1,730 research outputs found

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation

    Get PDF
    Background: The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Methodology/Principal Findings: Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. Conclusions/Significance: The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different. © 2011 Lau et al

    Depth-Dependent Physiological Modulators of the BOLD Response in the Human Motor Cortex

    Get PDF
    This dissertation proposes a set of methods for improving spatial localization of cerebral metabolic changes using functional magnetic resonance imaging (fMRI). Blood oxygen level dependent (BOLD) fMRI estabilished itself as the most frequently used technique for mapping brain activity in humans. It is non-invasive and allows to obtain information about brain oxygenation changes in a few minutes. It was discovered in 1990 and, since then, it contributed enormously to the developments in neuroscientific research. Nevertheless, the BOLD contrast suffers from inherent limitations. This comes from the fact that the observed response is the result of a complex interplay between cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen consumption (CMRO2) and has a strong dependency on baseline blood volume and oxygenation. Therefore, the observed response is mislocalized from the site where the metabolic activity takes place and it is subject to high variability across experiments due to normal brain physiology. Since the peak of BOLD changes can be as much as 4 mm apart from the site of metabolic changes, the problem of spatial mislocalization is particularly constraining at submillimeter resolution. Three methods are proposed in this work in order to overcome this limitation and make data more comparable. The first method involves a modification of an estabilished model for calibration of BOLD responses (the dilution model), in order to render it applicable at higher resolutions. The second method proposes a model-free scaling of the BOLD response, based on spatial normalization by a purely vascular response pattern. The third method takes into account the hypothesis that the cortical vasculature could act as a low-pass filter for BOLD fluctuations as the blood is carried downstream, and investigates differences in frequency composition of cortical laminae. All methods are described and tested on a depth-dependent scale in the human motor cortex

    Applicability of Quantitative Functional MRI Techniques for Studies of Brain Function at Ultra-High Magnetic Field

    Get PDF
    This thesis describes the development, implementation and application of various quantitative functional magnetic resonance imaging (fMRI) approaches at ultra-high magnetic field including the assessment with regards to applicability and reproducibility. Functional MRI (fMRI) commonly uses the blood oxygenation level dependent (BOLD) contrast to detect functionally induced changes in the oxy-deoxyhaemoglobin composition of blood which reflect cerebral neural activity. As these blood oxygenation changes do not only occur at the activation site but also downstream in the draining veins, the spatial specificity of the BOLD signal is limited. Therefore, the focus has moved towards more quantitative fMRI approaches such as arterial spin labelling (ASL), vascular space occupancy (VASO) or calibrated fMRI which measure quantifiable physiologically and physically relevant parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV) or cerebral metabolic rate of oxygen (CMRO2), respectively. In this thesis a novel MRI technique was introduced which allowed the simultaneous acquisition of multiple physiological parameters in order to beneficially utilise their spatial and temporal characteristics. The advantages of ultra-high magnetic field were utilised to achieve higher signal-to-noise and contrast-to-noise ratios compared to lower field strengths. This technique was successfully used to study the spatial and temporal characteristics of CBV, CBF and BOLD in the visual cortex. This technique is the first one that allows simultaneous acquisition of CBV, CBF and BOLD weighted fMRI signals in the human brain at 7 Tesla. Additionally, this thesis presented a calibrated fMRI technique which allowed the quantitative estimation of changes in cerebral oxygen metabolism at ultra-high field. CMRO2 reflects the amount of thermodynamic work due to neural activity and is therefore a significant physical measure in neuroscience. The calibrated fMRI approach presented in this thesis was optimised for the use at ultra-high field by adjusting the MRI parameters as well as implementing a specifically designed radio-frequency (RF) pulse. A biophysical model was used to calibrate the fMRI data based on the simultaneous acquisition of BOLD and CBF weighted MRI signals during a gas-breathing challenge. The reproducibility was assessed across multiple brain regions and compared to that of various physiologically relevant parameters. The results indicate that the degree of intra-subject variation for calibrated fMRI is lower than for the classic BOLD contrast or ASL. Consequently, calibrated fMRI is a viable alternative to classic fMRI contrasts with regards to spatial specificity as well as functional reproducibility. This calibrated fMRI approach was also compared to a novel direct calibration technique which relies on complete venous oxygenation saturation during the calibration scan via a gas-breathing challenge. This thesis introduced several reliable quantitative fMRI approaches at 7 Tesla and the results presented are a step forward to the wider application of quantitative fMRI.:1 Introduction 3 2 Background to Functional Magnetic Resonance Imaging 7 2.1 Magnetic Resonance 7 2.1.1 Quantum Mechanics 7 2.1.2 The Classical Point of View 10 2.1.3 Radio Frequency Pulses 12 2.1.4 Relaxation Effects 13 2.1.5 The Bloch Equations 15 2.2 Magnetic Resonance Imaging 16 2.2.1 Data Acquisition 16 2.2.2 Image Formation 17 2.2.2.1 Slice Selection 17 2.2.2.2 Frequency Encoding 18 2.2.2.3 Phase Encoding 19 2.2.2.4 Mathematics of Image Formation 20 2.2.2.5 Signal Formation 22 2.3 Advanced Imaging Methods 24 2.3.1 Echo-Planar Imaging (EPI) 24 2.3.2 Partial Fourier Acquisition 25 2.3.3 Generalised Autocalibrating Partially Parallel Acquisition (GRAPPA) 25 2.3.4 Inversion Recovery (IR) 26 2.3.5 Adiabatic Inversion 26 2.3.5.1 Hyperbolic Secant (HS) RF pulses 28 2.3.5.2 Time Resampled Frequency Offset Corrected Inversion (tr-FOCI) RF Pulses 28 2.4 Physiological Background 29 2.4.1 Neuronal Activity 30 2.4.2 Energy Metabolism 31 2.4.3 Physiological Changes During Brain Activation 32 2.4.4 The BOLD Contrast 34 2.4.5 Disadvantages of the BOLD Contrast 35 2.5 Arterial Spin Labelling (ASL) 35 2.5.1 Pulsed Arterial Spin Labelling 37 2.5.2 Arterial Spin Labelling at Ultra-High Field 41 2.6 Vascular Space Occupancy (VASO) 42 2.6.1 VASO at Ultra-High Field 44 2.6.2 Slice-Saturation Slab-Inversion (SS-SI) VASO 45 2.7 Calibrated Functional Magnetic Resonance Imaging 47 2.7.1 The Davis Model 47 2.7.2 The Chiarelli Model 50 2.7.3 The Generalised Calibration Model (GCM) 52 3 Materials and Methods 53 3.1 Scanner Setup 53 3.2 Gas Delivery and Physiological Monitoring System 53 3.3 MRI Sequence Developments 55 3.3.1 Tr-FOCI Adiabatic Inversion 55 3.3.2 Optimisation of the PASL FAIR QUIPSSII Sequence Parameters 60 3.3.3 Multi-TE Multi-TI EPI 64 4 Experiment I: Comparison of Direct and Modelled fMRI Calibration 68 4.1 Background Information 68 4.2 Methods 69 4.2.1 Experimental Design 69 4.2.2 Visuo-Motor Task 70 4.2.3 Gas Manipulations 71 4.2.4 Scanning Parameters 71 4.2.5 Data Analysis 72 4.2.6 M-value Modelling 72 4.2.7 Direct M-Value Estimation 73 4.3 Results 74 4.4 Discussion 79 4.4.1 M-value Estimation 79 4.4.2 BOLD Time Courses 82 4.4.3 M-Maps and Single Subject Analysis 82 4.4.4 Effects on CMRO2 Estimation 83 4.4.5 Technical Limitations and Implications for Calibrated fMRI 84 4.5 Conclusion 89 5 Experiment II: Reproducibility of BOLD, ASL and Calibrated fMRI 90 5.1 Background Information 90 5.2 Methods 91 5.2.1 Experimental Design 91 5.2.2 Data Analysis 91 5.2.3 Reproducibility 93 5.2.4 Learning and Habituation Effects 95 5.3 Results 95 5.4 Discussion 101 5.4.1 Breathing Manipulations 102 5.4.2 Functional Reproducibility 107 5.4.3 Habituation Effects on Reproducibility 109 5.4.4 Technical Considerations for Calibrated fMRI 110 5.5 Conclusion 112 6 Experiment III: Simultaneous Acquisition of BOLD, ASL and VASO Signals 113 6.1 Background Information 113 6.2 Methods 114 6.2.1 SS-SI VASO Signal Acquisition 114 6.2.2 ASL and BOLD Signal Acquisition 114 6.2.3 Experimental Design 114 6.2.4 Data Analysis 115 6.3 Results 115 6.4 Discussion 116 6.5 Conclusion 120 7 Conclusion and Outlook 12

    Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1). While the middle temporal area (MT) has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic), optimized coil design, ultrahigh field magnets (7 Tesla) and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
    corecore