterpart of

A is defined by

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 103
�A =

⎡⎢⎢⎣
A0 A2 A1 A3

−A2 A0 A3 −A1
−A1 −A3 A0 A2
−A3 A1 −A2 A0

⎤⎥⎥⎦ . (2.1)

Next, we recall the definitions of JRS-symmetry and JRS-symplecticity [11]. Let

Jn =

⎡⎢⎢⎣
0 0 −In 0
0 0 0 −In

In 0 0 0
0 In 0 0

⎤⎥⎥⎦ , Rn =

⎡⎢⎢⎣
0 −In 0 0

In 0 0 0
0 0 0 In

0 0 −In 0

⎤⎥⎥⎦ , Sn =

⎡⎢⎢⎣
0 0 0 −In

0 0 In 0
0 −In 0 0

In 0 0 0

⎤⎥⎥⎦ .

A matrix � ∈ R4n×4n is called JRS-symmetric if Jn� J T
n = �, Rn�RT

n = � and Sn�S T
n = �. A matrix � ∈ R4n×4n is called

JRS-symplectic if � Jn�T = Jn, �Rn�T = Rn and �Sn�T = Sn . A matrix � ∈R4n×4n is called orthogonal JRS-symplectic if it
is orthogonal and JRS-symplectic.

In the rest of this section, we recall some basic results on the relationship between a quaternion matrix and its real
counterpart. First, we have the following properties of the real counterparts of quaternion matrices [11,17,33].

Lemma 2.1. Let F , G ∈Hm×n, H ∈Hn×s , W ∈Hn×n, α ∈R. Then

(1) �F+G = �F + �G ; �αG = α�G ; �G H = �G�H .
(2) �G∗ = �T

G .
(3) �W is JRS-symmetric.
(4) W is unitary if �W is orthogonal.
(5) If �G is orthogonal, then it is also orthogonal JRS-symplectic.

On the SVD of a quaternion matrix, we have the following result [38, Theorem 7.2].

Lemma 2.2. Let A ∈ Hm×n be a quaternion matrix with rank(A) = r. Then there exist unitary quaternion matrices U ∈ Hm×m and
V ∈Hn×n such that

U∗ AV =
[

�r 0
0 0

]
, (2.2)

where �r = diag(σ1, σ2, . . . , σr) and {σw}r
w=1 are the positive singular values of A.

Finally, we have the following result on the equivalence between the eigenvalue problem of a quaternion matrix and the
eigenvalue problem of its real counterpart [11].

Lemma 2.3. Let A = X + Y j be a quaternion matrix, where X = A0 + A1i and Y = A2 + A3i with A0, A1, A2, A3 ∈Rn×n. Then there
exists a unitary quaternion matrix

Q = 1

2

⎡⎢⎢⎣
In −jIn −iIn −kIn

In jIn −iIn kIn

In −jIn iIn kIn

In jIn iIn −kIn

⎤⎥⎥⎦
such that

�A = Q ∗

⎡⎢⎢⎣
X + Y j 0 0 0

0 X − Y j 0 0
0 0 X̄ + Ȳ j 0
0 0 0 X̄ − Ȳ j

⎤⎥⎥⎦ Q . (2.3)

3. Structure-preserving one-sided cyclic Jacobi algorithm

In this section, we present a structure-preserving one-sided cyclic Jacobi algorithm for computing the SVD of a quaternion
matrix A = A0 + A1i + A2j + A3k ∈Hm×n , where A0, A1, A2, A3 ∈Rm×n . The proposed structure-preserving one-sided cyclic
Jacobi algorithm involves a sequence of orthogonal JRS-symplectic transformations �A ← �A�G such that the updated �A is
closer to a column-orthogonal matrix than its predecessor. When the updated �A has sufficiently orthogonal columns, the
column scaling of the updated A leads to the SVD of A.

104 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
For simplicity, we assume that m ≥ n. The real counterpart �A of A is defined by (2.1). A one-sided cyclic Jacobi algorithm
includes (a) choosing an index pair (p, q) such that 1 ≤ p < q ≤ n, (b) computing a cosine-sine group (cr, s0, s1, s2, s3) such
that

G(p,q, θ) = In + [ep,eq]
[

cr − 1 s
−s̄ cr − 1

][
eT

p

eT
q

]
∈Hn×n (3.1)

is a unitary quaternion matrix and the p-th and q-th columns of AG(p, q, θ) are orthogonal, where et is the t-th unit vector
and s = s0 + s1i + s2j + s3k ∈H with c2

r + |s|2 = 1 (in fact, this corresponds zeroing the (p, q) and (q, p) entries of A∗ A by
using G(p, q, θ)∗ A∗ AG(p, q, θ)), and (c) overwriting A with AG(p, q, θ).

Our structure-preserving one-sided cyclic Jacobi algorithm aims to determine a sequence of orthogonal JRS-symplectic
Jacobi matrices {�G(�) ∈R4n×4n}η�=1 such that � Ã = �A�G(1)�G(2) · · · �G(η) has sufficiently orthogonal columns, which corre-
sponds with the off-diagonal entries of �T

Ã
� Ã = �T

G(η) · · ·�T
G(2)�

T
G(1)�

T
A�A�G(1)�G(2) · · ·�G(η) sufficiently close to zeros. Then,

by extracting the first row partitions of � Ã , i.e.,

[Ã0, Ã2, Ã1, Ã3], Ãw ∈ Rm×n, w = 0,1,2,3,

we get the updated quaternion matrix Ã = Ã0 + Ã1i + Ã2j + Ã3k = AV , where V = G(1)G(2) · · · G(η) is an n × n unitary
quaternion matrix. Finally, the column scaling of Ã yields the QSVD of A:

AV = Ã = U�, (3.2)

where � = diag(σ1, σ2, . . . , σn) with σw ≥ 0 for w = 1, . . . , n and U ∈Hm×n satisfies U∗U = In .
The following theorem presents the orthogonalization of any two columns of an m × n quaternion matrix.

Theorem 3.1. Let A(p, q) = [
ap,aq

]
, where aw = aw0 + aw1i + aw2j + aw3k ∈ Hm is the w-th column of an m × n quaternion

matrix A for w = p, q. If a∗
paq �= 0, then there exists a 2-by-2 unitary quaternion matrix given by

G(p,q; θ) =
[

cr s
−s̄ cr

]
such that Ã(p, q) := A(p, q)G(p, q; θ) has orthogonal columns, where cr = cos(θ) ∈ R and s = s0 + s1i + s2j + s3k ∈ H with
c2

r + |s|2 = 1.

Proof. Note that

Ã(p,q) = A(p,q)G(p,q; θ)

= [
ap,aq

][cr s
−s cr

]
= [

crap − aqs,ap s + craq
]

:= [̃
ap, ãq

]
. (3.3)

By hypothesis a∗
paq �= 0 and thus |a∗

paq| > 0. Define cr ∈R and s = s0 + s1i + s2j + s3k ∈H by⎧⎪⎪⎪⎨⎪⎪⎪⎩
s0 = sin(θ)

|a∗
p aq |apq0, s1 = sin(θ)

|a∗
p aq|apq1, s2 = sin(θ)

|a∗
p aq |apq2, s3 = sin(θ)

|a∗
p aq|apq3, sin(θ) = tcr,

cr = cos(θ) = 1√
1+t2

, |s| = |t|√
1+t2

, t =
⎧⎨⎩

1
τ+

√
1+τ 2

, if τ ≥ 0

1
τ−

√
1+τ 2

, if τ < 0
, τ = a∗

q aq−a∗
p ap

2|a∗
paq | ,

(3.4)

where a∗
paq := apq0 + apq1i + apq2j + apq3k with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
apq0 = aT

p0aq0 + aT
p1aq1 + aT

p2aq2 + aT
p3aq3,

apq1 = aT
p0aq1 − aT

p1aq0 − aT
p2aq3 + aT

p3aq2,

apq2 = aT
p0aq2 + aT

p1aq3 − aT
p2aq0 − aT

p3aq1,

apq3 = aT
p0aq3 − aT

p1aq2 + aT
p2aq1 − aT

p3aq0.

It is easy to see that G(p, q; θ) is unitary and

s = tcr

|a∗a | × a∗
paq and t2 + 2τ t − 1 = 0.
p q

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 105
Thus,

ã∗
p ãq = (crap − aqs)∗(ap s + craq)

= cra∗
pap s + c2

r a∗
paq − sa∗

qap s − cra∗
qaqs

= cr × a∗
pap × tcr

|a∗
paq| × a∗

paq + c2
r × a∗

paq − cr × a∗
qaq × tcr

|a∗
paq| × a∗

paq

− tcr

|a∗
paq| × a∗

paq × a∗
qap × tcr

|a∗
paq| × a∗

paq

= −c2
r × a∗

paq × (
t2 + a∗

qaq − a∗
pap

|a∗
paq| t − 1

)
= −c2

r × a∗
paq × (t2 + 2τ t − 1)

= 0. � (3.5)

In Theorem 3.1, we construct a unitary quaternion matrix G(p, q; θ) with real diagonal elements. In the proof of Theorem
3.1, we have used the commutativity of the real diagonal element cr of G(p, q; θ) with quaternions. One may employ the
generalized quaternion Givens transformation in [14] and at least one of its diagonal elements is quaternion. This needs
further study.

The following corollary shows that the orthogonalization of A(p, q) is the same as the diagonalization of A∗(p, q)A(p, q)

as in [27, Theorem 3.1].

Corollary 3.2. If the assumptions in Theorem 3.1 hold, then there exists a 2-by-2 unitary quaternion matrix

G(p,q; θ) =
[

cr s
−s̄ cr

]
, cr = cos(θ) ∈ R and s = s0 + s1i + s2j + s3k ∈ H

such that

�T
G(p,q;θ)�

T
A(p,q)�A(p,q)�G(p,q;θ) = B̃(p,q; p,q) ⊕ B̃(p,q; p,q) ⊕ B̃(p,q; p,q) ⊕ B̃(p,q; p,q)

for some

B̃(p,q; p,q) =
[

bpp 0
0 bqq

]
.

Proof. By Theorem 3.1 we know that Ã(p, q) = A(p, q)G(p, q; θ) has orthogonal columns for G(p, q; θ) with cr and s defined
as in (3.4). From (3.3) and (3.5) we have

B̃(p,q; p,q) := Ã∗(p,q) Ã(p,q) =
[

ã∗
p ãp ã∗

p ãq

ã∗
q ãp ã∗

q ãq

]
=
[

ã∗
p ãp 0

0 ã∗
q ãq

]
. (3.6)

This shows that B̃(p, q; p, q) is a real diagonal matrix, where ̃ap = crap −aqs and ̃aq = ap s +craq with cr and s being defined
in (3.4). Using Lemma 2.1 and (3.6) we find

�T
G(p,q;θ)�

T
A(p,q)�A(p,q)�G(p,q;θ)

= � Ã∗(p,q)� Ã(p,q) = � Ã∗(p,q) Ã(p,q) = �B̃(p,q;p,q)

= B̃(p,q; p,q) ⊕ B̃(p,q; p,q) ⊕ B̃(p,q; p,q) ⊕ B̃(p,q; p,q),

where bpp = ã∗
p ãp and bqq = ã∗

q ãq . �
Remark 3.3. In fact, we choose t as defined in (3.4), which is the smaller of the two roots of t2 + 2τ t − 1 = 0. Thus the
rotation angle satisfies |θ | ≤ π/4 [8, p. 427]. Also, from (3.3) and (3.6) we have[

ã∗
p ãp 0

0 ã∗
q ãq

]
= Ã∗(p,q) Ã(p,q)

= G∗(p,q; θ)A∗(p,q)A(p,q)G(p,q; θ)

=
[

cr s
−s cr

]∗ [a∗
pap a∗

paq

a∗
qap a∗

qaq

][
cr s

−s cr

]
.

106 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
Since the Frobenius norm is unitary invariant we obtain

(̃a∗
p ãp)2 + (̃a∗

q ãq)
2 = (a∗

pap)2 + 2|a∗
paq|2 + (a∗

qaq)
2. (3.7)

Remark 3.4. As noted in [27, p. 814], we observe from Theorem 3.1 that the matrix Ã∗ Ã agrees with A∗ A except for the
p-th and q-th rows and the p-th and q-th columns. Let A = [a1,a2, . . . ,an] and Ã = [̃a1, ã2, . . . , ãn]. Using (3.7) we have

off(Ã∗ Ã)2 = ‖ Ã∗ Ã‖2
F −

n∑
t=1

(̃a∗
t ãt)

2

= ‖A∗ A‖2
F −

n∑
t=1

(a∗
t at)

2 + (
(a∗

pap)2 + (a∗
qaq)

2 − (̃a∗
p ãp)2 − (̃a∗

q ãq)
2)

= off(A∗ A)2 − 2|a∗
paq|2. (3.8)

Since ‖�T
A�A‖2

F = 4‖A∗ A‖2
F , we know that off(�T

A�A)2 = 4off(A∗ A)2. Using (3.8), this implies that �T
A�A is closer to a

diagonal matrix with each orthogonal JRS-symplectic Jacobi rotation.

Based on Theorem 3.1 and Corollary 3.2, we present the following algorithm for generating a 2-by-2 unitary quaternion
Jacobi matrix for orthogonalizing any two columns of an m ×n quaternion matrix. This algorithm needs 96m +30 operations.

Algorithm 3.5. Given A(p, q) = [
ap,aq

]
, where aw = aw0 + aw1i + aw2j + aw3k ∈ Hm is the w-th column of an m × n

quaternion matrix A for w = p, q, this algorithm computes a cosine-sine group (cr, s0, s1, s2, s3) such that Ã(p, q) =
A(p, q)G(p, q; θ) has two orthogonal columns.

function (cr, s0, s1, s2, s3) = GJSJR(ap0, ap1, ap2, ap3, aq0, aq1, aq2, aq3)

app0 = aT
p0ap0 + aT

p1ap1 + aT
p2ap2 + aT

p3ap3, app1 = aT
p0ap1 − aT

p1ap0 − aT
p2ap3 + aT

p3ap2

app2 = aT
p0ap2 + aT

p1ap3 − aT
p2ap0 − aT

p3ap1, app3 = aT
p0ap3 − aT

p1ap2 + aT
p2ap1 − aT

p3ap0

β1 =
√

a2
pp0 + a2

pp1 + a2
pp2 + a2

pp3

aqq0 = aT
q0aq0 + aT

q1aq1 + aT
q2aq2 + aT

q3aq3, aqq1 = aT
q0aq1 − aT

q1aq0 − aT
q2aq3 + aT

q3aq2

aqq2 = aT
q0aq2 + aT

q1aq3 − aT
q2aq0 − aT

q3aq1, aqq3 = aT
q0aq3 − aT

q1aq2 + aT
q2aq1 − aT

q3aq0

β2 =
√

a2
qq0 + a2

qq1 + a2
qq2 + a2

qq3

apq0 = aT
p0aq0 + aT

p1aq1 + aT
p2aq2 + aT

p3aq3, apq1 = aT
p0aq1 − aT

p1aq0 − aT
p2aq3 + aT

p3aq2

apq2 = aT
p0aq2 + aT

p1aq3 − aT
p2aq0 − aT

p3aq1, apq3 = aT
p0aq3 − aT

p1aq2 + aT
p2aq1 − aT

p3aq0

β3 =
√

a2
pq0 + a2

pq1 + a2
pq2 + a2

pq3

if β3 = 0

cr = 1, s0 = s1 = s2 = s3 = 0

else

τ = (β2 − β1)/(2β3)

if τ ≥ 0

t = 1/(τ + √
1 + τ 2)

else

t = 1/(τ − √
1 + τ 2)

end

cr = 1/
√

1 + t2, δ = tcr/β3, s0 = δapq0, s1 = δapq1, s2 = δapq2, s3 = δapq3

end

Algorithm 3.5 gives a scheme for orthogonalizing p-th and q-th columns of an m × n quaternion matrix A =
[a1,a2, . . . ,an]. One may choose p and q such that |a∗

paq| is maximal as the classical Jacobi algorithm [8, Algorithm 8.4.2].
The following algorithm describes a structure-preserving one-sided classical Jacobi algorithm, which is such that a quater-

nion matrix has sufficiently orthogonal columns.

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 107
Algorithm 3.6. Given an m ×n quaternion matrix A = A0 + A1i + A2j + A3k ∈Hm×n and a tolerance tol> 0, this algorithm
overlaps the real counterpart �A by �A Ṽ , where Ṽ is orthogonal and off(Ṽ T �T

A�A Ṽ) ≤ tol · ‖�T
A�A‖F .

Ṽ = �In , ζ = tol · ‖�T
A�A‖F

while off(�T
A�A) > ζ

Choose (p, q) so |a∗
paq| = maxu �=v |a∗

uav |
ap0 = A0(:, p), ap1 = A1(:, p), ap2 = A2(:, p), ap3 = A3(:, p)

aq0 = A0(:, q), aq1 = A1(:, q), aq2 = A2(:, q), aq3 = A3(:, q)

(cr, s0, s1, s2, s3) = GJSJR(ap0, ap1, ap2, ap3, aq0, aq1, aq2, aq3)

�A = �A�G(p,q,θ)

Ṽ = Ṽ �G(p,q,θ)

end

Algorithm 3.6 gives the following basic iterative scheme:

�A(�+1) = �A(�)�G(�) , � = 0,1,2, . . . , (3.9)

where A(0) = A, and G(�) ∈Hn×n is a unitary quaternion matrix defined in (3.1) with the cosine-sine group (cr, s0, s1, s2, s3)

being generated by Algorithm 3.5. Algorithm 3.6 may be seen as a structure-preserving Jacobi algorithm for solving the
eigenvalue problem of an n × n quaternion Hermitian matrix B := A∗ A as in [27]:

�B(�+1) = �T
A(�+1)�A(�+1) = �T

G(�)�
T
A(�)�A(�)�G(�)

= �T
G(�)�(A(�))∗ A(�)�G(�) = �T

G(�)�B(�))�G(�) , � = 0,1,2, . . . ,

where B(0) = A∗ A. Let

A(�) := [a(�)
1 , . . . ,a(�)

p , . . . ,a(�)
q , . . . ,a(�)

n].
Then

B(�) := (A(�))∗ A(�)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a(�)
1)∗a(�)

1 · · · (a(�)
1)∗a(�)

p · · · (a(�)
1)∗a(�)

q · · · (a(�)
1)∗a(�)

n
...

. . .
...

. . .
...

. . .
...

(a(�)
p)∗a(�)

1 · · · (a(�)
p)∗a(�)

p · · · (a(�)
p)∗a(�)

q · · · (a(�)
p)∗a(�)

n
...

. . .
...

. . .
...

. . .
...

(a(�)
q)∗a(�)

1 · · · (a(�)
q)∗a(�)

p · · · (a(�)
q)∗a(�)

q · · · (a(�)
q)∗a(�)

n
...

. . .
...

. . .
...

. . .
...

(a(�)
n)∗a(�)

1 · · · (a(�)
n)∗a(�)

p · · · (a(�)
n)∗a(�)

q · · · (a(�)
n)∗a(�)

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.10)

From Remark 3.4 we have

off(B(�))2 = ‖B(�)‖2
F −

n∑
u=1

(b(�)
uu)2

= ‖(A(�))∗ A(�)‖2
F −

n∑
u=1

(b(�)
uu)2

= ‖(G(�−1))
∗

B(�−1)G(�−1)‖2
F −

(n∑
u=1

(b(�−1)
uu)2 − (b(�−1)

pp)2 − (b(�−1)
qq)2 + (b(�)

pp)2 + (b(�)
qq)2

)
= ‖B(�−1)‖2

F −
n∑

u=1

(b(�−1)
uu)2 + (

(b(�−1)
pp)2 + (b(�−1)

qq)2 − (b(�)
pp)2 − (b(�)

qq)2)
= off(B(�−1))2 − 2|b(�−1)

pq |2.
We see that ‖�B(�)‖2

F = 4‖B(�)‖2
F . Hence, off(�B(�))2 = 4off(B(�))2.

We have the following result on the linear convergence of Algorithm 3.6. The proof follows from [27, Theorem 3.3] and
thus we omit it here.

108 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
Theorem 3.7. Let {σw}n
w=1 be the n singular values of A and �A(�) be the matrix after � orthogonal JRS-symplectic Jacobi updates

generated by Algorithm 3.6. Then there exists a permutation {ϕ1, ϕ2, . . . , ϕn} of {1, 2, . . . , n} such that

lim
�→∞�T

A(�)�A(�) = diag(σ 2
ϕ1

, . . . , σ 2
ϕn

,σ 2
ϕ1

, . . . , σ 2
ϕn

,σ 2
ϕ1

, . . . , σ 2
ϕn

,σ 2
ϕ1

, . . . , σ 2
ϕn

).

Moreover,

off(�T
A(�)�A(�)) ≤

(
1 − 1

N

)�

off(�T
A(0)�A(0)), N := 1

2
n(n − 1).

However, in Algorithm 3.6, the search for the optimal columns p and q needs O (n2). To reduce the cost, one may adopt
the scheme of cyclic-by-column as the cyclic Jacobi algorithm [8, Algorithm 8.4.3]. Sparked by this, we propose the following
structure-preserving one-sided cyclic Jacobi algorithm for orthogonalizing the columns of an m × n quaternion matrix A.

Algorithm 3.8. Given an m ×n quaternion matrix A = A0 + A1i + A2j + A3k ∈Hm×n and a tolerance tol> 0, this algorithm
overlaps the real counterpart �A by �A Ṽ , where Ṽ is orthogonal and off(Ṽ T �T

A�A Ṽ) ≤ tol · ‖�T
A�A‖F .

Ṽ = �In , ζ = tol · ‖�T
A�A‖F

while off(�T
A�A) > ζ

for p = 1 : n − 1

for q = p + 1 : n

ap0 = A0(:, p), ap1 = A1(:, p), ap2 = A2(:, p), ap3 = A3(:, p)

aq0 = A0(:, q), aq1 = A1(:, q), aq2 = A2(:, q), aq3 = A3(:, q)

(cr, s0, s1, s2, s3) = GJSJR(ap0, ap1, ap2, ap3, aq0, aq1, aq2, aq3)

�A = �A�G(p,q,θ)

Ṽ = Ṽ �G(p,q,θ)

end

end

end

On Algorithm 3.8, we have the following remarks.

Remark 3.9. There exist some differences between Algorithm 3.8 and the classic one-sided cyclic Jacobi algorithm. Our
method is applied to �A , which involves real operations while the classical one was used to A in quaternion operations.
For each given index pair (p, q), the classic one-sided cyclic Jacobi algorithm finds a unitary quaternion matrix G(p, q, θ)

such that the p-th and q-th columns of AG(p, q, θ) are orthogonal while our method generates an orthogonal JRS-symplectic
Jacobi matrices �G(p,q,θ) such that the p-th and q-th columns of AG(p, q, θ) are orthogonal, where the dimension-expanding
problem, caused by the real counterpart of A, is avoided since �A�G(p,q,θ) is still JRS-symmetric.

Remark 3.10. In Algorithm 3.8, we only need to store the first m rows of �A , which reduce the total storage. The later
numerical examples show that Algorithm 3.8 works very effectively.

We now focus on the quadratic convergence analysis of Algorithm 3.8. Algorithm 3.8 gives the following iterative scheme:

�A(�+1) = �A(�)�G(�) , � = 0,1,2,

Here, A(0) = A, and G(�) ∈Hn×n is a unitary quaternion matrix defined in (3.1), where the cosine-sine group (cr , s0, s1, s2, s3)

is generated by Algorithm 3.5. In fact, Algorithm 3.8 can be seen as a structure-preserving cyclic Jacobi algorithm for �T
A�A .

We have the following theorem on the quadratic convergence of Algorithm 3.8. The proof can be seen as a generalization
of [32,34].

Theorem 3.11. Let {σw}n
w=1 be the n singular values of A and �A(�) be the matrix after � orthogonal JRS-symplectic Jacobi updates

generated by Algorithm 3.8. If off(�T
A(d)�A(d)) < δ/2 for some d ≥ 1 where 0 < 2δ ≤ minσu �=σv |σ 2

u − σ 2
v |, then

off(�T
A(d+N)�A(d+N)) ≤

√
25

72
· off(�T

A(d)�A(d))2

δ
.

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 109
Proof. Write S(d) := �T
A(d)�A(d) = D(d) + E(d) + (E(d))T , where D(d) and E(d) are diagonal and strictly upper triangular, re-

spectively. By using Theorem 3.7 and the Wielandt-Hoffman theorem ([8, Theorem 8.1.4]) we have

|s(d)
w w − σ 2

ϕw
| ≤ ‖D(d) − S(d)‖F <

δ

2
, 1 ≤ w ≤ n. (3.11)

Thus we have for two distinct eigenvalues σ 2
ϕu

and σ 2
ϕv

,

|s(d)
uu − s(d)

v v | = |(s(d)
uu − σ 2

ϕu
) − (s(d)

v v − σ 2
ϕv

) + (σ 2
ϕu

− σ 2
ϕv

)|
≥ |σ 2

ϕu
− σ 2

ϕv
| − |s(d)

uu − σ 2
ϕu

| − |s(d)
v v − σ 2

ϕv
|

> 2δ − δ

2
− δ

2
= δ. (3.12)

Since off(�T
A(�)�A(�)) is decreasing, we know that off(�T

A(�)�A(�)) < δ/2 and (3.12) hold for � > d.
We show the quadratic convergence of Algorithm 3.8. We first consider the case of one multiple singular value. Assume

without loss of generality that only σϕ1 is a multiple singular value of A(�) (� > d) and the diagonal entries s(�)
11 , s(�)

22 , . . . , s(�)
n1n1

of S(�) := �T
A(�)�A(�) converge to σ 2

ϕ1
. Then, by appropriate row and column interchanges, we get a permutation matrix P

such that

Ŝ(�) = P T S(�) P =
[

Ŝ(�)
11 Ŝ(�)

12

Ŝ(�)
21 Ŝ(�)

22

]
,

where all the diagonal entries of Ŝ(�)
11 ∈R4n1×4n1 converge to σ 2

ϕ1
.

We provide an upper bound for the quantity

�
(�)
1 :=

√ ∑
1≤p �=q≤4n1

(ŝ(�)
pq)2.

As in [35], it is easy to see that

T (�) =
[

I4n1 − Ŝ(�)
12 (̂S(�)

22 − σ 2
ϕ1

I4n−4n1)
−1

0 I4n−4n1

][
Ŝ(�)

11 − σ 2
ϕ1

I4n1 Ŝ(�)
12

Ŝ(�)
21 Ŝ(�)

22 − σ 2
ϕ1

I4n−4n1

]

=
[

Ŝ(�)
11 − σ 2

ϕ1
I4n1 − Ŝ(�)

12 (̂S(�)
22 − σ 2

ϕ1
I4n−4n1)

−1 Ŝ(�)
21 0

Ŝ(�)
21 Ŝ(�)

22 − σ 2
ϕ1

I4n−4n1

]
and the rank of T (�) is the same as Ŝ(�) − σ 2

ϕ1
I4n , which implies that

Ŝ(�)
11 − σ 2

ϕ1
I4n1 = Ŝ(�)

12 (̂S(�)
22 − σ 2

ϕ1
I4n−4n1)

−1 Ŝ(�)
21 . (3.13)

Let σ̃ 2
ϕw

be the eigenvalues of Ŝ(�)
22 . Note that

|σ 2
ϕw

− σ̃ 2
ϕw

| ≤
∥∥∥∥∥̂S(�) −

[
�

(�)
11 0

0 Ŝ(�)
22

]∥∥∥∥∥
F

≤ off(̂S(�)) = off(S(�)) ≤ δ

2
,

where �(�)
11 = diag(ŝ(�)

11 , ̂s(�)
22 , . . . , ̂s(�)

4n1,4n1
), ŝ(�)

w w is the (w, w) entry of Ŝ(�)
11 . Thus,

|σ 2
ϕ1

− σ̃ 2
ϕw

| ≥ |σ 2
ϕ1

− σ 2
ϕw

| − |σ 2
ϕw

− σ̃ 2
ϕw

| ≥ 2δ − δ

2
= 3δ

2
.

This, together with (3.13), yields

(�
(�)
1)2 = off(̂S(�)

11)2 ≤ ‖̂S(�)
11 − σ 2

ϕ1
I4n1‖2

F ≤ ‖̂S(�)
12 ‖4

F

minσ̃ 2
ϕw �=σ 2

ϕ1
|σ 2

ϕ1
− σ̃ 2

ϕw
|2

≤ 2off(S(�))2

9δ2
‖̂S(�)

12 ‖2
F ≤ 2off(S(d))2

9δ2
‖̂S(�)

12 ‖2
F (3.14a)

≤ off(S(d))4

9δ2
(3.14b)

since ‖̂S(�)
12 ‖2

F ≤ 1/2 off(̂S(�))2 = 1/2 off(S(�))2 ≤ 1/2off(S(d))2. The estimates in (3.14) are crucial for proving the quadratic
convergence of the structure-preserving one-sided cyclic Jacobi algorithm.

110 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
As in (3.4), the rotation angle θ� is chosen such that |θ�| ≤ π/4. Using (3.10), (3.12) and S(�) = �B(�) we have

| sin θ�| ≤ 1

2
| tan 2θ�| = |b(�−1)

pq |
|b(�−1)

qq − b(�−1)
pp |

≤ |b(�−1)
pq |
δ

. (3.15)

This, together with 1
2 off(B(�−1))2 − 1

2 off(B(�))2 = |b(�−1)
pq |2, yields

off(B(d))2 − 2
d+N∑

�=d+1

|b(�−1)
pq |2 = off(B(d+N))2 ≥ 0.

Using (3.15) we have∑̂
sin2 θ� ≤

∑ |b(�−1)
pq |2
δ2

≤ off(B(d))2

2δ2
, (3.16)

where
∑̂

means that we include in the sum only rotations of entries outside the first n1 rows and the first n1 columns of
B(�) .

We now show the quadratic convergence of Algorithm 3.8 for the case of one multiple singular value. As in [34], for
example, we take an m × 5 quaternion matrix A. In this case, B(0) = A∗ A ∈ H5×5. In the following, we show the effect of
annihilating the entries in the first row and column of B(d) . Since we are only interested in the off diagonal entries, which
is updated when these entries are affected by the current rotations, the diagonal entries are all denoted by “×”.

B(d) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× b(d)
12 b(d)

13 b(d)
14 b(d)

15

b(d)
21 × b(d)

23 b(d)
24 b(d)

25

b(d)
31 b(d)

32 × b(d)
34 b(d)

35

b(d)
41 b(d)

42 b(d)
43 × b(d)

45

b(d)
51 b(d)

52 b(d)
53 b(d)

54 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎦
G(1,2;θd)−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× 0 b(d+1)
13 b(d+1)

14 b(d+1)
15

0 × b(d+1)
23 b(d+1)

24 b(d+1)
25

b(d+1)
31 b(d+1)

32 × b(d)
34 b(d)

35

b(d+1)
41 b(d+1)

42 b(d)
43 × b(d)

45

b(d+1)
51 b(d+1)

52 b(d)
53 b(d)

54 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G(1,3;θd+1)−−−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× b(d+2)
12 0 b(d+2)

14 b(d+2)
15

b(d+2)
21 × b(d+2)

23 b(d+1)
24 b(d+1)

25

0 b(d+2)
32 × b(d+2)

34 b(d+2)
35

b(d+2)
41 b(d+1)

42 b(d+2)
43 × b(d)

45

b(d+2)
51 b(d+1)

52 b(d+2)
53 b(d)

54 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G(1,4;θd+2)−−−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× b(d+3)
12 b(d+3)

13 0 b(d+3)
15

b(d+3)
21 × b(d+2)

23 b(d+3)
24 b(d+1)

25

b(d+3)
31 b(d+2)

32 × b(d+3)
34 b(d+2)

35

0 b(d+3)
42 b(d+3)

43 × b(d+3)
45

b(d+3)
51 b(d+1)

52 b(d+2)
53 b(d+3)

54 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G(1,5;θd+3)−−−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

× b(d+4)
12 b(d+4)

13 b(d+4)
14 0

b(d+4)
21 × b(d+2)

23 b(d+3)
24 b(d+4)

25

b(d+4)
31 b(d+2)

32 × b(d+3)
34 b(d+4)

35

b(d+4)
41 b(d+3)

42 b(d+3)
43 × b(d+4)

45

0 b(d+4)
52 b(d+4)

53 b(d+4)
54 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)

For the entries of the first row of B(d+4) , we have the following inequalities⎧⎪⎪⎪⎨⎪⎪⎪⎩
|b(d+4)

14 | ≤ |b(d+3)
54 || sin θd+3|,

|b(d+4)
13 | ≤ |b(d+2)

43 || sin θd+2| + |b(d+2)
53 || sin θd+3|,

|b(d+4)
12 | ≤ |b(d+1)

32 || sin θd+1| + |b(d+1)
42 || sin θd+2| + |b(d+1)

52 || sin θd+3|.
(3.18)

Thus,

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 111
|b(d+4)
12 |2 + |b(d+4)

13 |2 + |b(d+4)
14 |2

≤ (|b(d+1)
32 |2 + |b(d+1)

42 |2 + |b(d+1)
52 |2)(sin2 θd+1 + sin2 θd+2 + sin2 θd+3)

+(|b(d+2)
43 |2 + |b(d+2)

53 |2)(sin2 θd+2 + sin2 θd+3) + |b(d+3)
54 |2 sin2 θd+3

≤ (|b(d+1)
32 |2 + |b(d+1)

42 |2 + |b(d+1)
52 |2 + |b(d+2)

43 |2 + |b(d+2)
53 |2 + |b(d+3)

54 |2)
×(sin2 θd+1 + sin2 θd+2 + sin2 θd+3).

Since each rotation affects only two entries in each of the related columns or rows while the sum of the squares of their
absolute values is kept unchanged we have

|b(d+3)
15 |2 + |b(d+1)

25 |2 + |b(d+2)
35 |2 + |b(d+3)

45 |2 = |b(d)
15 |2 + |b(d)

25 |2 + |b(d)
35 |2 + |b(d)

45 |2,
|b(d+2)

14 |2 + |b(d+1)
24 |2 + |b(d+2)

34 |2 = |b(d)
14 |2 + |b(d)

24 |2 + |b(d)
34 |2,

|b(d+1)
13 |2 + |b(d+1)

23 |2 = |b(d)
13 |2 + |b(d)

23 |2.
Thus

|b(d+4)
12 |2 + |b(d+4)

13 |2 + |b(d+4)
14 |2

≤ (|b(d)
13 |2 + |b(d)

23 |2 + |b(d)
14 |2 + |b(d)

24 |2 + |b(d)
34 |2 + |b(d)

15 |2 + |b(d)
25 |2 + |b(d)

35 |2 + |b(d)
45 |2)

×(sin2 θd+1 + sin2 θd+2 + sin2 θd+3)

≤ 1

2
off(B(d))2(sin2 θd+1 + sin2 θd+2 + sin2 θd+3). (3.19)

Moreover, the sum of the squares of the absolute values of these entries in the first row remains unchanged in the subse-
quent rotations.

Similarly, we have after successively annihilating the entries in the second row

|b(d+7)
23 |2 + |b(d+7)

24 |2 ≤ 1

2
off(B(d+4))2(sin2 θd+5 + sin2 θd+6)

≤ 1

2
off(B(d))2(sin2 θd+5 + sin2 θd+6). (3.20)

Furthermore, for the third row we have

|b(d+9)
34 |2 ≤ 1

2
off(B(d+7))2 sin2 θd+8 ≤ 1

2
off(B(d))2 sin2 θd+8. (3.21)

Finally, the fourth row above the diagonal is annihilated. From (3.19), (3.20) and (3.21) we obtain

off(B(d+10))2 ≤ off(B(d))2
9∑

t=0

sin2 θd+t ≤ off(B(d))2 off(B(d))2

2δ2
= off(B(d))4

2δ2
, (3.22)

where the second inequality follows from (3.16).
Analogously to the proof of (3.22), using the equality off(S(d))2 = 4off(B(d))2, (3.14b) and (3.16) we have

off(S(d+N))2 = 4off(B(d+N))2

= 4
∑

1≤p �=q≤n1

|b(d+N)
pq |2 + 8

∑
p<q,q>n1

|b(d+N)
pq |2

≤ off(̂S(d+N)
11)2 + 4off(B(d))2

(∑̂
sin2 θ�

)
≤ off(̂S(d+N)

11)2 + 4off(B(d))2 off(B(d))2

2δ2

≤ off(S(d))4

9δ2
+ off(S(d))4

8δ2
.

This shows that Algorithm 3.8 converges quadratically when there is only one multiple singular value.
Next, we show the quadratic convergence of Algorithm 3.8 for the case of more than one multiple singular values. If

there exist l multiple singular values, then we have

off(S(d+N))2 ≤ 9 + 8l
2

off(S(d))4. (3.23)

72δ

112 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
In the following we decrease the factor 9+8l
72 . Assume that σϕw is a multiple singular value of A(�) with multiplicity nw

for w = 1, . . . , l and s(�)
11 , . . . , s(�)

n1n1 , s(�)
n1+1,n1+1, . . . , s

(�)
n1+n2,n1+n2

, . . ., s(�)
n1+···+nl−1+1,n1+···+nl−1+1, . . . , s

(�)
n1+···+nl,n1+···+nl

converge
to σ 2

ϕ1
, σ 2

ϕ2
, . . ., σ 2

ϕl
accordingly. Then, by appropriate row and column interchanges, we get a permutation matrix P such

that

Ŝ(�) = P T S(�) P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ŝ(�)
11 Ŝ(�)

12 · · · Ŝ(�)

1l Ŝ(�)

1,l+1

Ŝ(�)
21 Ŝ(�)

22 · · · Ŝ(�)

2l Ŝ(�)

2,l+1

...
...

. . .
...

...

Ŝ(�)

l1 Ŝ(�)

l2 · · · Ŝ(�)

ll Ŝ(�)

l,l+1

Ŝ(�)

l+1,1 Ŝ(�)

l+1,2 · · · Ŝ(�)

l+1,l Ŝ(�)

l+1,l+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the diagonal entries of Ŝ(�)
w w ∈R4nw ×4nw converges to σ 2

ϕw
for w = 1, . . . , l.

Define the quantities

�
(�)
w :=

√√√√ ∑
∑w−1

u=0 4nu+1≤p �=q≤∑w
u=0 4nu

(
ŝ(�)

p,q

)2
, w = 1, . . . , l,

where n0 = 0.
Analogous to the proof of (3.14a) we have

(�
(�)
w)2 ≤ 2off(S(�))2

9δ2

l+1∑
u=1,u �=w

‖̂S(�)
wu‖2

F .

We note that

l∑
w=1

(l+1∑
u=1,u �=w

‖̂S(�)
wu‖2

F

)
≤

∑
1≤p �=q≤4n

(ŝ(�)
pq)2 = off(̂S(�))2 = off(S(�))2.

Hence,

l∑
w=1

(�
(�)
w)2 ≤ 2off(S(�))2

9δ2

l∑
w=1

(l+1∑
u=1,u �=w

‖̂S(�)
wu‖2

F

)
≤ 2off(S(�))4

9δ2
≤ 2off(S(d))4

9δ2
.

Therefore, (3.23) is reduced to

off(S(d+N))2 ≤
l∑

t=1

(�
(d+N)
t)2 + off(B(d))2

(∑̂
sin2 θ�

)
≤ 2off(S(d))4

9δ2
+ off(S(d))4

8δ2

≤ 25

72
· off(S(d))4

δ2
. (3.24)

That is,

off(�T
A(d+N)�A(d+N)) ≤

√
25

72
· off(�T

A(d)�A(d))2

δ
,

which shows that Algorithm 3.8 is quadratically convergent when there exist more than one multiple singular values. �
From Theorem 3.11 and [32,34], we see that both Algorithm 3.8 and the classic cyclic one-side Jacobi algorithm converge

quadratically. However, for �A , unlike the classic cyclic one-side Jacobi algorithm, our method is structure-preserving.

Remark 3.12. In Theorem 3.11, we obtain a factor of
√

25/72, which is much smaller than the factor
√

17/9 in [32] and the
factor 1 in [34].

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 113
Fig. 1. Numerical results for Example 4.2.

Finally, we point out that, for an m × n quaternion matrix A = A0 + A1i + A2j + A3k ∈ Hm×n , Algorithm 3.8 gen-
erates a matrix �A(�) after � orthogonal JRS-symplectic Jacobi updates such that A(�) = AV (�) has sufficiently or-
thogonal columns (which is measured by off(�T

A(�)�A(�)) ≤ tol · ‖�T
A�A‖F for a prescribed tolerance tol > 0), where

V (�) = G(0)G(1) · · · G(�) ∈Hn×n is a unitary matrix. Then the QSVD of A follows from column scaling of A(�) = AV (�) , i.e.,

A(�) = AV (�) = U (�)�(�), (3.25)

where �(�) = diag(σ
(�)
ϕ1 , σ (�)

ϕ2 , . . . , σ (�)
ϕn) with σ (�)

ϕw ≥ 0 for w = 1, . . . , n and U (�) ∈Hm×n is such that (U (�))∗U (�) = In . In
addition, Algorithm 3.8 aims to compute all the singular values and associated left and right singular vectors of the m × n
quaternion matrix A. Finally, the inherent parallelism of Algorithm 3.8 is more attractive, which need further study.

4. Numerical examples

In this section, we present some numerical examples to illustrate the effectiveness of Algorithm 3.8 for computing
the SVD of a rectangular quaternion matrix and compare it with the Lanczos-based method (lansvdQ) [13], the structure-
preserving method (svdQ) [24] and the implicit Jacobi algorithm in [22]. All the numerical tests were carried out in MATLAB
R2018a running on a workstation of a Intel Xeon CPU Gold 6134 at 3.2 GHz and 32 GB of RAM.

Example 4.1. Let A = A0 + A1i + A2j + A3k ∈H8×5, where A0, A1, A2, A3 are all random real matrices, which are generated
by the MATLAB built-in function randn.

We apply Algorithm 3.8 and the solver svd in quaternion toolbox [30] to Example 4.1. We repeat our experiments over
100 different test matrices. We observe that the computed singular values by both algorithms are the same numerically
and the averaged CPU time (in seconds) taken by Algorithm 3.8 and the solver svd is about 0.0203 seconds and 0.0276
seconds, respectively.

Example 4.2. Let A ∈Hm×n be a random quaternion matrix with the fixed rank rank(A) = 5, where m ranges from 100 to
500 with increment of 50 and n = m/5.

For Example 4.2, we compare the numerical effectiveness of the following four state-of-the-art algorithms and Algo-
rithm 3.8.

• Implicit Jacobi algorithm: Cyclic classical one-sided Jacobi method in quaternion arithmetic in [22];
• svd: the solver in an open-source quaternion and octonion toolbox for MATLAB in [30];
• svdQ: The structure-preserving bidiagonalization method [24];
• lansvdQ: An iterative algorithm based on the Lanczos bidiagonalization in [13].

Figs. 1 and 2 show, respectively, the CPU time and the relative residual ‖AV (�) − U (�)�(�)‖F /‖A‖F at the final iterate
of the corresponding algorithms for different quaternion matrix sizes.

We can see from Fig. 1 that svd, svdQ, lansvdQ, and Algorithm 3.8 are more efficient than Implicit Jacobi
algorithm as the matrix size becomes larger. Also, Algorithm 3.8 is a little more effective than svd and lansvdQ is the

114 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
Fig. 2. Numerical results for Example 4.2.

Fig. 3. Computed singular values.

most effective since lansvdQ only computes the r dominant SVD triplets. Fig. 2 shows that all the five algorithms find the
solution with high accuracy (i.e., all the relative residuals are less than 1.0 × 10−14).

To further illustrate the effectiveness of Algorithm 3.8, Fig. 3 depicts the computed singular values of a 100 ×20 full rank
quaternion matrix by applying Implicit Jacobi algorithm, svdQ, Algorithm 3.8 and lansvdQ. We see from Fig. 3
that all algorithms obtain almost the same singular values except lansvdQ.

Example 4.3. An important application of the QSVD is image compression [28,29]. A color image can be represented by a
pure quaternion matrix A = [aij]m×n = Ri + Gj + Bk, where R , G , B represent the red, green, blue parts of the color image.
For demonstration purpose, we consider the color image compression for the color images Snowberg, Rabbit and Eiffel
Tower (Eiffel) (see Figure 5(a)), whose sizes are 50 × 50, 50 × 50 and 50 × 100, accordingly.

We apply Algorithm 3.8 to Example 4.3. Fig. 4 shows the singular values of the original three color images Snowberg,
Rabbit and Eiffel, accordingly. We can see that the singular values of these images decay very fast.

For each color image A, in Example 4.3, we use Algorithm 3.8 to compute its SVD such that AV (�) = U (�)�(�) , where
U (�) , �(�) , and V (�) are given by (3.25). Then we can compress the image by a lower-rank matrix approximation:

Ak =
k∑

w=1

σ
(�)
w u(�)

w (v(�)
w)∗, (4.1)

where {σ (�)
w }k

w=1 are the k largest singular values of A, u(�)
w and v(�)

w are the left and right singular vectors of A corre-

sponding to σ (�)
w for w = 1, . . . , k.

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 115
Fig. 4. Singular values of the color images Snowberg, Rabbit, and Eiffel.

Fig. 5. Original images and compressed images for k = 10,20,30,40.

Fig. 5 displays the original images and the compressed images for k = 10, 20, 30, and 40. We observe from Fig. 5 that
small k already provides good estimations of the original color images. Meanwhile, the storage requirements drop from 3mn
to k(4m + 4n + 1).

To further illustrate the effectiveness of our algorithm, we check the image quality for the compressed images, which are
estimated by using Algorithm 3.8, lansvdQ, svd, and svdQ to Example 4.3. The peak signal-to-noise ratios (PSNRs) of the
compressed images are listed in Table 1 for different k. The PSNR between the original image f and a test image g , both of
size m × n, is defined by:

P S N R(f , g) = 10 log10

(
2552

M S E(f , g)

)
,

where MSE means the mean squared error defined by

M S E(f , g) = 1

mn

m∑
i=1

n∑
j=1

(f i j − gij)
2.

From Table 1, we see that Algorithm 3.8 gives almost the same PSNR as lansvdQ, svd, and svdQ.

116 R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117
Table 1
Comparative results of different algorithms.

Image Method k = 10 k = 20 k = 30 k = 40

Snowberg Algorithm 3.8 35.0174 36.2627 36.4838 36.4980
lansvdQ 35.0174 36.2627 36.4838 36.4980
svd 35.0174 36.2627 36.4838 36.4980
svdQ 35.0174 36.2627 36.4838 36.4980

Rabbit Algorithm 3.8 30.5390 34.8253 36.9304 37.3062
lansvdQ 30.5390 34.8253 36.9304 37.3062
svd 30.5390 34.8253 36.9304 37.3062
svdQ 30.5390 34.8253 36.9304 37.3062

Eiffel Algorithm 3.8 29.3831 32.3879 34.0893 34.6324
lansvdQ 29.3831 32.3879 34.0893 34.6357
svd 29.3831 32.3879 34.0893 34.6324
svdQ 29.3831 32.3879 34.0893 34.6324

5. Conclusions

In this paper, we have proposed a real structure-preserving one-sided cyclic Jacobi algorithm for computing the QSVD.
This algorithm involves a sequence of column orthogonalizations in pairs via a sequence of orthogonal JRS-symplectic Jacobi
rotations to the real counterpart of a quaternion matrix. The quadratic convergence is established especially. We also report
some numerical results to illustrate the effectiveness of our algorithm. An interesting question is how to implement the
proposed algorithm in parallel, which is the focus of our future work.

Acknowledgement

We are very grateful to the editor and the anonymous referees for their valuable comments.

References

[1] A.I. Arbab, The quaternionic quantum mechanics, Appl. Phys. Res. 3 (2011) 160–170.
[2] R. Brent, F. Luk, The solution of singular value and symmetric eigenvalue problems on multiprocessor arrays, SIAM J. Sci. Stat. Comput. 6 (1985) 69–84.
[3] A.J. Davies, B.H.J. Mckellar, Observability of quaternionic quantum-mechanics, Phys. Rev. A 46 (1992) 3671–3675.
[4] E. Doukhnitch, E. Ozen, Hardware-oriented algorithm for quaternion-valued matrix decomposition, IEEE Trans. Circuits Syst. II, Express Briefs 58 (2011)

225–229.
[5] S. Enshaeifar, S. Kouchaki, C.C. Took, S. Sanei, Quaternion singular spectrum analysis of electroencephalogram with application in sleep analysis, IEEE

Trans. Neural Syst. Rehabil. Eng. 24 (2016) 57–67.
[6] D. Finkelstein, J.M. Jauch, D. Speiser, Notes on Quaternion Quantum Mechanics, CERN, Report 59-7, Logico-Algebraic Approach to Quantum Mechanics

II, 1979, pp. 367–421.
[7] S. Gai, G.W. Yang, M.H. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition, Multidimens. Syst. Signal

Process. 26 (2015) 307–320.
[8] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, 1996.
[9] W.R. Hamilton, On quaternions, in: Proceeding of the Royal Irish Academy, November 11, 1844.

[10] W.R. Hamilton, Elements of Quaternions, Longmans, Green and Co., London, 1866.
[11] Z.G. Jia, M.S. Wei, S.T. Ling, A new structure-preserving method for quaternion Hermitian eigenvalue problems, J. Comput. Appl. Math. 239 (2013)

12–24.
[12] Z.G. Jia, S.T. Ling, M.X. Zhao, Color two-dimensional principal component analysis for face recognition based on quaternion model, Lect. Notes Comput.

Sci. 10361 (2017) 177–189.
[13] Z.G. Jia, M.K. Ng, G.J. Song, Lanczos method for large-scale quaternion singular value decomposition, Numer. Algorithms (2018) 1–19.
[14] Z.G. Jia, M.S. Wei, M.X. Zhao, Y. Chen, A new real structure-preserving quaternion QR algorithm, J. Comput. Appl. Math. 343 (2018) 26–48.
[15] Z.G. Jia, M.K. Ng, G.J. Song, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra Appl. 26 (2019) e2245.
[16] Z.G. Jia, M.K. Ng, W. Wang, Color image restoration by saturation-value (SV) total variation, SIAM J. Imaging Sci. 12 (2019) 972–1000.
[17] T. Jiang, Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory, J. Math. Phys. 46 (2005) 052106.
[18] I.L. Kantor, A.S. Solodovnikov, Hypercomplex Numbers, An Elementary Introduction to Algebras, Springer, Berlin, 1989.
[19] N. Le Bihan, Traitement algébrique des signaux vectoriels. Application en séparation d’ondes sismiques, PhD Thesis, INPG, 2001.
[20] N. Le Bihan, J. Mars, Singular value decomposition of matrices of quaternions: a new tool for vector-sensor signal processing, Signal Process. 84 (2004)

1177–1199.
[21] N. Le Bihan, S.J. Sangwine, Quaternion principal component analysis of color images, in: Proc. Int. Conf. Image Process., ICIP 2003, vol. 1, 2003, pp.

I-809-1–I-809-12.
[22] N. Le Bihan, S.J. Sangwine, Jacobi method for quaternion matrix singular value decomposition, Appl. Math. Comput. 187 (2007) 1265–1271.
[23] S.D. Leo, P. Rotelli, Quaternion scalar field, Phys. Rev. D 45 (1992) 575–579.
[24] Y. Li, M.S. Wei, F.X. Zhang, J.L. Zhao, A fast structure-preserving method for computing the singular value decomposition of quaternion matrices, Appl.

Math. Comput. 235 (2014) 157–167.
[25] Y. Li, M.S. Wei, F.X. Zhang, J.L. Zhao, Real structure-preserving algorithms of Householder based transformations for quaternion matrices, J. Comput.

Appl. Math. 305 (2016) 82–91.
[26] F. Liu, L.H. Ma, C. Liu, Z.M. Lu, Optimal blind watermarking for color images based on the U matrix of quaternion singular value decomposition,

Multimed. Tools Appl. 77 (2018) 23483–23500.

http://refhub.elsevier.com/S0168-9274(19)30226-0/bib41723131s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib424C3835s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib444D3932s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib444F3131s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib444F3131s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib454B3136s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib454B3136s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib666A3539s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib666A3539s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib47593135s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib47593135s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib676C3839s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib68616D696C746F6E3434s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib68616D696C746F6E3636s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A776C3133s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A776C3133s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A6C7A3137s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A6C7A3137s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A6E733138s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A777A633138s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A6E733139s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A6E773139s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6A3035s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6B733839s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C3031s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib626D3034s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib626D3034s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib62733033s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib62733033s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib626973613037s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C723932s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C773134s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C773134s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C777A7A3136s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C777A7A3136s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C6D3138s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6C6D3138s1

R.-R. Ma, Z.-J. Bai / Applied Numerical Mathematics 147 (2020) 101–117 117
[27] R.-R. Ma, Z.G. Jia, Z.-J. Bai, A structure-preserving Jacobi algorithm for quaternion Hermitian eigenvalue problems, Comput. Math. Appl. 75 (2018)
809–820.

[28] S.C. Pei, J.H. Cheng, J.J. Ding, Quaternion matrix singular value decomposition and its applications for color image processing, in: Proc. 2003 Int. Conf.
Image Processing, ICIP 2003, vol. 1, 2003, pp. 805–808.

[29] H.S. Prasantha, H.L. Shashidhara, K.N. Balasubramanya Murthy, Image compression using SVD, in: Proceedings of the International Conference on
Computational Intelligence and Multimedia Applications, IEEE Computer Society, 2007, pp. 143–145.

[30] S.J. Sangwine, N.L. Bihan, Quaternion toolbox for Matlab, [online], Software library. Available: http://qtfm .sourceforge .net/.
[31] S.J. Sangwine, N. Le Bihan, Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion House-

holder transformations, Appl. Math. Comput. 182 (2006) 727–738.
[32] H.P.M. van Kempen, On the quadratic convergence of the special cyclic Jacobi method, Numer. Math. 9 (1966) 19–22.
[33] M.H. Wang, M.S. Wei, Y. Feng, An iterative algorithm for least squares problem in quaternionic quantum theory, Comput. Phys. Commun. 179 (2008)

203–207.
[34] J.H. Wilkinson, Note on the quadratic convergence of the cyclic Jacobi process, Numer. Math. 4 (1962) 296–300.
[35] J.H. Wilkinson, The QR algorithm for real symmetric matrices with multiple eigenvalues, Comput. J. 8 (1965) 85–87.
[36] Y. Xu, L. Yu, H. Xu, T. Nguyen, Vector sparse representation of color image using quaternion matrix analysis, IEEE Trans. Image Process. 24 (2015)

1315–1329.
[37] C.C. Yi, Y. Lv, Z. Dang, H. Xiao, X. Yu, Quaternion singular spectrum analysis using convex optimization and its application to fault diagnosis of rolling

bearing, Measurement 103 (2017) 321–332.
[38] F.Z. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl. 251 (1997) 21–57.

http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6D6A623138s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib6D6A623138s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib7063643033s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib7063643033s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib5053423037s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib5053423037s1
http://qtfm.sourceforge.net/
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib736162693036s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib736162693036s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib766B3636s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib7777663038s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib7777663038s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib773632s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib773635s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib5859584E3135s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib5859584E3135s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib594C3137s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib594C3137s1
http://refhub.elsevier.com/S0168-9274(19)30226-0/bib7A68616E67663937s1

	A structure-preserving one-sided Jacobi method for computing the SVD of a quaternion matrix
	1 Introduction
	2 Preliminaries
	3 Structure-preserving one-sided cyclic Jacobi algorithm
	4 Numerical examples
	5 Conclusions
	Acknowledgement
	References

