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Abstract. We study the problem of electric vehicle route planning, where an important aspect is
computing paths that minimize energy consumption. Thereby, any method must cope with specific
properties, such as recuperation, battery constraints (over- and under-charging), and frequently
changing cost functions (e. g., due to weather conditions). This work presents a practical algorithm
that quickly computes energy-optimal routes for networks of continental scale. Exploiting multi-level
overlay graphs [26, 31], we extend the Customizable Route Planning approach [8] to our scenario
in a sound manner. This includes the efficient computation of profile queries and the adaption of
bidirectional search to battery constraints. Our experimental study uses detailed consumption data
measured from a production vehicle (Peugeot iOn). It reveals for the network of Europe that a new
cost function can be incorporated in about five seconds, after which we answer random queries
within 0.3ms on average. Additional evaluation on an artificial but realistic [22, 36] vehicle model
with unlimited range demonstrates the excellent scalability of our algorithm: Even for long-range
queries across Europe it achieves query times below 5ms on average—fast enough for interactive
applications. Altogether, our algorithm exhibits faster query times than previous approaches, while
improving (metric-dependent) preprocessing time by three orders of magnitude.

1 Introduction

Web-based route planning and on-board navigation have become a commodity for millions of
users. A particularly important problem is the explicit consideration of electric vehicles that
usually employ a rather limited cruising range. To overcome range anxiety—the fear of getting
stranded—careful guidance of the user is crucial. We, therefore, study the problem of quickly
computing routes that minimize energy consumption in order to maximize cruising range. This
imposes two nontrivial challenges: Recuperation allows the vehicle to recharge its battery (e. g.,
when driving downhill), and the battery capacity imposes constraints on the range and the
amount of recuperable energy. Modeling energy consumption precisely is thereby important,
since it is strongly influenced by factors, such as the vehicle’s load, auxiliary consumers, weather
condition, driving style, and traffic conditions [35]. While some factors are static, others, such as
weather conditions and vehicle load, are not.

Related Work Route planning on road networks in general has seen substantial algorithmic
progress over the past years. While the problem can be solved by Dijkstra’s algorithm [16], it is
too slow in practice. Therefore, a multitude of speedup techniques use an offline preprocessing
phase to accelerate queries (see [11, 32] for surveys). Most were developed for static arc costs
representing travel times. A notable exception is Customizable Route Planning (CRP) by Delling
et al. [8]. Based on multilevel overlay graphs [10, 24, 26, 30, 31], it is explicitly designed to work
with arbitrary metrics and is able to integrate new cost functions in mere seconds. Regarding
electric vehicles, Artmeier at al. [1] observe that using energy consumption as metric may result
in negative cost values for some arcs (though, physical constraints prohibit negative cycles).
They use a simplistic energy consumption model and handle negative costs by variants of
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label-correcting Dijkstra [15] and Bellman-Ford [4] algorithms, from which the latter turns out to
be too slow in practice. To get rid of negative arc costs, one can use a technique called potential
shifting [25]. This re-enables Dijkstra’s algorithm. Using a (slightly) more realistic physical energy
consumption (from which potentials are directly obtained) [28], Artmeier et al. combine potential
shifting with goal-directed search [21] to get a factor of three speedup over their (previous)
label-correcting approach. Demestichas et al. [14] use machine learning to obtain consumption
data from real electric vehicles in field tests. However, their work does not focus on routing
algorithms. In contrast, Eisner et al. [18, 34] use a relatively simple consumption model based
on distance and height difference. For route planning they go beyond potential shifting, and
integrate battery constraints into the arc costs by modeling them as piecewise linear functions.
This is similar to the time-dependent case [3, 12, 17], however, function complexity is much lower.
Exploiting this similarity, the authors adapt Contraction Hierarchies (CH) [3, 19] to the scenario
of optimizing energy consumption. To handle functional arc costs in witness searches [19] during
preprocessing, they do not perform profile queries [7, 12]. Instead, they acquire upper bounds on
witness paths by sampling, in order to improve preprocessing time at the cost of query speed.
Using this approach, query times of 38–45ms are achieved on country-scale networks after several
hours of preprocessing [34].

Our Contribution In this work, we present a practical approach to optimize energy consumption
for electric vehicles that is fast both in (metric-dependent) preprocessing as well as in query
speed, even on continental networks. For that, we carefully extend the Customizable Route
Planning (CRP) method of Delling et al. [8] to handle recuperation (i. e., negative costs) and
battery capacity constraints. Modeling such constraints as a special form of piecewise linear
functions enables us to compute profile queries efficiently—a crucial ingredient for CRP’s
preprocessing in our scenario. Thereby, we achieve fast (metric-dependent) preprocessing of the
whole network within a few seconds. This enables flexible updates, e.g., due to hourly weather
forecasts, or refinements of the underlying consumption model (as is necessary when machine
learning approaches are used to improve the model [14]). Moreover, we present several query
algorithms, from which the most sophisticated variant simultaneously, and in parallel, employs a
backward search (from the destination t) that helps bound the forward search in order to “guide”
it toward t (similarly to [12, 20]), while considering battery constraints. In contrast to previous
work, our experimental study is based on highly detailed consumption data measured from a
real production vehicle (Peugeot iOn). It turns out that this vehicle model is harder for (our)
algorithms than previously considered (simpler) consumption models. On the continental road
network of Europe, we show that using our approach, energy-optimal routes can be computed
in 1.1ms time, easily enabling interactive applications. Moreover, we show that our algorithms
scale excellently with the available cruising range, making them robust to future developments
in increasing battery capacities.

This paper is organized as follows. Section 2 sets necessary notion. Section 3 introduces
our approach to electric vehicle route planning and describes how we compute profile queries.
Section 4 uses these ingredients to carefully extend CRP. Section 5 contains our experimental
study, while Section 6 concludes with interesting open problems.

2 Preliminaries

We model the road network as a (directed) graph G = (V,A) with n = |V | vertices and m = |A|
arcs. Intersections are represented by vertices v ∈ V , road segments by arcs (u, v) ∈ A. Vertices
have associated height values in meters (which are relevant to model energy consumption) given
by a function h : V → N. Arcs have associated distance values in meters (again, relevant for
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consumption) given by a function dist : A→ N. An s–t path P (in G), sometimes written Ps,t, is
a sequence P = [v1 = s, v2, . . . , vk = t] of vertices such that (vi, vi+1) ∈ A. If s and t coincide,
we call P a cycle.

To model energy consumption, we assign each arc a = (u, v) a cost function fa that
maps battery state of charge (SoC) levels b(u) (at vertex u; measured in mWh) to an energy
consumption value (also measured in mWh) which is required to traverse the arc a. The
function fa takes battery constraints into account [18], i. e., the maximum charge level—or
capacity—of the battery M , as well as the minimum SoC required for traversing a. See Fig. 1b-
1c for an example. We, therefore, consider a function space F consisting of functions of the
form f : R ∪ {−∞} → R ∪ {∞}, where ∞ and −∞ are special values to handle insufficient
charge. Our functions (must) fulfill the FIFO property, that is, for any SoC values x ≤ y it
must hold that x− f(x) ≤ y − f(y). In other words, having lower SoC values never improves
energy consumption. On F we require binary link (composition) and merge operations. Given two
functions f, g ∈ F, the link operation is defined as link(f, g) := f + g ◦ (id−f), whereas we define
merging f and g by merge(f, g) := min(f, g). Note that F is closed under both link and merge.
The cost function fP of a path P is defined by iteratively applying the link function. The cost of
an s–t path P with initial SoC b(s) = bs is fP (b(s)). Finally, an s–t path P with initial SoC bs is
called optimal (wrt. energy consumption), iff fP (bs) is minimal among all s–t paths. Note that,
by construction, infeasible paths, i. e., paths with b(vi) < 0 for any i, have infinite cost. By f , we
denote the lower bound of f , and by f its finite upper bound, i. e., the largest value of f that is
smaller than infinity (if such a value exist). Finally, we require designated functions f0(·) = 0
and f∞(·) =∞.

Fig. 1 illustrates our cost functions by using a small example graph. It shows the resulting
functions after applying link and merge operations. Note that cost functions f ∈ F are piecewise
linear, but not necessarily continuous, with varying degree of complexity: For single arcs a = (u, v),
functions fa have a simple form: Let ca denote the constant (i. e., ignoring battery constraints)
consumption cost of arc a. Then, for a positive arc, i. e., for which ca is positive, the arc’s cost
function is fa(b) =∞ for all SoC values b < ca, and fa(b) = ca, otherwise. For a negative arc a,
i. e., for which ca < 0, we set fa(b) = max(ca, b−M). Note that f

a
= ca. When linking a single

path P of negative and positive arcs, the resulting function fP is, unlike in time-dependent route
planning [11], of very limited complexity [18]. However, merging different paths might also result
in functions of O(|A|) line segments [6] (c. f. Fig. 1).

A potential is a function Π : V → R on the vertices. If for every arc a = (u, v) the condition
f

a
+Π(u)−Π(v) ≥ 0 holds, we call the potential feasible. Any (feasible) potential induces a

graph G′ of non-negative reduced arc costs by shifting the cost function at every arc a = (u, v),
setting f ′a = fa +Π(u)−Π(v).

A partition of the vertices V is a family C = {C1, . . . , Ck} of cells Ci ⊆ V , such that each
vertex v ∈ V is contained in exactly one cell Ci. More generally, a nested multilevel partition
of L levels is a family {C1, . . . , CL} of partitions with nested cells, that is, for each level ` ≤ L
and cell C`

i ∈ C` there must exist a cell C`+1
j ∈ C`+1 on level `+ 1, such that C`

i ⊆ C
`+1
j holds.

We call C`+1
j the supercell of C`

i . For consistency, we define C0 = V and CL+1 = {V }. An
arc (u, v) ∈ A is called a boundary arc on level `, iff u and v are in different cells of C`. In this
case, u and v are called boundary vertices (of level `). Note that a boundary vertex of level `
is also a boundary vertex on all lower levels. Many general graph partitioning algorithms are
available, several of which aim for balanced cells while minimizing the number of boundary
arcs [2]. For road networks, tailored algorithms, such as PUNCH [9] and BUFFOON [29], exist.

In this work, we study two problems: SoC queries and profile queries. In an SoC query, one
is given source and target vertices s, t ∈ V , and an initial SoC bs. It asks for a (single) optimal s–
t path departing at s with SoC bs. A profile query does not take bs as input, but asks for a set of
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Fig. 1. An example of link and merge operations for energy consumption cost functions: (a) the original graph
with constant energy consumption values; (b) the function induced by the arc with weight 4, mapping SoC onto
consumption; the shaded area depicts those consumption values that fulfill the battery constraints; (c) the function
induced by the arc with weight −2; (d) the resulting cost function after linking the black path; (e) the cost
functions of both the red and the black path; (f) the result after merging—note that this function also represents
the u–v profile.

optimal s–t paths for every value of bs ≤M . (Note that this corresponds to the s–t consumption
function.) It is a required preprocessing ingredient to many speedup techniques (such as ours)
and helpful for deciding how much to charge the battery before departing.

3 Basic Approach

Our baseline algorithm to compute SoC queries is a (label-correcting) variant of Dijkstra’s
algorithm, called LC. For every vertex v, it maintains a label lbl(v), initially set to∞, except lbl(s),
which is set to 0 (consumption). A priority queue Q is initialized with source vertex s and
key lbl(s). The main loop scans the vertex u of minimum key minKey(Q) by extracting it
from the queue. Then, for each arc a = (u, v), the algorithm evaluates its cost function fa for
SoC b(u) = bs − lbl(u). If lbl(u) + fa(b(u)) < lbl(v), it relaxes the arc by decreasing lbl(v) and
updating the queue, accordingly. The algorithm stops as soon as the queue runs empty. Then,
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for each vertex v, lbl(v) provably holds the minimum energy consumption necessary to reach v
when starting at s with SoC bs. Note that correctness follows from [17].

If arc costs are negative, the algorithm is label-correcting: It may scan vertices more than
once, if their labels are improved via sub-paths of negative length. It is well-known that this
might trigger (exponentially many) rescans over large parts of the graph. However, this is only
the case if negative shortest paths have a large positive prefix (in relation to the graph diameter),
which is unlikely in our scenario. Also note that our inputs do not contain negative cycles due to
physical constraints.

To get rid of negative costs completely, we also consider three potential shifting methods,
which re-enable (label-setting) Dijkstra’s algorithm. The first variant, Dij-PV, uses a potential
induced by an arbitrary fixed vertex v∗. It takes v∗ to set Π(v) = f

P
, where P is a minimum cost

v∗–v path. To compute these values, we run LC (once) evaluating the lower bound f
a
of arc costs.

The second variant, Dij-PS, runs multi-source LC to obtain potentials. Unlike Dij-PV, it initially
sets vertex labels to 0, and adds all vertices to the priority queue that have incident arcs with
negative cost (similarly to [25]). Finally, Dij-PH uses a height-induced potential Π(v) = γ · h(v).
Unlike [28], who use a specific physical energy consumption model to define γ, we determine γ
by a single linear scan over all arcs a = (u, v), maintaining a lower bound γ and an upper
bound γ. Since f

a
+ γh(u) − γh(v) ≥ 0 must hold, downhill arcs update γ, which is set

to γ = max(γ, f
a
/(h(v) − h(u))). Uphill arcs update γ = min(γ, f

a
/(h(v) − h(u))). If, in the

end, γ ≤ γ holds, γ yields a feasible potential (which is always the case for our experiments).
We apply the following stopping criteria: Dij-x stops, if the algorithm scans the target

vertex t. For LC, since it is label-correcting, this cannot be applied. However, by precomputing
the minimum shortest (possibly negative) path length π, it now checks minKey(Q) + π > lbl(t).
One could compute π by connecting a super source s′ and sink t′ with all vertices of G that
have incident arcs with negative cost, and then run an LC s′–t′ query. However, in practice,
the following method turned out to be faster (by factor 2–3). For every vertex, it runs an LC
query that uses f

a
as arc cost. It minimizes the minimum shortest path length whenever it scans

a vertex. Arcs a = (u, v) are only relaxed if they improve the head label lbl(v) to a negative
value. We stop each query if minKey(Q) ≥ 0 (the minimum negative path cannot have a positive
prefix). We do not reinitialize vertex labels between queries, since a search can be pruned if a
path with shorter prefix was found by a previous query.

3.1 Profile Queries

Although computationally more expensive, profile search is conceptually easy using cost functions:
Following [6], the algorithm maintains, for each vertex v, a label fv that represents an s–v
consumption profile (taking the form of a cost function; recall Fig. 1). It initializes fv = f∞ for
all v ∈ V , except fs = f0, and adds s to the priority queue Q with key(s) = 0. In the main loop,
the algorithm scans the vertex u of minimum key by extracting it from Q and scans its incidents
arcs a = (u, v); It computes fnew

v = link(fu, fa) and sets fv = merge(fv, f
new
v ), updating key(v)

if necessary. As key we use the lower bound of a vertex label, i. e., key(v) = f
v
. Note that this

approach is label-correcting (even after applying potential shifting) and that its performance
depends on the complexity of the cost functions [6]. We apply the following target pruning rule:
Given any cost function f , let bf ∈ [0,M ] denote the smallest SoC value, for which f(bf ) is
finite. Then, whenever the algorithm scans a vertex v, it checks if both bfv

≥ bft
and f

v
≥ f t

hold. If that is the case, the algorithm prunes the search at vertex v, i. e., it does not scan any
outgoing arcs of v.
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3.2 Implementation Details

In order to achieve best performance in practice, an efficient implementation of piecewise linear
functions is crucial. Because of their specific form (discontinuous; slope in {0, 1}), we implement
cost functions by storing pairs of point and slope. Since, in practice, our functions f consist of few
interpolation points on average, it is best to evaluate f(b) by a linear scan. As an optimization
we use a compressed function representation. It stores a single 32-bit integer for functions that
have simple form (explicitly checking for battery constraints in the algorithm). Following [12], we
implement link and merge by linear scans in general. However, for compressed functions these
operations are much simpler: They basically reduce to scalar additions/minimums, and some
border cases. To improve spatial locality of the profile search, we store vertex labels fv1 , . . . , fvn

as a dynamic adjacency array. For each label, it uses a flag to indicate if fv is a compressed
function, storing the (compressed) value directly at the label. If not, it stores (bit-compressed)
indices to an interpolation point array. Note that the number of interpolation points of fv may
vary during the algorithm. We mark empty slots in the array in order to make efficient (re-)use
of space. Our implementation for the experiments includes all of the improvements.

4 Overlays

This section introduces our acceleration technique, which extends the Customizable Route
Planning (CRP) approach, introduced by Delling et al. [8], exploiting ideas from [10, 24, 26, 30,
31]. It uses three phases: A (potentially costly) offline metric-independent preprocessing phase, a
metric-dependent preprocessing phase, called customization phase, and, finally, the (online) query
phase. Its main strength is that customization is very quick: A new metric can be incorporated
in a few seconds, even on continental networks, while a single arc cost can be updated in only a
few microseconds [8]. This is particularly important in our context, since energy consumption
of electric vehicles may vary with, for example, vehicle load and changing weather conditions,
or due to newly learned consumption data [14]. In the following, we recap the CRP algorithm,
describing our extensions along the way.

Preprocessing The preprocessing phase of CRP computes a multilevel overlay [26, 31] of the input
graph G = (V,A). An overlay is a graph G′ = (V ′ ⊆ V,A′), such that distances between vertices
of G′ are the same as in G. They are obtained from a nested multilevel partition (C1, . . . , CL), as
follows. For a fixed level `, the overlay graph of level ` consists of exactly the boundary vertices
of C`. Besides boundary arcs of G (with respect to C`), it also contains for each cell C ∈ C`

and all pairs of boundary vertices u, v ∈ C an arc (u, v). This results in a full clique of arcs
over the cell’s boundary vertices. Similarly to [8], we use a compact representation to store the
overlays: Instead of keeping separate graphs, we store a common vertex set for all levels (which is
equivalent to the boundary vertices of C1). Only clique arcs are kept in a separate data structure
per level, and they are organized as matrices of preallocated contiguous memory. (Note that
boundary arcs are already present in the input graph.) In contrast to [8], we reorder the vertices
of G, such that overlay vertices are pushed to the front (order by descending level), breaking
ties by cell. Non-overlay vertices are ordered by their level-1 cells. This improves spatial locality
for customization and query, and simplifies mapping between overlay and original vertices.
Preprocessing must only be rerun if the topology of the input changes (significantly). Since this
happens infrequently in practice, somewhat higher preprocessing times are not an issue.

Customization The customization phase uses the output of the preprocessing phase to compute
the metric of the overlays, i. e., for each clique arc it must compute its cost function. It proceeds
in a bottom-up fashion, starting with the lowest level. Within level `, each cell C ∈ C` is
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processed independently. A cell C is processed by running, for each boundary vertex u ∈ C,
a profile search (cf. Section 3.1) from u. The search is, thereby, restricted to cell C, i. e., it does
not relax any arcs pointing outside C. At every boundary vertex v ∈ C, this results in a cost
function fv, which is assigned to the clique arc (u, v) of cell C. Customization can be parallelized
by distributing different cells (on a level) among processors. In contrast to [8], the complexity
of the cost functions is not known in advance. In fact, our overlay uses a (single) dynamic
adjacency array to store interpolation points of clique arcs. Updates to this data structure
must be synchronized. A common approach is using locks, which is costly. Instead, each thread
locally maintains a log of the clique arc functions it has computed. These logs are sequentially
merged at the end of processing level `. However, preliminary experiments indicate that more
than 80% of the cost functions can be compressed. Only for the remaining cases a thread uses
its log; compressed functions are written to the overlay directly. Unlike the preprocessing phase,
customization is much faster, taking mere seconds in practice (cf. Section 5). Note that, like [8],
when processing level `+ 1, we make use of the (already computed) overlay of level `, which
significantly improves customization time.

SoC Query For vertices s, t, and initial SoC bs, the query operates on a search graph consisting
of, (a), the overlay graph of the topmost level L, (b), all cells from the overlay that contain s
or t, and (c), the subgraph of the original graph induced by the level-one cells that contain s or t.
Then, any algorithm from Section 3 can be run on this search graph to get provably optimal
solutions. Also, potentials computed for the original graph naturally carry over to the overlays.
From now on, we assume that potentials are always available, and refer to the algorithm as
Unidirectional Multi-Level-Dijkstra (Uni-MLD). Note that we do not need to explicitly extract
the search graph. Instead, the level and cell on which Uni-MLD scans arcs are determined
implicitly from the partition data [8]. To obtain the full path description, clique arcs a on level `
can be unpacked, by (recursively) running a local query on the overlay of level `− 1, restricted
to the cell of a [8].

Bidirectional Search A common technique to accelerate queries is bidirectional search. Basically,
it simultaneously runs a forward search from s and a backward search from t until a stopping
condition is met. Thereby, the algorithm minimizes a tentative distance value µ (initialized to
infinity), whenever the searches meet at a vertex m. After stopping, the shortest path of length µ
is obtained by concatenating Ps,m with Pm,t. Unfortunately, the final SoC at t is not known
in advance, which prevents running a regular SoC backward search. Therefore, we present two
approaches that augment [12] the backward search: Bidirectional Profile-Evaluating Multi-Level-
Dijkstra (BPE-MLD) and Bidirectional Distance-Bounding Multi-Level-Dijkstra (BDB-MLD).
Both use a regular SoC forward search.

The first (straightforward) approach, BPE-MLD, runs a backward profile search (cf. Sec-
tion 3.1) from t, which does not require an initial SoC value, computing v–t profiles fv as vertex
labels. Whenever either search scans an arc toward a vertex v that has already been touched by the
opposite search, it evaluates the profile fv (obtained from the backward search) at SoC b(v) (ob-
tained from the forward search as b(v) := bs − lbl(v)), thereby, minimizing µ := fv(b(v)). The
algorithm may stop as soon as any path it may still find has cost either exceeding µ or the
battery capacity M . Recall from Section 3.1 that the (backward) profile search uses lower
bounds (of its vertex labels) as keys in its priority queue QB. Hence, we stop the search as soon
as minKey(QF ) + minKey(QB) > min(µ,M) holds.

Unfortunately, running a backward profile search can be costly. Therefore, the second (more
sophisticated) approach, BDB-MLD, runs a (cheaper) backward search that bounds the forward
search in order to “guide” it toward t. Note that this is similar to [20]. However, we have to
carefully account for battery constraints. To do so, the backward search maintains, for every
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vertex v, three labels: Lower and upper bounds on the cost from v to t, denoted c(v) and c(v),
and a minimum battery SoC to reach t, denoted b(v). We define c(v) consistently with b(v): An
SoC of b(v) implies that t can be reached from v with cost at most c(v). Labels are initially
set to infinity, except at t, for which they are set to c(t) = c(t) = b(t) = 0. The backward
search is then running Dijkstra on c. When scanning an arc a = (u, v), it uses f

a
as metric.

Simultaneously (during the same arc scan), c and b are computed as follows. Let b ∈ [0,M ] be
the minimum SoC that is necessary to traverse a, i. e., the smallest value for which fa is finite.
Then the minimum SoC b(u) to travel from u to t is determined by the minimum of b itself and
the cost fa(b) of traversing a with SoC b plus b(v) (the minimum SoC to get from v to t). On
the other hand, the maximum cost at u is determined by c(v) + fa. Summarizing, whenever
the algorithm scans arc a = (u, v), it checks max(b(v) + fa(b), b) ≤ b(u) and c(v) + fa ≤ c(u),
updating b(u) and c(u), if necessary. The forward search now minimizes an upper bound µ on
the cost of the shortest s–t path. Whenever it scans a vertex v with SoC level b(v), it checks
if b(v) ≥ b(v). Only in this case, it tries to update µ by setting µ = min(µ, b(v) + c(v)). Moreover,
it (independently from the previous check) prunes the search at v (i. e., it does not scan outgoing
arcs from v), if either v was settled by the backward search and b(v) + c(v) ≥ min(µ,M), or
minKey(QF ) + minKey(QB) ≥ min(µ,M) holds. The algorithm stops when the forward search
reaches t and determines the cost b(t).

Parallelization To get additional speedup, we propose parallelizing the query in a multicore
scenario. We assign different processors to forward and backward search, where they run
independently. To minimize µ, each search must access vertex labels of the opposite search,
potentially involving a race condition. However, as long as reads to vertex labels are atomic, race
conditions can be safely ignored: The correct value µ will always be determined by the opposite
search (at a later point). Unfortunately, the backward search of BPE-MLD maintains non-atomic
functions as vertex labels. Updating µ is, therefore, restricted to the backward search (accesses
to labels of the forward search are still atomic). To ensure correctness, the forward search checks,
whenever it scans a vertex v, if v has already been touched by the backward search (which is an
atomic read). If so, it adds v to a list. At the end, this list is processed sequentially, checking if
any vertex improves µ. Note that this list is small in practice.

Reachability Flags To accelerate long-range queries for which the target is unreachable, we may
additionally precompute reachability flags: For the topmost level L of the partition, we keep a
bit matrix, whose entry i, j is set iff cell Cj is reachable from cell Ci. More precisely, we run,
for each cell Ci (in parallel), a Dijkstra on the level-L overlay from all boundary vertices of
cell Ci. It uses lower bounds fa

as costs. It sets all flags i, j of the matrix for which there exists
a boundary vertex of cell Cj at distance at most M . During a query we first check the flag for
the pair of cells containing s and t. If it is not set, we may stop immediately. In practice, storing
these bits requires little additional space.

5 Experiments

We implemented all algorithms in C++ using g++ 4.5.1 (flag -O3) as compiler. Experiments were
conducted on a dual 8-core Intel Xeon E5-2670 clocked at 2.6GHz, with 64GiB of DDR3-1600
RAM, 20MiB of L3 and 256KiB of L2 cache. Unless otherwise noted, we ran our implementation
sequentially.

Input Data and Methodology Our main test instances are based on the road network of Europe,
kindly provided by PTV AG. Road segments have associated average speeds and road categories.
We obtained height information for the vertices from the freely available NASA Shuttle Radar
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Topography Mission1 (SRTM) data. It covers large parts of the world with a horizontal resolution
of approximately 90 meters. We filled (rarely) missing data points by interpolating from neighbors.

Our energy consumption data stems from PHEM (Passenger Car and Heavy Duty Emission
Model), developed by the Graz University of Technology [22]. PHEM is a micro scale emission
model based on backwards longitudinal dynamics simulation. Beside other applications, PHEM
is used to calculate emissions for passenger cars, heavy and light duty vehicles for the Handbook
Emission Factors (HBEFA) [23]. The HBEFA driving cycles cover a large variety of road
categories, speed limits, traffic situations and slopes. These cycles were calculated using different
EV configurations and vehicle types to generate average energy consumption values for all
available driving situations. We carefully mapped them to our network by a heuristic that
measures the similarity between road segments of the PTV data and the parameters of PHEM.
Finally, we removed all vertices from the graph where either no height data is available (not
even via sensible interpolation), or which cannot be mapped to a PHEM road category (such
as “private” roads). We extracted the largest strongly connected component of the European
network (22 198 628 vertices, 51 088 095 arcs).

For our experiments, we use two instances of the PHEM data. The first, Europe PG-16, is
based on a Peugeot iOn with a battery capacity of 16 kWh, applied to the European network.
The second, Europe EV-85, is an artificial electric vehicle model [36], for which we assume a
larger battery capacity of 85 kWh (similar to that of the current high-end Tesla model). To get
the best possible cruising range, we disabled auxiliary consumers in both instances. Besides
extending the range, this also increases the amount of road segments where the vehicle is able to
recuperate (making the instances only “harder” for our algorithms): The resulting amount of
arcs with negative cost is 11.8% and 15.2% for Europe PG-16 and Europe EV-85, respectively.

As partitioning tool we used PUNCH [9], which is explicitly developed for road networks and
aims at minimizing the number of boundary arcs. For Europe, we use a 4-level partition with
maximum cell sizes of 26, 210, 214, 218 vertices (values determined by preliminary experiments).
Computing the partition took 24 minutes. Considering that the road topology changes rarely (i. e.,
the partition needs be updated only when roads are built or (permanently) closed), this is
sufficiently fast in practice. For a detailed evaluation of the tradeoff between partitioning speed
and quality, see [9].

Evaluating Algorithms Table 1 reports figures for our algorithms on both Europe PG-16 and
Europe EV-85. Note that since the range of the electric vehicles PG-16 and EV-85 is restricted,
evaluating random queries (as it is common) would not be meaningful: For most queries the
target vertex would be unreachable. Instead, we generate queries by first picking a random source
vertex s from which we run a preliminary query with initial SoC set to 110% of the vehicle’s
battery capacity (to still generate some out-of-range queries). The target vertex t is then picked
randomly from the search space of that query. Accordingly, we do not use reachability flags for
the experiments of Table 1.

We ran 10 000 queries for the MLD algorithms, and 1 000 (a subset) for LC, Dijkstra
and the profile query. SoC queries assume full battery capacity at s. Less capacity would only
result in faster query times. We report the number of vertex (re)scans and the query time (in
milliseconds). Customization time (in seconds) depicts, for the label-correcting algorithm LC,
the time to compute the minimum path distance used to enable the stopping criterion (sc.); for
all Dijkstra-based variants, the time to compute potentials; and for the MLD variants, the time
for both metric customization and computing potentials. Finally, we report the total amount
of (metric-dependent) space overhead in bytes per vertex (B/n).

1 http://www2.jpl.nasa.gov/srtm/
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Table 1. Evaluating our algorithms on both vehicle instances: A Peugeot iOn with a 16 kWh battery (Europe PG-
16) and an artificial vehicle with a 85 kWh battery (Europe EV-85). The column “sc.” indicates whether a stopping
criterion or target pruning rule is applied (•) or not (◦). We also report figures on an instance from [34]: It uses
the geographical distance and height difference of the arcs to model consumption and assumes unlimited capacity.

Europe PG-16 Europe EV-85 Japan DH-∞

CUSTOM. QUERIES CUSTOM. QUERIES CUSTOM. QUERIES
space time vertex time space time vertex time space time vertex time

Algorithm sc. [B/n] [s] scans [ms] [B/n] [s] scans [ms] [B/n] [s] scans [ms]

LC ◦ — — 393 833 54.5 — — 4471 230 709.6 — — 26 078 917 3 761.8
LC • 0.0 3.86 333 272 46.9 0.0 5.20 3 001 014 486.6 0.0 3.70 13 133 641 1 939.0
Dij-PH • 4.0 0.69 213 765 29.4 4.0 0.70 2 359 140 380.6 4.0 — 12 933 517 1 933.0
Dij-PV • 4.0 3.84 221 368 25.5 4.0 3.91 2 361 997 288.0 4.0 3.89 13 048 081 994.4
Dij-PS • 4.0 8.37 214 666 30.4 4.0 11.01 2 360 646 379.6 4.0 3.01 12 933 031 1 984.8

Prof-PH • 4.0 0.69 260 540 56.6 4.0 0.70 2 904 764 741.2 4.0 — 16 208 904 3 203

Uni-MLD-PH • 13.6 4.32 941 0.5 14.5 5.12 2 410 1.9 7.7 2.06 2 205 1.0
BPE-MLD-PH • 13.6 4.32 929 0.3 14.5 5.12 2 266 1.4 7.7 2.06 2 198 0.8
BDB-MLD-PH • 13.6 4.32 1 203 0.3 14.5 5.12 2 917 1.1 7.7 2.06 2 711 0.7

Dij-PH [34] • — — — — — — — — 4.0 — 14 431 809 6492.6
EVCH [34] • — — — — — — — — 23.0 14 329.87 10 024 44.9
EVCH (scaled) • — — — — — — — — 23.0 8 791.33 10 024 13.4

It is not surprising that the label-correcting approach is the slowest on both instances.
Although the number of vertex rescans is comparatively low (less than 10%; not shown in the
table), the rather weak stopping criterion, which has to add an offset to the tentative distance,
induces a larger search space size. However, by comparing the LC variants, we observe that
computing this offset already amortizes after 23 queries on average for EV-85.

The different variants of vertex potentials yield similar query times. Somewhat surpris-
ingly, Dij-PV has the best query times, however, with higher variance (available from Fig. 2; the
lower average value is mostly induced by long-range queries, see below for a detailed discussion).
Since Dij-PH has by far the smallest customization time, we use height-induced potentials for
the profile query and all MLD variants. Profile queries admit—in contrast to time-dependent
route planning [12]—practical running times in our scenario: We observe a slow down by a factor
of less than two over LC.

Regarding MLD, all variants provide query times of below two milliseconds on both European
instances. Customization only takes about five seconds (when parallelized), enabling very frequent
metric updates for the whole network in a server scenario; Customization of a single cell (e. g.,
when only local updates are required) is much faster and takes about 100ms (not shown in
the table). Bidirectional search yields another, yet small, speedup. We observe that BDB-
MLD slightly outperforms BPE-MLD (by about 15% on average). Note that depending on
the application, bidirectional search might not pay off: It is run on two cores but the speedup
achieved is less than two. Also note that customization times of Europe EV-85 are higher than
on Europe PG-16. We attribute this to the larger number of negative arcs in the former instance.
Space consumption is dominated by storing interpolation points. One can reduce it by removing
the lowest level of the partition for queries (keeping it only to accelerate customization) [8]: On
both European instances this saves space by a factor of two, while queries are slowed down by
only about 10% on average (not reported in the table). Furthermore, note that for all x-PH
variants, we include 4B/n space overhead for storing the height-induced potential Π(v) = γ ·h(v)
at each vertex. If height values are assumed to be already available as part of the input, we
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Fig. 2. Running times subject to Dijkstra rank for our algorithms on the Europe EV-1000 instance. Smaller
ranks indicate more local queries. Reachability flags for the MLD algorithms are disabled and battery capacity is
increased to the point where it does not constrain vehicle range.

could just store the single value γ, and compute Π(v) on-demand in the algorithm. This would
reduce customization space to about 10B/n on both European instances.

Evaluating Scalability Fig. 2 analyzes the scalability of our algorithms on the Europe EV-x
instance using the Dijkstra rank method [11]. Because of negative arc costs, we use the label-
correcting algorithm for computing ranks: It orders the vertices by the time they were last
extracted from the priority queue, from which ranks are determined. Moreover, to get meaningful
results, we increase battery capacity from 85 to 1 000 kWh (which corresponds to a cruising range
of roughly 5 000 km, enough to make all our random queries in-range). We report Dij-PH, Dij-
PV, Uni-MLD-PH, and BDB-MLD-PH. Values for each rank are obtained from 1 000 random
queries. We observe that our MLD-based algorithms are consistently faster than Dijkstra’s
algorithm. Except for very local queries (below rank 28), bidirectional search always pays off.
Interestingly, Dij-PV has much higher variance compared to Dij-PH, and significantly lower query
times for long-range queries. Recall that potentials of Dij-PV are determined by distances from a
single vertex, which seems to result in a highly distorted search space. We conclude that using our
most sophisticated method, BDB-MLD-PH, we achieve average (respective maximal) query times
of under 4.2ms (6.9ms), for any rank value, while Uni-MLD-PH still stays below 7.9ms (10.7ms).

Fig. 3 shows running times subject to Dijkstra rank for the instance Europe PG-16. In
contrast to Table 1 and Fig. 2, we enable reachability flags, keep battery capacity at 16 kWh, and
do not constrain query distance. Hence, the plot shows the effect of the flags on long-distance
queries for MLD variants. Starting with rank 219, query times drop gradually. Above rank 222,
the target is almost never reachable, yielding query times of under 0.01ms on average. The
topmost level of our partition contains 99 cells, hence, reachability flags require 992 bits (less
than 10 kb) of space in total. Computing them took less than 100ms. Similarly to Fig. 2, Dij-PV
is consistently slower and has a higher variance than Dij-PH in most cases, except for high ranks.

Comparison to Contraction Hierarchies At the time of writing, the fastest available approach
that computes energy-optimal routes for electric vehicles is based on Contraction Hierarchies [18,
34]. To compare our algorithms with that method, we also ran experiments on the largest
instance used in [34], which was kindly given to us by the authors. In the following, we refer to
their approach as EVCH (as in Electric Vehicle Contraction Hierarchies) and to their instance

11
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Fig. 3. Running times subject to Dijkstra rank for our algorithms on the Europe PG-16 instance. We enable
reachability flags for the MLD algorithms. As in Fig. 2, smaller ranks indicate more local queries.

by Japan DH-∞. It is based on an OpenStreetMap (OSM) export of the Japan road network,
augmented with SRTM data. It has 25 970 678 vertices and 54 141 580 arcs. Note that these
figures are slightly higher than for our European instance, however, OSM networks are notorious
for having exceptionally many vertices of low degree that (only) model geometry. To account for
that, we use a 4-level partition with increased maximum cell sizes of 27, 211, 215, 219 vertices.
Using PUNCH [9], computing the partition took less than half an hour.

Instead of detailed realistic vehicle data the instance uses a simple consumption model: Given
an arc a = (u, v), its cost is assumed to depend on horizontal distance and vertical heights, only.
More precisely, ca = κ·dist(a)+λ·(h(v)−h(u)), if h(v)−h(u) ≥ 0; ca = κ·dist(a)+α·(h(v)−h(u)),
otherwise. According to [34], we set κ = 0.02, λ = 1, α = 0.25, and assume very large battery
capacity. As a result, all queries are in-range, and reachability flags are disabled in our algorithm.
The amount of arcs with negative weight is 9.0%, which is less than for Europe (even though
Japan is comparably mountainous). The reason for this is the simpler consumption model, given
above parameters. Note that, when applying this model to the European network, we observe
that the amount of negative arcs also drops from 15.2% for EV-85 to only 4.4%.

Table 1 also reports results on Japan DH-∞. It shows figures for the Dijkstra and EVCH
implementations reported in [34], where a height-induced potential follows from the model (i. e.,
γ = α). Therefore, it does not require any customization time. Since these results were obtained
on slower machines, we report scaled timings (the bottom row of the table). We know of two
typical approaches to scale running times between machines: (a) Using running times of a
common baseline algorithm, and (b), having access to the same hardware for scaling experiments.
Unfortunately, the authors of [18, 34] use more than one machine (an AMD Opteron 6172
with 2.1GHz for preprocessing, and an Intel i3-2310M with 2.1GHz for queries) without reporting
scaling factors themselves. Therefore, we have to resort to both scaling approaches. For EVCH’s
query time, we scale very conservatively based on their and our Dij-PH implementation (assuming
that both implementations are equally well engineered). This maintains their reported speedup.
Since we have an Opteron 6172 available, scaling EVCH’s preprocessing time is done by our own
scaling experiment. Although not specifically mentioned in [18, 34], we infer that their Dijkstra
implementation uses a stopping criterion: The search space reported in [34] is about 56% of the
graph size.

At first glance, Japan DH-∞ seems to be harder than Europe: All LC and Dij-x variants
scan more vertices and have higher query times (Dij-PV still being consistently faster), which is
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due to the larger graph size and larger range of (random) queries. However, we observe that
the MLD variants all consistently perform better on Japan DH-∞ than on Europe. Recall that
OSM modeling overhead has an impact only for the lowest level of the partition.

In comparison to EVCH, our query is faster by an order of magnitude, while having a
factor of 4–5 smaller search space size. At the same time, our (metric-dependent) preprocess-
ing (customization) is faster by more than a factor of 4 000, while requiring a third of the space.
Even when run on a single core, which still only requires 20.98 s, customization of MLD is
more than 400 times as fast as EVCH preprocessing. Note that customizing a single arc only
requires 18.7ms for our approach (not reported in the table).

Clearly, some of these performance differences might be due to differently tuned implementa-
tions. Yet, our findings add to previous observations that separator-based approaches are more
robust for non-traveltime metrics than Contraction Hierarchies [8].

6 Final Remarks

In this paper we studied computing energy-optimal routes for electric vehicles, for which key
challenges include negative costs (recuperation), battery capacity constraints, and frequently
changing metrics. Based on the Customizable Route Planning (CRP) approach, our presented
algorithms handle these challenges in a sound manner. In particular, we introduced an algorithm
to compute profile queries (a necessary ingredient to CRP), and a nontrivial adaption of
bidirectional search. Experiments using real world consumption data on the continental network
of Europe indicate that our approach incorporates new metrics within seconds, after which
queries can be answered in 1.1ms or less, on average—making it the fastest available technique
for electric vehicle route planning.

Future work includes integrating turn costs (in terms of energy consumption) and recent
ideas from [13] into our algorithm. Also, building on results from [33], we are interested in adding
more criteria, such as travel time, to our approach (e. g., via Pareto-optimization) to trade off
speed and energy consumption (electric vehicles consume less energy when driven slower). We
are also interested in adapting to mobile dynamic scenarios [19]. Furthermore, re-applying ideas
from this work to EVCH might be worthwhile.

Finally, we thank Raphael Luz for providing the consumption data [23, 36], Renato Werneck
for running PUNCH [9], and Moritz Kobitzsch for interesting discussions. We also thank Christian
Schulz and Dennis Luxen for providing BUFFOON [29] and OSRM [27], respectively, which
we used in our preliminary experiments. We thank Sabine Storandt for making Japan DH-∞
available to us, and Konstantinos Demestichas for providing sample data on energy consumption
of electric vehicles.
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