5,237 research outputs found

    Distributed Port Scanning Detection

    Get PDF
    Conventional Network Intrusion Detection System (NIDS) have heavyweight processing and memory requirements as they maintain per flow state using data structures like linked lists or trees. This is required for some specialized jobs such as Stateful Packet Inspection (SPI) where the network communications between entities are recreated in its entirety to inspect application level data. The downside to this approach is that the NIDS must be in a position to view all inbound and outbound traffic of the protected network. The NIDS can be overwhelmed by a DDoS attack since most of these try and exhaust the available state of network entities. For some applications like port scan detection, we do not require to reconstruct the complete network tra�c. We propose to integrate a detector into all routers so that a more distributed detection approach can be achieved. Since routers are devices with limited memory and processing capabilities, conventional NIDS approaches do not work while integrating a detector in them. We describe a method to detect port scans using aggregation. A data structure called a Partial Completion Filter(PCF) or a counting Bloom filter is used to reduce the per flow state

    Centralized prevention of denial of service attacks

    Full text link
    The world has come to depend on the Internet at an increasing rate for communication, e-commerce, and many other essential services. As such, the Internet has become an integral part of the workings of society at large. This has lead to an increased vulnerability to remotely controlled disruption of vital commercial and government operations---with obvious implications. This disruption can be caused by an attack on one or more specific networks which will deny service to legitimate users or an attack on the Internet itself by creating large amounts of spurious traffic (which will deny services to many or all networks). Individual organizations can take steps to protect themselves but this does not solve the problem of an Internet wide attack. This thesis focuses on an analysis of the different types of Denial of Service attacks and suggests an approach to prevent both categories by centralized detection and limitation of excessive packet flows

    Containment of fast scanning computer network worms

    Get PDF
    This paper presents a mechanism for detecting and containing fast scanning computer network worms. The countermeasure mechanism, termed NEDAC, uses a behavioural detection technique that observes the absence of DNS resolution in newly initiated outgoing connections. Upon detection of abnormal behaviour by a host, based on the absence of DNS resolution, the detection system then invokes a data link containment system to block traffic from the host. The concept has been demonstrated using a developed prototype and tested in a virtualised network environment. An empirical analysis of network worm propagation has been conducted based on the characteristics of reported contemporary vulnerabilities to test the capabilities of the countermeasure mechanism. The results show that the developed mechanism is sensitive in detecting and blocking fast scanning worm infection at an early stage

    An Interactive Relaxation Approach for Anomaly Detection and Preventive Measures in Computer Networks

    Get PDF
    It is proposed to develop a framework of detecting and analyzing small and widespread changes in specific dynamic characteristics of several nodes. The characteristics are locally measured at each node in a large network of computers and analyzed using a computational paradigm known as the Relaxation technique. The goal is to be able to detect the onset of a worm or virus as it originates, spreads-out, attacks and disables the entire network. Currently, selective disabling of one or more features across an entire subnet, e.g. firewalls, provides limited security and keeps us from designing high performance net-centric systems. The most desirable response is to surgically disable one or more nodes, or to isolate one or more subnets.The proposed research seeks to model virus/worm propagation as a spatio-temporal process. Such models have been successfully applied in heat-flow and evidence or gestalt driven perception of images among others. In particular, we develop an iterative technique driven by the self-assessed dynamic status of each node in a network. The status of each node will be updated incrementally in concurrence with its connected neighbors to enable timely identification of compromised nodes and subnets. Several key insights used in image analysis of line-diagrams, through an iterative and relaxation-driven node labeling method, are explored to help develop this new framework

    Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    Get PDF
    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.Comment: 21 pages, 17 figures, Information Fusio

    On the Design of an Immersive Environment for Security-Related Studies

    Get PDF
    The Internet has become an essential part of normal operations of both public and private sectors. Many security issues are not addressed in the original Internet design, and security now has become a large concern for networking research and study. There is an imperative need to have an simulation environment that can be used to help study security-related research problems. In the thesis we present our effort to build such an environment: Real-time Immersive Network Simulation Environment (RINSE). RINSE features flexible configuration of models using various networking protocols and real-time user interaction. We also present the Estimate Next Infection (ENI) model we developed for Internet scanning worms using RINSE, and the effort of combining multiple resolutions in worm modeling

    Flexible Network Monitoring with FLAME

    Get PDF
    Increases in scale, complexity, dependency and security for networks have motivated increased automation of activities such as network monitoring. We have employed technology derived from active networking research to develop a series of network monitoring systems, but unlike most previous work, made application needs the priority over infrastructure properties. This choice has produced the following results: (1) the techniques for general infrastructure are both applicable and portable to specific applications such as network monitoring; (2) tradeoffs can benefit our applications while preserving considerable flexibility; and (3) careful engineering allows applications with open architectures to perform competitively with custom-built static implementations. These results are demonstrated via measurements of the lightweight active measurement environment (LAME), its successor, flexible LAME (FLAME), and their application to monitoring for performance and security

    固有アクセス率に基づくSlow Scan検出法

    Get PDF
    corecore