4,550 research outputs found

    Threshold queueing describes the fundamental diagram of uninterrupted traffic

    Get PDF
    Queueing due to congestion is an important aspect of road traffic. This paper provides a brief overview of queueing models for traffic and a novel threshold queue that captures the main aspects of the empirical shape of the fundamental diagram. Our numerical results characterises the sources of variation that influence the shape of the fundamental diagram

    Queues and risk processes with dependencies

    Get PDF
    We study the generalization of the G/G/1 queue obtained by relaxing the assumption of independence between inter-arrival times and service requirements. The analysis is carried out for the class of multivariate matrix exponential distributions introduced in [12]. In this setting, we obtain the steady state waiting time distribution and we show that the classical relation between the steady state waiting time and the workload distributions re- mains valid when the independence assumption is relaxed. We also prove duality results with the ruin functions in an ordinary and a delayed ruin process. These extend several known dualities between queueing and risk models in the independent case. Finally we show that there exist stochastic order relations between the waiting times under various instances of correlation

    Partially shared buffers with full or mixed priority

    Get PDF
    This paper studies a finite-sized discrete-time two-class priority queue. Packets of both classes arrive according to a two-class discrete batch Markovian arrival process (2-DBMAP), taking into account the correlated nature of arrivals in heterogeneous telecommunication networks. The model incorporates time and space priority to provide different types of service to each class. One of both classes receives absolute time priority in order to minimize its delay. Space priority is implemented by the partial buffer sharing acceptance policy and can be provided to the class receiving time priority or to the other class. This choice gives rise to two different queueing models and this paper analyses both these models in a unified manner. Furthermore, the buffer finiteness and the use of space priority raise some issues on the order of arrivals in a slot. This paper does not assume that all arrivals from one class enter the queue before those of the other class. Instead, a string representation for sequences of arriving packets and a probability measure on the set of such strings are introduced. This naturally gives rise to the notion of intra-slot space priority. Performance of these queueing systems is then determined using matrix-analytic techniques. The numerical examples explore the range of service differentiation covered by both models
    corecore