13,265 research outputs found

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Actor based behavioural simulation as an aid for organisational decision making

    Get PDF
    Decision-making is a critical activity for most of the modern organizations to stay competitive in rapidly changing business environment. Effective organisational decision-making requires deep understanding of various organisational aspects such as its goals, structure, business-as-usual operational processes, environment where it operates, and inherent characteristics of the change drivers that may impact the organisation. The size of a modern organisation, its socio-technical characteristics, inherent uncertainty, volatile operating environment, and prohibitively high cost of the incorrect decisions make decision-making a challenging endeavor. While the enterprise modelling and simulation technologies have evolved into a mature discipline for understanding a range of engineering, defense and control systems, their application in organisational decision-making is considerably low. Current organisational decision-making approaches that are prevalent in practice are largely qualitative. Moreover, they mostly rely on human experts who are often aided with the primitive technologies such as spreadsheets and visual diagrams. This thesis argues that the existing modelling and simulation technologies are neither suitable to represent organisation and decision artifacts in a comprehensive and machine-interpretable form nor do they comprehensively address the analysis needs. An approach that advances the modelling abstraction and analysis machinery for organisational decision-making is proposed. In particular, this thesis proposes a domain specific language to represent relevant aspects of an organisation for decision-making, establishes the relevance of a bottom-up simulation technique as a means for analysis, and introduces a method to utilise the proposed modelling abstraction, analysis technique, and analysis machinery in an effective and convenient manner

    The use of building simulation within an architectural practice

    Get PDF
    This paper documents the development and implementation and use of simulation within an architectural practice and reports how its use facilitates the practice's commitment to Sustainable Design

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Enhancing Enterprise Resource Planning and Manufacturing Execution System efficiency with simulation-based decision support

    Get PDF
    Abstract: Business units inclusive of large, medium and small-scale entities traditionally conducts activities based on business processes. Globalization has resulted in the gradual introduction of various automation systems at various levels of the business enterprise, specifically focussed on capturing essential business activities across the entity. These systems, inclusive of Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES) and Plant systems has been adopted by larger corporates in executing and optimizing business functions. These large multinationals are described as complex entities with complex business structures inclusive of business processes. The quantification of automation, escalations and critical variables of these business processes has not been effectively conducted. A “systems thinking” approach adds the complexity of integrating all enterprise functions but creates a framework for evaluating the limitations and synergies so as to optimize these processes. This research focuses on the development and configuration of a simulation model for modelling enterprise maturity via business processes. This research approach includes hierarchical layout and segregation of these business processes, exploring these enterprise operations adopting business process tools, techniques, and methodologies aligned with a system thinking approach. A simulation framework is configured and tested. The results prove that a simulation model potentially benefits a complex organisation specific to evaluating time taken to conduct business processes. The results indicate that interdependent processes can be modelled together with determining impacts of multiple critical variables in reducing business process time

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • 

    corecore