149,339 research outputs found

    The benefits of opening recommendation to human interaction

    Get PDF
    This paper describes work in progress that uses an interactive recommendation process to construct new objects which are tailored to user preferences. The novelty in our work is moving from the recommendation of static objects like consumer goods, movies or books, towards dynamically-constructed recommendations which are built as part of the recommendation process. As a proof-of-concept we build running or jogging routes for visitors to a city, recommending routes to users according to their preferences and we present details of this system

    Energy-Optimal Routes for Electric Vehicles

    Get PDF
    Abstract. We study the problem of electric vehicle route planning, where an important aspect is computing paths that minimize energy consumption. Thereby, any method must cope with specific properties, such as recuperation, battery constraints (over- and under-charging), and frequently changing cost functions (e. g., due to weather conditions). This work presents a practical algorithm that quickly computes energy-optimal routes for networks of continental scale. Exploiting multi-level overlay graphs [26, 31], we extend the Customizable Route Planning approach [8] to our scenario in a sound manner. This includes the efficient computation of profile queries and the adaption of bidirectional search to battery constraints. Our experimental study uses detailed consumption data measured from a production vehicle (Peugeot iOn). It reveals for the network of Europe that a new cost function can be incorporated in about five seconds, after which we answer random queries within 0.3ms on average. Additional evaluation on an artificial but realistic [22, 36] vehicle model with unlimited range demonstrates the excellent scalability of our algorithm: Even for long-range queries across Europe it achieves query times below 5ms on average—fast enough for interactive applications. Altogether, our algorithm exhibits faster query times than previous approaches, while improving (metric-dependent) preprocessing time by three orders of magnitude.

    Keyword-aware Optimal Route Search

    Full text link
    Identifying a preferable route is an important problem that finds applications in map services. When a user plans a trip within a city, the user may want to find "a most popular route such that it passes by shopping mall, restaurant, and pub, and the travel time to and from his hotel is within 4 hours." However, none of the algorithms in the existing work on route planning can be used to answer such queries. Motivated by this, we define the problem of keyword-aware optimal route query, denoted by KOR, which is to find an optimal route such that it covers a set of user-specified keywords, a specified budget constraint is satisfied, and an objective score of the route is optimal. The problem of answering KOR queries is NP-hard. We devise an approximation algorithm OSScaling with provable approximation bounds. Based on this algorithm, another more efficient approximation algorithm BucketBound is proposed. We also design a greedy approximation algorithm. Results of empirical studies show that all the proposed algorithms are capable of answering KOR queries efficiently, while the BucketBound and Greedy algorithms run faster. The empirical studies also offer insight into the accuracy of the proposed algorithms.Comment: VLDB201

    Dynamic Time-Dependent Route Planning in Road Networks with User Preferences

    Full text link
    There has been tremendous progress in algorithmic methods for computing driving directions on road networks. Most of that work focuses on time-independent route planning, where it is assumed that the cost on each arc is constant per query. In practice, the current traffic situation significantly influences the travel time on large parts of the road network, and it changes over the day. One can distinguish between traffic congestion that can be predicted using historical traffic data, and congestion due to unpredictable events, e.g., accidents. In this work, we study the \emph{dynamic and time-dependent} route planning problem, which takes both prediction (based on historical data) and live traffic into account. To this end, we propose a practical algorithm that, while robust to user preferences, is able to integrate global changes of the time-dependent metric~(e.g., due to traffic updates or user restrictions) faster than previous approaches, while allowing subsequent queries that enable interactive applications

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    User-interface to a CCTV video search system

    Get PDF
    The proliferation of CCTV surveillance systems creates a problem of how to effectively navigate and search the resulting video archive, in a variety of security scenarios. We are concerned here with a situation where a searcher must locate all occurrences of a given person or object within a specified timeframe and with constraints on which camera(s) footage is valid to search. Conventional approaches based on browsing time/camera based combinations are inadequate. We advocate using automatically detected video objects as a basis for search, linking and browsing. In this paper we present a system under development based on users interacting with detected video objects. We outline the suite of technologies needed to achieve such a system and for each we describe where we are in terms of realizing those technologies. We also present a system interface to this system, designed with user needs and user tasks in mind

    Using GIS to Explore the Technical and Social Aspects of Site Selection for Radioactive Waste Disposal Facilities

    Get PDF
    This working paper reviews the current situation regarding radioactive waste disposal in the UK and questions the pursuance of a purely engineering approach to gaining public support. Past histories concerning the siting of nuclear industry facilities; power stations and latterly, waste repositories, are briefly discussed and used to demonstrate that more attention needs to be paid to the geographical and social science if current proposlas for a rock laboratory, and ultimately and operational repository, at Longlands Farm near Sellafield are to succeed. The usefulness of Geographical Information Systems (GIS) and associated spatial information technologies are highlighted. Suggestions are made as to how these may be made available for public use via the Internet in adopting a more open approach to public information, consultation and participation
    • …
    corecore