457 research outputs found

    ReForm:integrating physical and digital design through bidirectional fabrication

    Get PDF
    Digital fabrication machines such as 3D printers and laser-cutters allow users to produce physical objects based on virtual models. The creation process is currently unidirectional: once an object is fabricated it is separated from its originating virtual model. Consequently, users are tied into digital modeling tools, the virtual design must be completed before fabrication, and once fabricated, re-shaping the physical object no longer influences the digital model. To provide a more flexible design process that allows objects to iteratively evolve through both digital and physical input, we introduce bidirectional fabrication. To demonstrate the concept, we built ReForm, a system that integrates digital modeling with shape input, shape output, annotation for machine commands, and visual output. By continually synchronizing the physical object and digital model it supports object versioning to allow physical changes to be undone. Through application examples, we demonstrate the benefits of ReForm to the digital fabrication process

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii

    deForm: An interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

    Get PDF
    We introduce a novel input device, deForm, that supports 2.5D touch gestures, tangible tools, and arbitrary objects through real-time structured light scanning of a malleable surface of interaction. DeForm captures high-resolution surface deformations and 2D grey-scale textures of a gel surface through a three-phase structured light 3D scanner. This technique can be combined with IR projection to allow for invisible capture, providing the opportunity for co-located visual feedback on the deformable surface. We describe methods for tracking fingers, whole hand gestures, and arbitrary tangible tools. We outline a method for physically encoding fiducial marker information in the height map of tangible tools. In addition, we describe a novel method for distinguishing between human touch and tangible tools, through capacitive sensing on top of the input surface. Finally we motivate our device through a number of sample applications

    Recompose - Direct and Gestural Interaction with an Actuated Surface

    Get PDF
    We present Recompose, a new system for manipulation of an actuated surface. By collectively utilizing the body as a tool for direct manipulation alongside gestural input for functional manipulation, we show how a user is afforded unprecedented control over an actuated surface. Our invention consists of the actuated surface and the interaction technique utilizing free-hand and touch gestures to manipulate the 3D geometry of the pin array, thus changing the of shape of the virtual object

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques
    • …
    corecore