
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Distributed Port Scanning Detection
Himanshu Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Computer Sciences Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Singh, Himanshu, "Distributed Port Scanning Detection" (2009). Master's Projects. 142.
DOI: https://doi.org/10.31979/etd.k3gy-z9up
https://scholarworks.sjsu.edu/etd_projects/142

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DISTRIBUTED PORT SCANNING DETECTION

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

by

Himanshu Singh

May 2009

c© 2009

Himanshu Singh

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Robert Chun

Dr. Mark Stamp

Dr. Agustin Araya

APPROVED FOR THE UNIVERSITY

ABSTRACT

DISTRIBUTED PORT SCANNING DETECTION

by Himanshu Singh

Conventional Network Intrusion Detection System (NIDS) have heavyweight

processing and memory requirements as they maintain per �ow state using data

structures like linked lists or trees. This is required for some specialized jobs such as

Stateful Packet Inspection (SPI) where the network communications between entities

are recreated in its entirety to inspect application level data. The downside to this

approach is that the NIDS must be in a position to view all inbound and outbound

tra�c of the protected network. The NIDS can be overwhelmed by a DDoS attack

since most of these try and exhaust the available state of network entities. For some

applications like port scan detection, we do not require to reconstruct the complete

network tra�c. We propose to integrate a detector into all routers so that a more

distributed detection approach can be achieved. Since routers are devices with limited

memory and processing capabilities, conventional NIDS approaches do not work while

integrating a detector in them. We describe a method to detect port scans using

aggregation. A data structure called a Partial Completion Filter(PCF) or a counting

Bloom �lter is used to reduce the per �ow state.

DEDICATION

To my family. Thanks for all the support!

v

ACKNOWLEDGEMENTS

I would like to thank Dr Chun for the guidance and support that he o�ered

my through the process of the writing project. I would like to thank Dr Stamp for

encouraging me to develop a distributed scanner as a class project. This work evolved

from wearing both black and white hats. I am grateful to Dr Araya for his valuable

suggestions.

vi

CONTENTS

CHAPTER

1 INTRODUCTION 1

1.1 Scalable port scan detection . 2

1.2 Overview of the report . 3

2 BACKGROUND 4

2.1 Port scanning . 4

2.2 Classi�cation of scans . 6

3 MOTIVATION 7

3.1 Design considerations . 7

3.2 Related work . 8

4 APPROACH 11

4.1 Simulation environment . 11

4.2 TCP Scanner . 12

4.3 Packet sni�er . 15

4.4 Detector . 18

4.4.1 Patterns in TCP packet tra�c 20

4.4.2 Partial Completion Filter (PCF) 21

4.5 Network Topology . 21

vii

5 RESULTS 24

6 CONCLUSION 28

BIBLIOGRAPHY 31

viii

LIST OF TABLES

Table

4.1 Fields extracted by the packet sni�er 16

5.1 Results of two scanners and two targets 25

5.2 Results of four scanners and two targets 27

ix

LIST OF FIGURES

Figure

2.1 Conceptual geometric pattern of common scan footprints [9] 6

4.1 Simple and compound modules . 11

4.2 TCP State diagram [20] . 13

4.3 IP v4 header [2] . 17

4.4 TCP header [2] . 18

4.5 Prototype IDS within router r3 . 19

4.6 Multiple stage Partial Completion Filter [13] 22

4.7 Port scan experimental setup in OMNeT++ with 2 scanners, 2 targets,

and no background tra�c. 23

5.1 Experiment setup with two scanners and two targets 24

5.2 Experiment setup with four scanners and two targets 26

x

Chapter 1

INTRODUCTION

Scanning activity is regarded to be a threat by the security community - an

indicator of an imminent attack. Panjwani et al found that 50% of all scanning

activity was followed by an attack[16].

Incidents of computer break in and sensitive information being compromised are

fairly common. There are substantial �nancial gains to be made from electronic theft

of data . Utility providers using information technology for e�cient management of

resources across increasingly greater regions are vulnerable to service disruption by

electronic sabotage of their centralized systems[15].

Attack programs search for openings in a network, much as a thief
tests locks on doors. Once inside, these programs and their human
controllers can acquire the same access and powers as a systems
administrator[10].

Government computers were the target of an espionage network which compromised

thousands of o�cial systems worldwide [7]. The attacker with the greatest technical

sophistication is the professional criminal or the cyber terrorist. A sophisticated

adversary is risk averse and may go to great lengths to hide their tracks[1]. This

is because detection may provoke a response by the defender � either retaliation or

up gradation of the defenses. One of the tactics used in warfare is reconnaissance

2

or information gathering. Reconnaissance can be non technical - social engineering,

dumpster diving or technical � scanning the target's network, monitoring tra�c[21].

The method of determining services available on a computer by sending packets

to several ports is called port scanning[8]. Further communication on the ports that

services are available can determine the vulnerability to any available exploit and

is termed vulnerability scanning. The scanning packets traverse the target network

and so are visible to any network application such as an Intrusion Detection System

(IDS). This may cause them to be detected. Avoiding detection by IDS can be as

simple as insertion of a time delay between scanning packets, thereby defeating most

thresholding based IDS algorithms. However this is not e�cient as it slows down

the scanning activity. For a more e�cient approach, other methods have evolved like

coordinated / distributed port scans. These divide the target space among multiple

Source IPs (SIPs) such that each SIP scans a portion of the target. The IDS may

not detect this activity due to the small number of connection attempts, or if it does,

then it may not be able to detect the collaboration between the source machines.

Early detection and reaction to potential intruders is made possible by the

detection of port scans, stealthy or co-ordinated port scans. Cohen [5] determines

optimal defender strategies by simulating computer attacks and defences. He �nds

that responding quickly to an attack is the best strategy that a defender can employ.

A quick response is better than having a highly skilled and multilevel defence in place,

but an increased response time to an attack.

1.1 Scalable port scan detection

In a nutshell, we would like to use aggregation techniques to scalably detect

distributed port scanning activity by fast spreading Internet worms and validate the

3

detector using a simulator[24]

1.2 Overview of the report

Chapter 2 is a primer on types of scans and detectors. In Chapter 3 we present

our motivation and related work in port scan detection. Chapter 4 introduces the

detector that we have built. Chapter 5 is an analysis of the data generated by the

simulation of the detection algorithm. Our conclusion is presented in Chapter 6.

4

Chapter 2

BACKGROUND

Port scanning is a method of determining the available services on a computer

by sending packets. It is generally viewed as a reconnaissance activity or information

gathering phase distinct from the attack phase. This implies that there will be a gap

between the scan and the attack. But there are no technical reasons for separating

the reconnaissance activity with the attack phase when fast propagation is a key

consideration. This can be achieved with an integrated scan and exploit tool. There is

a trade o� between between speed and stealth of the scanning activity. The motivation

of the attacker dictates the choice between speed and stealth. Fast propagation is a

kind of brute force scan/attack and is easily detected by the target network security

personnel. Some scanning activity is immediately followed by an attack. This is

probably to take advantage of zero day exploits.

2.1 Port scanning

A listening service on a network host is referenced by the combination of its

host IP address and the bound port number. A port is a logical address on a machine.

There are 65,536 TCP and 65,536 UDP ports on a machine. These are split into three

ranges by the Internet Assigned Numbers Authority (IANA)[18] :

5

(1) Well Known Ports, from 0 through 1023

(2) Registered Ports, from 1024 through 49151

(3) Dynamic and/or Private Ports, from 49152 through 65535

�Port Scanning is the process of identifying some or all open ports
(listening services) on one or more hosts.[14]�

A port scan may be the precursor to an actual attack, so it is essential for the network

administrator to be able to detect it when it occurs.

A simple port scan by itself does not harm the host as it concentrates on the

Well Known Ports, and is done in a sequential manner. If, on the other hand, enough

such simultaneous connect attempts are made, the host's resources may get exhausted

and its performance adversely a�ected, as the connection state has to be maintained.

Clearly, this can be used as a Denial Of Service (DOS) attack.

In order to detect and prevent port scanning, various Intrusion Detection/Pre-

vention System (IDS/IPS) are used. IDS/IPS identi�es multiple connection requests

on di�erent ports from a single host and automatically blocks the corresponding IP

address. The best example of this kind of IDS/IPS is Snort [14]. Distributed port

scanning is used to evade detection and avoid the corresponding black listing of the

source machine by the target host/network.

A conventional port scan targets a single or a few chosen hosts,with a limited

subset of carefully chosen ports. This type of scan is slow and and generally used on

pre chosen targets, so its IP coverage focus is narrow. A speci�c type of port scan

called a sweep targets whole IP ranges, but only one or two ports. Here the objective

is to quickly cover as many hosts as possible, so its IP coverage focus is broad. This

sweep behavior is generally exhibited by a worm or an attacker looking for a speci�c

vulnerable service.

6

2.2 Classi�cation of scans

Scans can be classi�ed by their footprint which is nothing but the set of IP/port

combinations that is the focus of the attacker. The footprint is independent of how

the scan was conducted or the script of the scan [22]. Staniford et al note that

the most common footprint is a horizontal scan. They infer that this is due to the

attacker being in possession of an exploit and interested in any hosts which expose

that service. This footprint results in a scan which covers the port of interest across

all IP addresses within a range. Horizontal scans may also be indicative of a network

mapping attempt to �nd available hosts in a range of IP addresses. Scans on some or

all ports of a single host are termed vertical scans. The target is more speci�c here

and the purpose is to �nd out if the host exposes any service with an existing exploit.

A combination of horizontal and vertical scans is termed a block scan of multiple

services on multiple hosts [22].

Figure 2.1: Conceptual geometric pattern of common scan footprints [9]

7

Chapter 3

MOTIVATION

We developed a distributed port scanner which used proxy response �ngerprint-

ing based on a presentation at the RSA 2006 conference [14]. We used the free open

application proxy Squid [6] as the intermediary and implemented the scanner in Perl.

3.1 Design considerations

There are a lot of variables that require careful consideration while designing a

detector. We make the following assumptions about the operating conditions of the

detector

• A medium to large size network with multiple gateways and quite possibly

delegated administrative authority.

• The core network administrators require fast detection and logging of any

distributed scanning activity. However, there will be no automated response

to any �agged scanning activity. (No auto ban or blacklisting) The �agged

activity details will be handed over to the administrators of the a�ected net-

works. This will avoid issues like blocking tra�c from legitimate IP addresses

due to spoo�ng of their IP addresses by the scanners. This kind of Denial of

Service (DoS) can theoretically be prevented by a white-list, but it requires

a substantial administrative overhead to maintain.

8

• The amount of network data captured or stored for consumption by the de-

tector must be substantially smaller than the original.

Considering the above operating conditions the detector characteristics can be ob-

tained

• It operates on packet level summaries.

• It operates in real time as it has access to all the required packet summaries

immediately. Flow level data can only be obtained when the �ow is �nished

and the information is purged to storage. This can take a long time as the

�ows duration varies greatly. This forces any detector based on �ow level

data to be non real time.

• It is stateless in nature. Inspecting application level data requires the storage

of complete packets and their reassembly requiring the detector to maintain

state. We do not require storage or reassembly of packets as we just need the

summaries. We can see that the storage requirements for these summaries is

based on the volume of packets. A way to decouple the storage requirements

with the tra�c volume is to use aggregation.

3.2 Related work

Network Security Monitor (NSM) [11] was the pioneering NIDS. Its scan detec-

tion rules detected any source IP address which attempted to connect more than 15

hosts. Time is not mentioned as a factor in the paper. Since then, most NIDS use a

variant of this thresholding algorithm.

Snort has a preprocessor for detecting port scans based on invalid �ag combi-

nations or exceeding a preset threshold. Scans which abuse the TCP protocol like

9

NULL scans, Xmas tree scans and SYN-FIN scans can be detected by their invalid

TCP �ag combinations. Scans which use valid �ags can be detected by a threshold

mechanism. Snort is con�gured by default to generate an alarm only if it detects a

single host sending SYN packets to four di�erent ports in less than three seconds [19].

Bro also uses thresholding to detect scans [17]. A single source attempting to

contact multiple destination IP addresses is considered a scanner if the number of

destinations exceeds a preset threshold. A vertical scan is �agged by a single source

contacting more than the threshold number of destination ports. Paxson indicates

that this method generates false positives, such as a single source client contacting

multiple internal web servers. To reduce the number of false positives, Bro uses packet

and payload information for application level analysis.

Staniford et al use simulated annealing to detect stealthy and distributed port

scans [22]. Packets are initially pre-processed by Spade which �ags packets as normal

or anomalous. Spice uses the packets �agged as anomalous and places them in a

graph, with connections formed using simulated annealing. Packets which are most

similar to each other are grouped together. This approach is used in the detection of

port scans.

Threshold RandomWalk (TRW) developed by Jung et al requires information if

a particular host and service are available on the target network [12]. This information

is obtained by analysis of return tra�c or through an oracle. They apply sequential

hypothesis testing on new connection requests that arrive to determine whether a

source is performing a scan. The assumption is that a destination is more likely

to respond with a SYN-ACK to a benign source (legitimate connection requests are

generally from clients who are aware of the services that exist on the destination),

than to a scanner source.

Kompella et al focus on scalable attack detection by aggregating the per �ow

10

state into a data structure they call a Partial Completion Filter (PCF) [13]. The

PCF data structure is similar to a counting Bloom �lter [3][4]. State can be evicted

from the PCF unlike Bloom �lters where this is not possible.

11

Chapter 4

APPROACH

4.1 Simulation environment

We selected OMNeT++ [25][24]as the simulation environment. OMNeT++

is a discrete event simulator with support for network simulation using the INET

framework [23].

There is a distinct separation of form/structure and function/behavior in the

OMNeT++ simulator. Simulations are made up of modules. There are two types

of modules: simple and compound. A simple module is comprised of its structure

(de�ned in the NED programming language) which is nothing but a container with

gates or connections with which it communicates with other modules. The behavior

of a simple module is de�ned by its C++ implementation .

Figure 4.1: Simple and compound modules

12

4.2 TCP Scanner

TCP has a very complex state diagram (see Figure 4.2 on page 13). The set

up of a TCP connection requires a 3-way handshake. The listening application is

informed only when the handshake is successful [8].

There are several types of TCP scanning methods used in the �eld [8]

• TCP connect() scanning

• TCP SYN (half open) scanning

• TCP FIN (stealth) scanning

• Xmas and Null scans

• ACK and Window scans

• RST scans

A TCP connect() scan completes the 3-way handshake and is logged as a connection

attempt by the application. This scan is the easy to implement and does not require

root priviliges. The port is considered open when the connection is established and

closed if the connection attempt fails. The scanner sends a SYN packet, receives a

SYN-ACK to acknowledge the connection, followed by an ACK by the scanner to

complete the connection setup. The connection is then torn down by a FIN from the

scanner. This method is only used in port scanning when the scan is run as a normal

user. The more typical usage is to probe the application level service version as part

of a vulnerability scan.

A TCP SYN (half open) scan is the most popular type of port scan when root

priviliges are possible. The scan does not show up in the application level logs since

13

Figure 4.2: TCP State diagram [20]

14

the 3-way TCP handshake is not completed. Its stops the TCP connection open

process midway after the �rst reponse from the server so is know as the half open

scan. The scanner sends a SYN packet to the target. If the response is a SYN-ACK,

the port is open. A closed port causes the target OS to respond with a RST-ACK.

If the reponse received was SYN-ACK, the scanner responds with a RST to abort

the connection. The advantage of this method is that scan leaves no trace in the

application level service logs.

If there is no response from the target port, the port could be �ltered, which

means that a �rewall is dropping all SYN-ACK packets to the closed port. If that is

the case then the FIN scan can be used. The �rewall rule set will generally allow all

inbound packets with a FIN to pass through without exception. When the scanner

sends a FIN packet to a closed port, then the response will be a RST. If the port is

open then there will be no response received.

There are several variations of the FIN scan. In a Xmas scan, the URG, PSH

and FIN �ags are set. In a Null scan, none of the �ags are set. In both cases the

sequence number is 0.

ACK scans are used to determine which ports are �ltered by the �rewall by

sending a packet to a port with only the ACK �ag set. A RST reponse indicates that

the port is un�ltered and is accessible remotely. If no response is received or if an

ICMP unreachable response is recieved then the port is �ltered by the �rewall.

We implemented a distributed TCP port scanner in the OMNet++ simulation

environment. The scanner supports the TCP SYN (half open) type of scan. The

algorithm of the scanner is shown in 4.1.

15

Algorithm 4.1 TCP scanner

Input : Number o f scanner s n
Input : L i s t o f IP/ port pa i r s P

f o r every scanner
portsPerScanner = |P | / | n |
whi l e portsPerScanner > 0 do

send SYN
i f recv (SYN+ACK) then

port OPEN
send RST

end i f
i f r ecv (SYN+RST) then

port CLOSED
end i f
i f r ecv (TIMEOUT) then

port FILTERED
end i f
portsPerScanner = portsPerScanner − 1

end whi l e

4.3 Packet sni�er

Speci�c packet �elds serve as an input to the IDS for generation of the packet

summary information. We require the following �elds from every incoming IP packet

on all the router interfaces..

(1) Source IP (SIP)

(2) Destination IP (DIP)

(3) Source Port (SP)

(4) Destination Port (DP)

(5) SYN

(6) FIN

16

(7) ACK

(8) RST

We can extract the SIP and the DIP from the IP packet header (see Figure 4.3 on

page 17). The other �elds are from the encapsulated TCP packet header (see Figure

4.4 on page 18).

Type Range Field Abv. Extracted from

IPaddress 0.0.0.0 - 255.255.255.255 Source IP SIP IP
IPaddress 0.0.0.0 - 255.255.255.255 Destination IP DIP IP
Numeric 0 - 65535 Source Port SP TCP
Numeric 0 - 65535 Destination Port DP TCP
Flag boolean Synchronize SYN TCP
Flag boolean Acknowledgement ACK TCP
Flag boolean Finish FIN TCP
Flag boolean Reset RST TCP

Table 4.1: Fields extracted by the packet sni�er

The packet sni�er is noti�ed whenever there is an incoming packet on any

interface. It is programmed only to extract the required header �elds (see Table 4.1

on page 16) even though the sni�er has complete access to the packet header and

payload information (sni�er operates in priviliged or root mode, which allows it to

hook into the Operating System (OS) TCP/IP stack).

17

0

4

8

12

16

20

20
Bytes

IHL
(Internet
Header
Length)

1 20 3
Byte

Offset

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 10 1 2 3 4 5 6 7 8 9

Nibble Byte Word

Version IHL (Header
Length) Type of Service (TOS) Total Length

Identification Fragment Offset

Time To Live (TTL) Protocol Header Checksum

Source Address

Destination Address

IP Option (optional, not common)

Bit

IP Flags
x D M

 IP Header (version 4)

Header Checksum

Checksum of entire IP
header

Header Length

Number of 32-bit words in
TCP header, minimum value
of 5. Multiply by 4 to get byte
count.

Fragment Offset

Fragment offset from start of
IP datagram. Measured in 8
byte (2 words, 64 bits)
increments. If IP datagram is
fragmented, fragment size
(Total Length) must be a
multiple of 8 bytes.

Version

Version of IP Protocol. 4 and
6 are valid. This diagram
represents version 4
structure only.

Total Length

Total length of IP datagram,
or IP fragment if fragmented.
Measured in Bytes.

Protocol

ICMP
IGMP
TCP
IGRP

1
2
6
9

UDP
GRE
ESP
AH

17
47
50
51

SKIP
EIGRP
OSPF
L2TP

57
88
89

115

IP Protocol ID. Including (but
not limited to):

x
D
M

0x80
0x40
0x20

reserved (evil bit)
Do Not Fragment
More Fragments
follow

IP Flags

x D M

RFC 791

Please refer to RFC 791 for
the complete Internet
Protocol (IP) Specification.

Copyright 2004 - Matt Baxter - mjb@fatpipe.org

Figure 4.3: IP v4 header [2]

The TCP information is encapsulated within the IPv4 payload. We just peek

at the required �elds by making a temporary copy of the original IPv4 packet and

de-encapsulating it to extract the required TCP �elds. The �elds are then converted

to a text format ready to be pushed to detector mechanism.

18

0

4

8

12

16

20

20
Bytes

Offset

0 1 2 3Byte
Offset

Source Port Destination Port

Sequence Number

Acknowledgment Number

Offset Reserved Window

TCP Options (optional)

Checksum Urgent Pointer

Nibble Byte Word

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 10 1 2 3 4 5 6 7 8 9Bit

TCP Flags
FSRPAUEC

FSRPAUEC

C
E
U
A
P
R
S
F

0x80
0x40
0x20
0x10
0x08
0x04
0x02
0x01

Congestion Window
Reduced (CWR)
ECN Echo (ECE)
Urgent
Ack
Push
Reset
Syn
Fin

TCP Header

TCP Options

0 End of Options List
1 No Operation (NOP, Pad)
2 Maximum segment size
3 Window Scale
4 Selective ACK ok
8 Timestamp

Checksum

Checksum of entire TCP
segment and pseudo
header (parts of IP header)

Offset

Number of 32-bit words in
TCP header, minimum
value of 5. Multiply by 4 to
get byte count.

TCP Flags Congestion Notification

Packet State
Syn

Syn-Ack
Ack

No Congestion
No Congestion

Congestion
Reciever Response

Sender Response

DSB
0 0
0 0
0 1

0 1
1 0

1 1
1 1
1 1

ECN bits
1 1
0 1
0 0

0 0
0 0

0 0
0 1
1 1

ECN (Explicit Congestion
Notification). See RFC
3168 for full details, valid
states below.

RFC 793

Please refer to RFC 793 for
the complete Transmission
Control Protocol (TCP)
Specification.

Copyright 2004 - Matt Baxter - mjb@fatpipe.org

Figure 4.4: TCP header [2]

4.4 Detector

The detector is designed to be strapped on to router �rmware. This design

choice dictates that the detector must have the following characteristics:

(1) Should NOT be processor intensive.

(2) Very low and predictable memory requirements.

In other words the prime function of a router is packet forwarding and any included

Intrusion Detection Sytem (IDS) functionality should scale gracefully and not cause

the primary functionality to fail. The emphasis is on realtime detection which means

19

that processing speed is one of the design goals. We are willing to sacri�ce accuracy

to some extent to achieve this goal.

Figure 4.5: Prototype IDS within router r3

The IDS integrated within a router is shown in Figure 4.5 on page 19. The

packet sni�er and the detector can be seen in the router. Whenever a packet arrives

on a router interface, a lookup of the routing table is performed to determine the next

hop if the destination is not local. After the route lookup, the TTL is decremented

and the packet is forwarded on the corresponding interface for the particular route.

20

4.4.1 Patterns in TCP packet tra�c

The pattern of benign and TCP scan tra�c is di�erent. Our scan detection

algorithm uses these di�erences to �ag a particular set of packets as scanners or

benign

Symmetry in benign TCP connections

TCP has an elaborate setup and a teardown process. A benign connection will

look like the following to an observer of the communication between the client and

the server:

TCP (SETUP)

~ww←−−−−−−−−−−−−−−→Session Established
ww�TCP(TEARDOWN)

We can see that there are three di�erent stages:

(1) Setup: This is the TCP 3-way handshake.

(a) SYN

(b) SYN-ACK

(c) ACK

(2) Session Established: The period during which the client will communicate

with the server. An example would be to fetch a page from a web server.

(3) Teardown: This is when the FIN packet is used to bring down the connection

Asymmetry in TCP scan tra�c

We take the TCP SYN (half open) scanning into consideration. The tra�c

between an scanner and a server will look like the following to an observer who is in

a position to observer both sides of the communication.

TCP (OPEN)

~ww−−−−−−−−−−−−−−−→HandshakeAborted
ww�TCP(ABORT)

21

(1) Open: This is the standard TCP 3-way handshake till 1b. Then in 1c the

scanner aborts the handshake.

(a) SYN

(b) SYN-ACK

(c) RST

(2) Handshake Aborted: The session was not able to setup as the RST from the

scanner aborted the TCP 3-way handshake

(3) Abort: This is when the RST packet aborts the handshake. There is no FIN

packet associated with the abort process.

4.4.2 Partial Completion Filter (PCF)

The Partial Completion Filter (PCF) was introduced by Kompella et al. [13].

It is similar to a counting Bloom �lter. There are multiple parallel stages in a PCF

with each stage containing hash buckets that hold a counter (see Figure 4.6 on page

22). The hash bucket counter in scope is incremented for a SYN and decremented

for a FIN. For benign TCP connections the symmetry between the SYNs and FINs

will ensure that the counter will tend towards 0. If an IP address hashes into buckets

which have large counter values in all stages, then we can assert with a high degree

of con�dence that the IP address is involved in a scan.

4.5 Network Topology

The prototype IDS is deployed on a /16 CIDR [26] within the OMNeT++

simulator. The number of scanners and target servers are variable. There is also a

provision to add other hosts which can generate background tra�c.

22

Figure 4.6: Multiple stage Partial Completion Filter [13]

23

Figure 4.7: Port scan experimental setup in OMNeT++ with 2 scanners, 2 targets,
and no background tra�c.

24

Chapter 5

RESULTS

We used an experimental setup with the following con�guration.

• Two scanners, two regular routers, one router with the IDS system, and two

targets (Figure 5.1 on page 24). The threshold chosen was 3.

Figure 5.1: Experiment setup with two scanners and two targets

The results are shown in Table 5.1 on page 25.

• Four scanners, two regular routers, one router with the IDS system, and two

targets (Figure 5.2 on page 26). The threshold chosen was 3.

25

P
or
ts

P
C
F
S
ta
ge
s

B
u
ck
et
s/
P
C
F
st
ag
e

B
u
ck
et

si
ze

M
em

or
y
fo
r
P
C
F

T
h
re
sh
ol
d

D
et
ec
ti
on

R
at
e

4
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

10
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

20
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

4
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

10
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

20
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

4
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

10
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

20
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

4
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

10
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

20
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

T
ab
le
5.
1:

R
es
u
lt
s
of

tw
o
sc
an
n
er
s
an
d
tw
o
ta
rg
et
s

26

The results are shown in Table 5.2 on page 27.

Figure 5.2: Experiment setup with four scanners and two targets

We measure the detection rate as the number of scanner IPs that the detector

could identify. The results of both these setups are unusual in that they are constant

for a wide variation of parameters. The only parameter which has a signi�cant e�ect

is the threshold. Any scanner that operates below the currently set threshold is

mislabelled. Since the amount of tra�c generated in the network is limited, it remains

to be seen whether this behavior manifests itself in scaled up simulations or actual

network traces.

27

P
or
ts

P
C
F
S
ta
ge
s

B
u
ck
et
s/
P
C
F
st
ag
e

B
u
ck
et

si
ze

M
em

or
y
fo
r
P
C
F

T
h
re
sh
ol
d

D
et
ec
ti
on

R
at
e

4
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

10
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

20
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

3
>
90
%

4
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

10
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

20
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

3
>
90
%

4
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

10
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

20
1

3
32

b
it
s
(4
b
y
te
s)

0.
01
2
k
b

1
>
90
%

4
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

10
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

20
3

10
00

32
b
it
s
(4
b
y
te
s)

12
k
b

2
>
90
%

T
ab
le
5.
2:

R
es
u
lt
s
of

fo
u
r
sc
an
n
er
s
an
d
tw
o
ta
rg
et
s

28

Chapter 6

CONCLUSION

Conventional Network Intrusion Detection Systems (NIDS) have heavyweight

processing and memory requirements as they maintain per �ow state using data

structures like linked lists or trees. This is required for some specialized jobs such as

Stateful Packet Inspection (SPI) where the network communications between entities

are recreated in its entirety to inspect application level data. The downside to this

approach is that:

• The NIDS must be in a position to view all inbound and outbound tra�c of

the protected network

• The NIDS can be overwhelmed by a DDoS attack since most of these try and

exhaust the available state of network entities.

For some applications like port scan detection, we do not require to reconstruct the

complete network tra�c. We can see that the aggregation approach works well, some-

what like a set lookup with a very compact storage mechanism. The data structure

is unique in following respects:

(1) The values stored cannot be retreived verbatim or enumerated.

(2) An input value can be tested for prior existance among the set of values

stored.

29

These properties listed above are used in reducing the detector state to a constant

value. Since routers are devices with limited memory and processing capabilities,

these properties �t in exceedingly well with our requirements of �tting a detection

mechanism into them.

Gaming the detector system can be attempted in the forward path by sending

spurious client generated FINs. This can be countered by eliminating client FINs

from the equation. The spurious FIN technique is not possible in the reverse path as

the server would have to terminate the connection.

Future work includes incorporating the detector into multiple routers and for-

mulating a peer to peer or client server distributed detector communication network.

A distributed set look up is then possible from any point in the network. So routers in

various segments can be queried like a directory to check whether a particular packet

was forwarded by them.

30

NOMENCLATURE

ACK TCP ACKnowledge �ag

DIP Destination IP

DP Destination Port

FIN TCP FINish �ag

HIDS Host-based Intrusion Detection System

IANA Internet Assigned Numbers Authority

IDS Intrusion Detection System

IP Internet Protocol

NIDS Network Intrusion Detection System

OS Operating System

PCF Partial Completion Filter

SIP Source IP

SP Source Port

SYN TCP SYNchronize �ag

TCP Transmission Control Protocol

31

BIBLIOGRAPHY

[1] Allman. A brief history of scanning. In ACM Internet Measurement Conference
2007, 2007.

[2] Matt Baxter. Header drawings. Online. Last accessed, April 2009 at http:

//www.fatpipe.org/~mjb/Drawings/.

[3] B Bloom. Space/time trade-o�s in hash coding with allowable errors. Commu-
nications of the ACM, (13):422�426, 1970.

[4] A Broder and M Mitzenmacher. Network applications of bloom �lters: A survey.
In Internet Mathematics, pages 636�646, 2002.

[5] Fred Cohen. Simulating cyber attacks, defenses, and consequences. Online.
Last accessed, April 2009 at http://www.all.net/journal/ntb/simulate/

simulate.html.

[6] Various contributors. Squid: Optimizing web delivery, 2008. Last accessed,
March 2008 http://www.squid-cache.org/.

[7] Ron Deibert and Rafal Rohozinski. Tracking GhostNet: Investigating a cyber
espionage network. Online, March 2009.

[8] fyodor. The art of port scanning. Phrack Magazine, 7(51), 1997. Last accessed,
January 2009 at http://www.phrack.com/issues.html?issue=51&id=11.

[9] C Gates, J McNutt, J Kadane, and M Kellner. Detecting scans at the ISP
level. Technical Report CMU/SEI-2006-TR-005, Software Engineering Institute,
Carnegie Mellon University Pittsburgh, PA 15213, 2006.

[10] Siobhan Gorman. Electricity grid in U.S. penetrated by spies,
2009. Last accessed, April 2009 at http://online.wsj.com/article/

SB123914805204099085.html.

[11] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and D. Wolber.
A network security monitor. pages 296�304, May 1990.

32

[12] J Jung, V Paxson, A W Berger, and H Balakrishnan. Fast portscan detection
using sequential hypothesis testing. In Proceedings of the IEEE Symposium on
Security and Privacy, 2004.

[13] R R Kompella, S Singh, and G Varghese. On scalable attack detection in the
network. In IMC 04: Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement, pages 187�200. ACM Press, 2004.

[14] Ofer Maor. Divide and conquer: Real world distributed port scanning. RSA
Conference, Feb 2006. Last accessed, March 2008 at http://www.hacktics.

com/frpresentations.html.

[15] Elinor Mills. Just how vulnerable is the electrical grid?, 2009. Last accessed,
April 2009 at http://news.cnet.com/8301-1009_3-10216702-83.html.

[16] S Panjwani, S Tan, K Jarrin, and M Cukier. An experimental evaluation to
determine if port scans are precursors to an attack. In Proceedings of the 2005
International Conference on Dependable Systems and Networks, pages 602�611,
2005.

[17] V Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, (31):23�24, 1999.

[18] Jon Postel. IANA-Internet Assigned Numbers Authority Port Number As-
signment. Online. Last accessed, April 2009 at http://www.iana.org/

assignments/port-numbers.

[19] Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA
'99: Proceedings of the 13th USENIX conference on System administration, pages
229�238, Berkeley, CA, USA, 1999. USENIX Association.

[20] Shweta Sinha. TCP state transition diagram. Online. Last accessed, April 2009
at http://www.winlab.rutgers.edu/~hongbol/tcpWeb/tcpTutorialNotes.

html.

[21] Edward Skoudis and Tom Liston. Counter Hack Reloaded: A Step-by-Step Guide
to Computer Attacks and E�ective Defenses (2nd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005.

[22] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical
automated detection of stealthy portscans. J. Comput. Secur., 10(1-2):105�136,
2002.

[23] A Varga and Others. INET framework for OMNeT++ 4.0, 2009. Last accessed,
March 2009 at http://inet.omnetpp.org/.

33

[24] A Varga and Others. OMNeT++, 2009. Last accessed, March 2009 at http:
//www.omnetpp.org.

[25] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation
environment. In Simutools '08: Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and systems
& workshops, pages 1�10, ICST, Brussels, Belgium, Belgium, 2008. ICST (In-
stitute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering).

[26] Wikipedia. Classless inter-domain routing � wikipedia, the free encyclopedia,
2009. Last accessed, April 2009 at http://en.wikipedia.org/w/index.php?

title=Classless_Inter-Domain_Routing&oldid=281677018.

	San Jose State University
	SJSU ScholarWorks
	2009

	Distributed Port Scanning Detection
	Himanshu Singh
	Recommended Citation

	tmp.1295901364.pdf.qUN3g

